Tag Archives: Robert F. Shepherd

Fungus-controlled robots

Where robots are concerned, mushrooms and other fungi aren’t usually considered as part of the equipment but one would be wrong according to a September 4, 2024 news item on ScienceDaily,

Building a robot takes time, technical skill, the right materials — and sometimes, a little fungus.

In creating a pair of new robots, Cornell University researchers cultivated an unlikely component, one found on the forest floor: fungal mycelia.

By harnessing mycelia’s innate electrical signals, the researchers discovered a new way of controlling “biohybrid” robots that can potentially react to their environment better than their purely synthetic counterparts.

An August 28, 2024 Cornell University news release (also on EurekAlert but published August 29, 2024) by David Nutt, which originated the news item, describes this (I’m tempted to call it, revolutionary) new technique, Note: Links have been removed.

“This paper is the first of many that will use the fungal kingdom to provide environmental sensing and command signals to robots to improve their levels of autonomy,” Shepherd [Rob Shepherd, professor of mechanical and aerospace engineering at Cornell University] said. “By growing mycelium into the electronics of a robot, we were able to allow the biohybrid machine to sense and respond to the environment. In this case we used light as the input, but in the future it will be chemical. The potential for future robots could be to sense soil chemistry in row crops and decide when to add more fertilizer, for example, perhaps mitigating downstream effects of agriculture like harmful algal blooms.”

In designing the robots of tomorrow, engineers have taken many of their cues from the animal kingdom, with machines that mimic the way living creatures move, sense their environment and even regulate their internal temperature through perspiration. Some robots have incorporated living material, such as cells from muscle tissue, but those complex biological systems are difficult to keep healthy and functional. It’s not always easy, after all, to keep a robot alive.

Mycelia are the underground vegetative part of mushrooms, and they have a number of advantages. They can grow in harsh conditions. They also have the ability to sense chemical and biological signals and respond to multiple inputs.

“If you think about a synthetic system – let’s say, any passive sensor – we just use it for one purpose. But living systems respond to touch, they respond to light, they respond to heat, they respond to even some unknowns, like signals,” Mishra [Anand Mishra, a research associate in the Organic Robotics Lab at Cornell University] said. “That’s why we think, OK, if you wanted to build future robots, how can they work in an unexpected environment? We can leverage these living systems, and any unknown input comes in, the robot will respond to that.”

However, finding a way to integrate mushrooms and robots requires more than just tech savvy and a green thumb.

“You have to have a background in mechanical engineering, electronics, some mycology, some neurobiology, some kind of signal processing,” Mishra said. “All these fields come together to build this kind of system.”

Mishra collaborated with a range of interdisciplinary researchers. He consulted with Bruce Johnson, senior research associate in neurobiology and behavior, and learned how to record the electrical signals that are carried in the neuron-like ionic channels in the mycelia membrane. Kathie Hodge, associate professor of plant pathology and plant-microbe biology in the School of Integrative Plant Science in the College of Agriculture and Life Sciences, taught Mishra how to grow clean mycelia cultures, because contamination turns out to be quite a challenge when you are sticking electrodes in fungus.

The system Mishra developed consists of an electrical interface that blocks out vibration and electromagnetic interference and accurately records and processes the mycelia’s electrophysiological activity in real time, and a controller inspired by central pattern generators – a kind of neural circuit. Essentially, the system reads the raw electrical signal, processes it and identifies the mycelia’s rhythmic spikes, then converts that information into a digital control signal, which is sent to the robot’s actuators.

Two biohybrid robots were built: a soft robot shaped like a spider and a wheeled bot.

The robots completed three experiments. In the first, the robots walked and rolled, respectively, as a response to the natural continuous spikes in the mycelia’s signal. Then the researchers stimulated the robots with ultraviolet light, which caused them to change their gaits, demonstrating mycelia’s ability to react to their environment. In the third scenario, the researchers were able to override the mycelia’s native signal entirely.

The implications go far beyond the fields of robotics and fungi.

“This kind of project is not just about controlling a robot,” Mishra said. “It is also about creating a true connection with the living system. Because once you hear the signal, you also understand what’s going on. Maybe that signal is coming from some kind of stresses. So you’re seeing the physical response, because those signals we can’t visualize, but the robot is making a visualization.”

Co-authors include Johnson, Hodge, Jaeseok Kim with the University of Florence, Italy, and undergraduate research assistant Hannah Baghdadi.

The research was supported by the National Science Foundation (NSF) CROPPS Science and Technology Center; the U.S. Department of Agriculture’s National Institute of Food and Agriculture; and the NSF Signal in Soil program.

Here’s a link to and a citation for the paper,

Sensorimotor control of robots mediated by electrophysiological measurements of fungal mycelia by Anand Kumar Mishra, Jaeseok Kim, Hannah Baghdadi, Bruce R. Johnson, Kathie T. Hodge, and Robert F. Shepherd. Science Robotics 28 Aug 2024 Vol 9, Issue 93 DOI: 10.1126/scirobotics.adk8019

This paper is behind a paywall.

A soft heart from Cornell University (US)

Caption: This is an artificial foam heart created by Rob Shepherd and his engineering team at Cornell University. Credit: Cornell University

Caption: This is an artificial foam heart created by Rob Shepherd and his engineering team at Cornell University.
Credit: Cornell University

It’s not exactly what I imagined on seeing the words “foam heart” but this is what researchers at Cornell University have produced as a ‘working concept’. From an Oct. 14, 2015 Cornell University news release (also on EurekAlert but dated Oct. 15, 2015) describes the research in more detail,

Cornell University researchers have developed a new lightweight and stretchable material with the consistency of memory foam that has potential for use in prosthetic body parts, artificial organs and soft robotics. The foam is unique because it can be formed and has connected pores that allow fluids to be pumped through it.

The polymer foam starts as a liquid that can be poured into a mold to create shapes, and because of the pathways for fluids, when air or liquid is pumped through it, the material moves and can change its length by 300 percent.

While applications for use inside the body require federal approval and testing, Cornell researchers are close to making prosthetic body parts with the so-called “elastomer foam.”

“We are currently pretty far along for making a prosthetic hand this way,” said Rob Shepherd, assistant professor of mechanical and aerospace engineering, and senior author of a paper appearing online and in an upcoming issue of the journal Advanced Materials. Benjamin Mac Murray, a graduate student in Shepherd’s lab, is the paper’s first author.

In the paper, the researchers demonstrated a pump they made into a heart, mimicking both shape and function.

The researchers used carbon fiber and silicone on the outside to fashion a structure that expands at different rates on the surface – to make a spherical shape into an egg shape, for example, that would hold its form when inflated.

“This paper was about exploring the effect of porosity on the actuator, but now we would like to make the foam actuators faster and with higher strength, so we can apply more force. We are also focusing on biocompatibility,” Shepherd said.

Cornell has made a video of researcher Rob Shepherd describing the work,

Here’s a link to and a citation for the paper,

Poroelastic Foams for Simple Fabrication of Complex Soft Robots by Benjamin C. Mac Murray, Xintong An, Sanlin S. Robinson, Ilse M. van Meerbeek, Kevin W. O’Brien, Huichan Zhao, andRobert F. Shepherd. Advanced Materials DOI: 10.1002/adma.201503464 Article first published online: 19 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.