Tag Archives: Quantum-Spin Off project

Nanotechnology education, artificial muscles, and Estonian high schools?

The University of Tartu (Estonia) announced in a Sept. 29, 2014 press release an educational and entrepreneurial programme about nanotechnology/nanoscience for teachers and students,

Led by the University of Tartu, innovative Estonian schools participate in the Quantum Spin-Off project, which aims to bring youth in contact with nanotechnology, modern science and high-tech entrepreneurship. Pupils participating in the project will learn about seven topics of nanotechnology, including the creation of artificial muscles and the manipulation of nanoparticles.

Most people have little contact with nanoscience and nanotechnologies, although the exciting nano-world has always been around us. “Most Estonian teachers do not have the experience of introducing nanoscience required for understanding the nano-world or the necessary connections that would allow visiting the experts in nanoscience and enterprises using the technology,” said the leader of the Quantum Spin-Off project, UT Professor of Technology Education Margus Pedaste, describing the current situation of acquiring nanotechnology knowledge in Estonia.

Coordinator of the project, Project Manager at the Centre for Educational Technology Maarika Lukk adds that nanoscience is interesting and necessary, as it offers plenty of practical applications, for instance in medicine, education, military industry and space.

The press release goes on to describe the Quantum Spin-Off project and the proposed nanoscience programme in more detail,

To bring nanoscience closer to pupils, educational researchers of the University of Tartu decided to implement the European Union LLP Comenius project “Quantum Spin-Off – connecting schools with high-tech research and entrepreneurship”. The objective of the project is to build a kind of a bridge: at one end, pupils can familiarise themselves with modern science, and at the other, experience its application opportunities at high-tech enterprises. “We also wish to inspire these young people to choose a specialisation related to science and technology in the future,” added Lukk.

The pupils can choose between seven topics of nanotechnology: the creation of artificial muscles, microbiological fuel elements, manipulation of nanoparticles, nanoparticles and ionic liquids as oil additives, materials used in regenerative medicine, deposition and 3D-characterisation of atomically designed structures and a topic covered in English, “Artificial robotic fish with EAP elements”.

Learning is based on study modules in the field of nanotechnology. In addition, each team of pupils will read a scientific publication, selected for them by an expert of that particular field. In that way, pupils will develop an understanding of the field and of scientific texts. On the basis of the scientific publication, the pupils prepare their own research project and a business plan suitable for applying the results of the project.

In each field, experts of the University of Tartu will help to understand the topics. Participants will visit a nanotechnology research laboratory and enterprises using nanotechnologies.

The project lasts for two years and it is also implemented in Belgium, Switzerland and Greece.

You can find more information about the European Union’s Quantum Spin-Off Project on its website (from the homepage),

The Quantum Spinoff project will bring science teachers and their pupils in direct contact with research and entrepreneurship in the high-tech nano sector, with the goal of educating a new generation of scientifically literate European citizens and inspiring young people to choose for science and technology careers. Teams of pupils, guided by their science teachers, will be challenged to create a responsible and socially relevant valorisation of a scientific paper in collaboration with actual researchers and entrepreneurs. They will visit high-tech research labs and will compete for the European Quantum Spin-Off Prize. Scientific and technological insights, creativity and responsible entrepreneurship will be all taken into account by the jury of experts. Science teachers will be trained in international and national workshops to support the inquiry learning process of their pupils.

This drive toward linking science to entrepreneurial output is an international effort as this Quantum-Spin Off project , Singapore’s A*STAR (Agency for Science, Technology and Research) and my Sept. 30, 2014 post about the 2014 Canadian Science Policy Conference  make abundantly clear.