Tag Archives: public opinion

Syn Bio: survey of US public opinion report and webcast

Thursday, Sept. 9, 2010 is the day that the Synthetic Biology Project (associated with the Woodrow Wilson International Center for Scholars) will be releasing a report on its 2010 survey of public opinion about synthetic biology in the wake of J. Craig Venter’s May 2010 announcement (my May 21, 2010 posting) about creating the first synthetic bacterial cell. You can attend a live event in Washington, DC. (RSVP please) or view the live webcast at 9:30 am PT.

From the Synthetic Biology Project website,

For the fifth year in a row, Peter D. Hart Research, in collaboration with the Science and Technology Innovation Program at the Woodrow Wilson International Center for Scholars, conducted a representative national telephone survey to gauge public awareness of, and attitudes towards, emerging science and technologies.

Join us on Thursday, September 9, 2010, at 12:30 p.m. for the results from the latest poll.

Frames, nanotechnology and public opinion

Frames, you find them on paintings and windows and you find them in the social sciences.As per the Wikipedia essay on Erving Goffman and his book Frame Analysis,

This book was Goffman’s way of trying to explain how conceptual frames structure the individual’s perception of the society; therefore, this book is about organization of experiences rather than organization of society. Frames organize the experiences and guide action for the individual and/or for everyone. Frame analysis, then, is the study of organization of social experiences. One example that Goffman used to help people better understand the concept is associating the frame with the concept of a picture frame. He used the picture frame concept to illustrate how people use the frame (which represents structure) to hold together their picture (which represents the context) of what they are experiencing in their life. The most basic frames are called primary frameworks. These frameworks take an experience or an aspect of a scene of an individual that would originally be meaningless and make it to become meaningful. One type of primary framework is natural frameworks, which identifies situations that happened in the natural world, and is completely physical with no human influences. The other type of framework is social framework, which explains events and connects it to humans. An example of natural framework would be the weather and an example of social framework would be the meteorologist who reports people with the weather forecast. Goffman concentrates more on the frameworks and tries to “construct a general statement regarding the structure, or form, of experiences individuals have at any moment of their social life”. [Note: I have removed the footnote numbers, see the essay for them.]

I’m mentioning frames as I’ve seen them referred to in some of the literature about nanotechnology and other emerging technologies and how people form opinions about them.  Specifically,it’s  the topic of one of Matthew Nibet’s latest postings on his new blog, Age of Engagement on his new home site, Big Think. From Nisbet’s August 20, 2910 posting (Study: In Communicating about Nano and GMOs, Do the Frames or the Facts Matter?),

Framing is an unavoidable aspect of human communication. There is no such thing as unframed information. On science-related issues, this idea is difficult to grasp for some advocates and scientists who still view communication through the lens of what scholars call the “deficit model” which assumes that opinion formation is a direct consequence of knowledge (or alternatively ignorance). If the public only better understood the facts of a scientific topic they would more likely view the issue as scientists do and controversy would go away.

Nisbet mentions this in the context of a specific study by Northwestern University researchers James Druckman and Toby Bolsen in a forthcoming issue of the Journal of Communication.

On election day in 2008, Druckman and Bolsen assembled 20 teams of students to conduct exit polls of 621 voters in the Chicago region, querying voters on their perceptions of carbon nanotubes (CNTs) and genetically-modified foods (GMOs). For the interviews, voters were randomly assigned to separate frame and issue conditions.

For different groups of voters, CNTs or GMOS were defined using either a “fact” free frame or fact-based frame, with an emphasis on either benefits or risks. In the case of CNTs, respondents were read the following introduction followed by one of the following frames, depending on their assigned experimental condition. A similar method was used on GMOs (see the paper for more details):

One of the most pressing issues facing the nation—as has been clear from the election—concerns the limitations to our energy supply (e.g., with regard to coal, oil and natural gas). One approach to addressing this issue is to rely more on carbon nanotubes or CNTs. CNTs are tiny graphite with distinct chemical properties. They efficiently convert sunlight into electricity, and thus, serve as an alternative to coal, oil, and natural gas. The uncertain long-term effects of CNTs are the subject of continued study and debate.

Fact Free Benefits of Nanotechnology

Most agree that the most important implication of CNTs concerns how they will affect energy cost and availability. A recent study on cost and availability showed that CNTs will double the efficiency of solar cells in the coming years.

Fact Free Risks of Nanotechnology

Most agree that the most important implication of CNTs concerns their unknown long-run implications for human health.

Fact-based Benefits of Nanotechnology

A recent study on cost and availability showed that CNTs will double the efficiency of solar cells in the coming years.

Fact-based Risks of Nanotechnology

A recent study on health showed that mice injected with large quantities of CNTs reacted in the same way as they do when injected with asbestos.

We find at every stage of the decision-making process, the processing of factual information is fraught with imperfections. First, facts have limited impact on initial opinions—no greater than alternative considerations including values and perceptions about science credibility (also see, e.g., Scheufele & Lewenstein 2005). Second, we find that when provided with frames that lack factual information and frames that include facts, individuals do not privilege the facts (also see, e.g., Nisbet & Mooney, 2007). Facts do not enhance frame strength (although facts do have effects equivalent to that of frames without facts). Third, once they form initial opinions, individuals process new factual information in a biased manner (also see, e.g., Kahan et al., 2008). Specifically, they view information consistent with their prior opinions as relatively stronger and they view neutral facts as consistent with their existing dispositions.

Of course ours is just one study on two particular technologies, and as a result, caution needs to be taken in generalizing. It does seem clear, however, that factual information is not always as it appears (to a neutral observer). Our results suggest that the best route to facilitate reasonable opinion formation may be to provide alternative ways of thinking about new technologies—that is, different frames—and then to encourage individuals to weigh these frames against one another. Under distinct circumstances, facts may play a more salient and less biased role.

I find this study a little confusing because they seem to be using at least two meanings for frames/framing. There’s both topical framing, i.e., fact-based vs nonfact-based with regard to how nanotechnology information is framed and an individual’s more comprehensive framing strategy which is derived from their values and beliefs.  (Note: I’ve read the preliminary paper which Nisbet makes available in the August 20, 2010 posting.)

Another element which always niggles at me in these kinds of studies is that people have  responded in a similar fashion to previously emerging technologies such as electricity and telephony (see Carolyn Marvin’s book, When old technologies were new, for some insights into the concerns and ‘cultural’ wars that ensued).  The question I keep asking myself is, what does understanding the process of framing in the context of accepting emerging technologies do for us? Humans have accepted any number of technological innovations  over the millenia while expressing many of the same concerns we do now without all this probing analysis and discussion of frames. What purpose is there to understanding framing strategies?

As for the suggestion that science literacy is neither here nor there, I’m not sure I’m ready to accept that but then I imagine the researchers would point out that my own framing strategy is what compels me to reject that notion.

One other thing, I found their ‘facts’ lacking. The information about the mice and CNTs with regard to nanotechnology risks is very minimal and frankly it wouldn’t be enough to convince of me of anything.

Eurobarometer reflects more European interest in science and than sports

The notion that a population (i.e., Europeans) might be more interested in science than sports is certainly an intriguing proposition given the constant coverage given sports topics as opposed to science topics in various media here in Canada. More from last week’s news item on Nanowerk,

According to a new Eurobarometer report (pdf) [on Science and Technology] published today, nearly 80% of Europeans say they are interested in scientific discoveries and technological developments, compared to 65% interested in sport. Over 70% of Europeans think EU-funded research will become more important in the future. 57% think scientists should put more effort into communicating about their work and 66% believe governments should do more to interest young people in scientific issues. Europeans overwhelmingly recognise the benefits and importance of science but many also express fears over risks from new technologies and the power that knowledge gives to scientists.

Research, Innovation and Science Commissioner Máire Geoghegan-Quinn said: “The success of the Europe 2020 Strategy depends on cutting edge science to keep Europe competitive. In turn, that means ordinary Europeans need to back science and keep the pressure up on government and on industry to invest in it. These results show a very high awareness of the importance of science. But they also show that both politicians – like me – and scientists themselves need to explain better what we are doing and why.”

As for the interest in science communication and education, that too is striking. I haven’t had a chance to review the report but I hope to do so in the not too distant future.

You can also check out other Eurobarometer reports at the European Commission’s Public Opinion web page.