Tag Archives: quantum simulators

Ancient Namibian gemstone could be key to new light-based quantum computers

Researchers in Scotland, the US, Australia, and Denmark have a found a solution to a problem with creating light-based computers according to an April 15, 2022 news item on phys.org,

A special form of light made using an ancient Namibian gemstone could be the key to new light-based quantum computers, which could solve long-held scientific mysteries, according to new research led by the University of St Andrews.

The research, conducted in collaboration with scientists at Harvard University in the US, Macquarie University in Australia and Aarhus University in Denmark and published in Nature Materials, used a naturally mined cuprous oxide (Cu2O) gemstone from Namibia to produce Rydberg polaritons, the largest hybrid particles of light and matter ever created.

Cuprous oxide – the mined crystal from Namibia used for making Rydberg polaritons. Courtesy: University of St. Andrews

An April 15, 2022 University of St. Andrews press release, which originated the news item, describes Rydberg polaritons and explains why they could be the key to light-based quantum computing,

Rydberg polaritons switch continually from light to matter and back again. In Rydberg polaritons, light and matter are like two sides of a coin, and the matter side is what makes polaritons interact with each other.

This interaction is crucial because this is what allows the creation of quantum simulators, a special type of quantum computer, where information is stored in quantum bits. These quantum bits [qubits], unlike the binary bits in classical computers that can only be 0 or 1, can take any value between 0 and 1. They can therefore store much more information and perform several processes simultaneously.

This capability could allow quantum simulators to solve important mysteries of physics, chemistry and biology, for example, how to make high-temperature superconductors for highspeed trains, how cheaper fertilisers could be made potentially solving global hunger, or how proteins fold making it easier to produce more effective drugs.

Project lead Dr Hamid Ohadi, of the School of Physics and Astronomy at the University of St Andrews, said: “Making a quantum simulator with light is the holy grail of science. We have taken a huge leap towards this by creating Rydberg polaritons, the key ingredient of it.”

To create Rydberg polaritons, the researchers trapped light between two highly reflective mirrors. A cuprous oxide crystal from a stone mined in Namibia was then thinned and polished to a 30-micrometer thick slab (thinner than a strand of human hair) and sandwiched between the two mirrors to make Rydberg polaritons 100 times larger than ever demonstrated before.

One of the leading authors Dr Sai Kiran Rajendran, of the School of Physics and Astronomy at the University of St Andrews, said: “Purchasing the stone on eBay was easy. The challenge was to make Rydberg polaritons that exist in an extremely narrow colour range.”

The team is currently further refining these methods in order to explore the possibility of making quantum circuits, which are the next ingredient for quantum simulators.

The research was funded by UK Engineering and Physical Sciences Research Council (EPSRC).

Here’s a link to and a citation for the paper,

Rydberg exciton–polaritons in a Cu2O microcavity by Konstantinos Orfanakis, Sai Kiran Rajendran, Valentin Walther, Thomas Volz, Thomas Pohl & Hamid Ohadi. Nature Materials (2022) DOI: DOIhttps://doi.org/10.1038/s41563-022-01230-4 Published: 14 April 2022

This paper is behind a paywall.

Simulating elementary physics in a quantum simulation (particle zoo in a quantum computer?)

Whoever wrote the news release used a very catchy title “Particle zoo in a quantum computer”; I just wish they’d explained it. Looking up the definition for a ‘particle zoo’ didn’t help as much as I’d hoped. From the particle zoo entry on Wikipedia (Note: Links have been removed),

In particle physics, the term particle zoo[1][2] is used colloquially to describe a relatively extensive list of the then known “elementary particles” that almost look like hundreds of species in the zoo.

In the history of particle physics, the situation was particularly confusing in the late 1960s. Before the discovery of quarks, hundreds of strongly interacting particles (hadrons) were known, and believed to be distinct elementary particles in their own right. It was later discovered that they were not elementary particles, but rather composites of the quarks. The set of particles believed today to be elementary is known as the Standard Model, and includes quarks, bosons and leptons.

I believe the writer used the term to indicate that the simulation undertaken involved elementary particles. If you have a better explanation, please feel free to add it to the comments for this post.

Here’s the news from a June 22, 2016 news item on ScienceDaily,

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The discovery of the Higgs boson at the CERN in 2012 constitutes a further step towards the confirmation of the Standard Model. However, many aspects of this theory are still not understood because their complexity makes it hard to investigate them with classical computers. Quantum computers may provide a way to overcome this obstacle as they can simulate certain aspects of elementary particle physics in a well-controlled quantum system. Physicists from the University of Innsbruck and the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences have now done exactly that: In an international first, Rainer Blatt’s and Peter Zoller’s research teams have simulated lattice gauge theories in a quantum computer. …

A June 23, 2016 University of Innsbruck (Universität Innsbruck) press release, which seems  to have originated the news item, provides more detail,

Gauge theories describe the interaction between elementary particles, such as quarks and gluons, and they are the basis for our understanding of fundamental processes. “Dynamical processes, for example, the collision of elementary particles or the spontaneous creation of particle-antiparticle pairs, are extremely difficult to investigate,” explains Christine Muschik, theoretical physicist at the IQOQI. “However, scientists quickly reach a limit when processing numerical calculations on classical computers. For this reason, it has been proposed to simulate these processes by using a programmable quantum system.” In recent years, many interesting concepts have been proposed, but until now it was impossible to realize them. “We have now developed a new concept that allows us to simulate the spontaneous creation of electron-positron pairs out of the vacuum by using a quantum computer,” says Muschik. The quantum system consists of four electromagnetically trapped calcium ions that are controlled by laser pulses. “Each pair of ions represent a pair of a particle and an antiparticle,” explains experimental physicist Esteban A. Martinez. “We use laser pulses to simulate the electromagnetic field in a vacuum. Then we are able to observe how particle pairs are created by quantum fluctuations from the energy of this field. By looking at the ion’s fluorescence, we see whether particles and antiparticles were created. We are able to modify the parameters of the quantum system, which allows us to observe and study the dynamic process of pair creation.”

Combining different fields of physics

With this experiment, the physicists in Innsbruck have built a bridge between two different fields in physics: They have used atomic physics experiments to study questions in high-energy physics. While hundreds of theoretical physicists work on the highly complex theories of the Standard Model and experiments are carried out at extremely expensive facilities, such as the Large Hadron Collider at CERN, quantum simulations may be carried out by small groups in tabletop experiments. “These two approaches complement one another perfectly,” says theoretical physicist Peter Zoller. “We cannot replace the experiments that are done with particle colliders. However, by developing quantum simulators, we may be able to understand these experiments better one day.” Experimental physicist Rainer Blatt adds: “Moreover, we can study new processes by using quantum simulation. For example, in our experiment we also investigated particle entanglement produced during pair creation, which is not possible in a particle collider.” The physicists are convinced that future quantum simulators will potentially be able to solve important questions in high-energy physics that cannot be tackled by conventional methods.

Foundation for a new research field

It was only a few years ago that the idea to combine high-energy and atomic physics was proposed. With this work it has been implemented experimentally for the first time. “This approach is conceptually very different from previous quantum simulation experiments studying many-body physics or quantum chemistry. The simulation of elementary particle processes is theoretically very complex and, therefore, has to satisfy very specific requirements. For this reason it is difficult to develop a suitable protocol,” underlines Zoller. The conditions for the experimental physicists were equally demanding: “This is one of the most complex experiments that has ever been carried out in a trapped-ion quantum computer,” says Blatt. “We are still figuring out how these quantum simulations work and will only gradually be able to apply them to more challenging phenomena.” The great theoretical as well as experimental expertise of the physicists in Innsbruck was crucial for the breakthrough. Both Blatt and Zoller emphasize that they have been doing research on quantum computers for many years now and have gained a lot of experience in their implementation. Innsbruck has become one of the leading centers for research in quantum physics; here, the theoretical and experimental branches work together at an extremely high level, which enables them to gain novel insights into fundamental phenomena.

Here’s a link to and a citation for the paper,

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer by Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller, & Rainer Blatt.  Nature 534, 516–519 (23 June 2016)  doi:10.1038/nature18318 Published online 22 June 2016

This paper is behind a paywall.

There is a soundcloud audio file featuring an explanation of the work from the lead author, Esteban A. Martinez,