Tag Archives: quadriplegic

Developing cortical implants for future speech neural prostheses

I’m guessing that graphene will feature in these proposed cortical implants since the project leader is a member of the Graphene Flagship’s Biomedical Technologies Work Package. (For those who don’t know, the Graphene Flagship is one of two major funding initiatives each receiving funding of 1B Euros over 10 years from the European Commission as part of their FET [Future and Emerging Technologies)] Initiative.)  A Jan. 12, 2017 news item on Nanowerk announces the new project (Note: A link has been removed),

BrainCom is a FET Proactive project, funded by the European Commission with 8.35M€ [8.3 million Euros] for the next 5 years, holding its Kick-off meeting on January 12-13 at ICN2 (Catalan Institute of Nanoscience and Nanotechnology) and the UAB [ Universitat Autònoma de Barcelona]. This project, coordinated by ICREA [Catalan Institution for Research and Advanced Studies] Research Prof. Jose A. Garrido from ICN2, will permit significant advances in understanding of cortical speech networks and the development of speech rehabilitation solutions using innovative brain-computer interfaces.

A Jan. 12, 2017 ICN2 press release, which originated the news item expands on the theme (it is a bit repetitive),

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.

BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic [also known as, quadriplegic] people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.

The BrainCom project Consortium members are:

  • Catalan Institute of Nanoscience and Nanotechnology (ICN2) – Spain (Coordinator)
  • Institute of Microelectronics of Barcelona (CNM-IMB-CSIC) – Spain
  • University Grenoble Alpes – France
  • ARMINES/ Ecole des Mines de St. Etienne – France
  • Centre Hospitalier Universitaire de Grenoble – France
  • Multichannel Systems – Germany
  • University of Geneva – Switzerland
  • University of Oxford – United Kingdom
  • Ludwig-Maximilians-Universität München – Germany
  • Wavestone – Luxembourg

There doesn’t seem to be a website for the project but there is a BrainCom webpage on the European Commission’s CORDIS (Community Research and Development Information Service) website.

Chip in brain lets quadriplegic (tetraplegic) move hands and fingers

An April 13, 2016 news item on ScienceDaily describes the latest brain implant,

Six years ago, he was paralyzed in a diving accident. Today, he participates in clinical sessions during which he can grasp and swipe a credit card or play a guitar video game with his own fingers and hand. These complex functional movements are driven by his own thoughts and a prototype medical system that are detailed in a study published online today in the journal Nature.

The device, called NeuroLife, was invented at Battelle, which teamed with physicians and neuroscientists from The Ohio State University Wexner Medical Center to develop the research approach and perform the clinical study. Ohio State doctors identified the study participant and implanted a tiny computer chip into his brain.

An April 13, 2016 Ohio State University news release on EurekAlert, which originated the news item, provides more details about the participant and the technology,

That pioneering participant, Ian Burkhart, is a 24-year-old quadriplegic from Dublin, Ohio, and the first person to use this technology. This electronic neural bypass for spinal cord injuries reconnects the brain directly to muscles, allowing voluntary and functional control of a paralyzed limb by using his thoughts. The device interprets thoughts and brain signals then bypasses his injured spinal cord and connects directly to a sleeve that stimulates the muscles that control his arm and hand.

“We’re showing for the first time that a quadriplegic patient is able to improve his level of motor function and hand movements,” said Dr. Ali Rezai, a co-author of the study and a neurosurgeon at Ohio State’s Wexner Medical Center.

Burkhart first demonstrated the neural bypass technology in June 2014, when he was able to open and close his hand simply by thinking about it. Now, he can perform more sophisticated movements with his hands and fingers such as picking up a spoon or picking up and holding a phone to his ear — things he couldn’t do before and which can significantly improve his quality of life.

“It’s amazing to see what he’s accomplished,” said Nick Annetta, electrical engineering lead for Battelle’s team on the project. “Ian can grasp a bottle, pour the contents of the bottle into a jar and put the bottle back down. Then he takes a stir bar, grips that and then stirs the contents of the jar that he just poured and puts it back down. He’s controlling it every step of the way.”

The neural bypass technology combines algorithms that learn and decode the user’s brain activity and a high-definition muscle stimulation sleeve that translates neural impulses from the brain and transmits new signals to the paralyzed limb.

The Battelle team has been working on this technology for more than a decade. To develop the algorithms, software and stimulation sleeve, Battelle scientists first recorded neural impulses from an electrode array implanted in a paralyzed person’s brain. They used that recorded data to illustrate the device’s effect on the patient and prove the concept.

Four years ago, former Battelle researcher Chad Bouton and his team began collaborating with Ohio State Neurological Institute researchers and clinicians Rezai and Dr. Jerry Mysiw to design the clinical trials and validate the feasibility of using the neural bypass technology in patients.

“In the 30 years I’ve been in this field, this is the first time we’ve been able to offer realistic hope to people who have very challenging lives,” said Mysiw, chair of the Department of Physical Medicine and Rehabilitation at Ohio State. “What we’re looking to do is help these people regain more control over their bodies.”

During a three-hour surgery in April 2014, Rezai implanted a computer chip smaller than a pea onto the motor cortex of Burkhart’s brain.

The Ohio State and Battelle teams worked together to figure out the correct sequence of electrodes to stimulate to allow Burkhart to move his fingers and hand functionally. For example, Burkhart uses different brain signals and muscles to rotate his hand, make a fist or pinch his fingers together to grasp an object. As part of the study, Burkhart worked for months using the electrode sleeve to stimulate his forearm to rebuild his atrophied muscles so they would be more responsive to the electric stimulation.

“During the last decade, we’ve learned how to decipher brain signals in patients who are completely paralyzed and now, for the first time, those thoughts are being turned into movement,” said study co-author Bouton, who directed Battelle’s team before he joined the New York-based Feinstein Institute for Medical Research. “Our findings show that signals recorded from within the brain can be re-routed around an injury to the spinal cord, allowing restoration of functional movement and even movement of individual fingers.”

Burkhart said it was an easy decision to participate in the FDA-approved clinical trial at Ohio State’s Wexner Medical Center because he wanted to try to help others with spinal cord injuries. “I just kind of think that it’s my obligation to society,” Burkhart said. “If someone else had an opportunity to do it in some other part of the world, I would hope that they would commit their time so that everyone can benefit from it in the future.”

Rezai and the team from Battelle agree that this technology holds the promise to help patients affected by various brain and spinal cord injuries such as strokes and traumatic brain injury to be more independent and functional.

“We’re hoping that this technology will evolve into a wireless system connecting brain signals and thoughts to the outside world to improve the function and quality of life for those with disabilities,” Rezai said. “One of our major goals is to make this readily available to be used by patients at home.”

Burkhart is the first of a potential five participants in a clinical study. Mysiw and Rezai have identified a second patient who is scheduled to start the study in the summer.

“Participating in this research has changed me in the sense that I have a lot more hope for the future now,” Burkhart said. “I always did have a certain level of hope, but now I know, first-hand, that there are going to be improvements in science and technology that will make my life better.”

Here’s a link to and a citation for the paper,

Restoring cortical control of functional movement in a human with quadriplegia by Chad E. Bouton, Ammar Shaikhouni, Nicholas V. Annetta, Marcia A. Bockbrader, David A. Friedenberg, Dylan M. Nielson, Gaurav Sharma, Per B. Sederberg, Bradley C. Glenn, W. Jerry Mysiw, Austin G. Morgan, Milind Deogaonkar, & Ali R. Rezai. Nature (2016)  doi:10.1038/nature17435 Published online 13 April 2016

This paper is behind a paywall but there is an in depth April 13, 2016 article by Linda Geddes in Nature providing nuggets of new insight such as this,

Previous studies have suggested that after spinal-cord injuries, the brain undergoes ‘reorganization’ — a rewiring of its connections. But this new work suggests that the degree of reorganization occurring after such injuries may be less than previously assumed. “It gives us a lot of hope that there are perhaps not as many neural changes in the brain as we might have imagined [emphasis mine] after an injury like this, and we can bypass damaged areas of the spinal cord to regain movement,” says Bouton.

The Geddes article is open access.

Finally, there’s an April 13, 2016 article by Will Oremus for Slate.com, which notes that this story is not a fairy tale as there’s a possibility the chip will be removed in the near future as the US Food and Drug Administration’s approval of the device was conditional due to this,

Burkhart knows the device was never meant to last forever. The brain implant’s efficacy gradually degrades over time due to scarring in the brain tissue, and eventually that hardware degradation will start to undo the progress that Burkhart and the software have made together.

He told me he has accepted that his newfound mobility is temporary, and that the progress he has made is likely to benefit posterity more than it benefits him. “I now know that when I’m connected to the system I can do all these great things. It won’t be too much of a shock to me [when it’s over], because even now I can only use the system for a few hours a week when I’m down in the lab. But it will be something I’ll certainly miss.”