Tag Archives: Robert Heinlein

The importance of science fiction for the future

I started this post in March (2013) but haven’t had time till now (May 7, 2013) to flesh it out. It was a Mar. 28, 2013 posting by Jessica Bland and Lydia Nicholas for the UK Guardian science blogs which inspired me (Note: Links have been removed),

Science fiction and real-world innovation have always fed off each other. The history of the electronic book shows us things are more complicated than fiction predicting fact [.]

Imagine a new future. No, not that tired old vision of hoverboards and robot butlers: something really new and truly strange. It’s hard. It’s harder still to invent the new things that will fill this entirely new world. New ideas that do not fit or that come from unfamiliar places are often ignored. Hedy Lemarr [a major movie sex symbol in her day] and George Antheil’s [musician] frequency-hopping patent was ignored for 20 years because the US Navy could not believe that Hollywood artists could invent a method of secure communication. Many of Nikola Tesla’s inventions and his passionate belief in the importance of renewable energy were ignored by a world that could not imagine a need for them.

Stories open our eyes to the opportunities and hazards of new technologies. By articulating our fears and desires for the future, stories help shape what is to come – informing public debate, influencing regulation and inspiring inventors. And this makes it important that we do not just listen to the loudest voices.

Of course it isn’t as simple as mining mountains of pulp sci-fi for the schematics of the next rocket or the algorithms of the next Google. Arthur C. Clarke, often attributed with the invention of the communication satellite, firmly believed that these satellites would require crews. The pervasive connectivity that defines our world today would never have existed if every satellite needed to be manned.

The Guardian posting was occasioned by the publication of two research papers produced for NESTA. It’s an organization which is not similar to any in Canada or the US (as far as I know). Here’s a little more about NESTA from their FAQs page,

Nesta is an independent charity with a mission to help people and organisations bring great ideas to life. We do this by providing investments and grants and mobilising research, networks and skills.

Nesta backs innovation to help bring great ideas to life. We do this by providing investments and grants and mobilising research, networks and skills.

Nesta receives funds from The Nesta Trust, which received the National Lottery endowment from the National Endowment for Science, Technology and the Arts.

The interest from this endowment is used to fund our activities. These activities must be used to promote the charitable objects of both the Nesta Trust and the Nesta charity. We also use the returns from Nesta investments, and income from working in partnership with others, to fund our work.

We don’t receive any ongoing general government funds to support our work.

On 1st April 2012 Nesta ceased being a Non-Departmental Public Body (NDPB) and became a charity (charity number 1144091).

We maintain our mission to carry out research into innovation and to further education, science, technology, the arts, public services, the voluntary sector and enterprise in various areas by encouraging and supporting innovation.

Nesta’s objectives are now set out in our ‘charitable objects’ which can be viewed here.

Nesta continues to operate at no cost to the Government or the taxpayer using return from the Nesta Trust.

In any event, NESTA commissioned two papers:

Imagining technology
Jon Turney
Nesta Working Paper 13/06
Issued: March 2013

Better Made Up: The Mutual Influence of Science fiction and Innovation
Caroline Bassett, Ed Steinmueller, Georgina Voss
Nesta Working Paper 13/07
Issued: March 2013

For anyone who does not have time to read the NESTA papers, the Guardian’s post by Bland and Nicholas provides a good overview of the thinking which links science fiction with real innovation.

Around the same time I stumbled across the Bland/Nicholas post I also stumbled on a science fiction conference that is regularly held at the University of California Riverside.

The Eaton Science Fiction Conference was held Apr. 11 – 14, 2013 and the theme was “Science Fiction Media. It’s a little late for this year but perhaps you want to start planning for next year.  Here’s the Eaton Science Fiction Conference website. For those who’d like to get a feel for this conference, here’s a little more from the Mar. 27, 2013 news release by Bettye Miller,

… the 2013 conference will be largest in the 34-year history of the conference, said Melissa Conway, head of Special Collections and Archives of the UCR Libraries and conference co-organizer. It also is the first time the UCR Libraries and College of Humanities, Arts and Social Sciences have partnered with the Science Fiction Research Association, the largest and most prestigious scholarly organization in the field, to present the event.

Among the science fiction writers who will be presenting on different panels are: Larry Niven, author of “Ringworld” and a five-time winner of the Hugo Award and a Nebula; Gregory Benford, astrophysicist and winner of a Nebula Award and a United Nations Medal in Literature; David Brin, astrophysicist and two-time winner of the Hugo Award; Audre Bormanis, writer/producer for “Star Trek: Enterprise,” “Threshold,” “Eleventh Hour,” “Legend of the Seeker” and “Tron: Uprising”; Kevin Grazier, science adviser for “Battlestar Galactica,” “Defiance,” “Eureka” and “Falling Skies”; and James Gunn, winner of a Hugo Award and the 2007 Damon Knight Memorial Grand Master, presented for lifetime achievement as a writer of science fiction and/or fantasy by the Science Fiction and Fantasy Writers of America.

As for the impetus for this conference in Riverside, California, from the news release,

UCR is the home of the Eaton Collection of Science Fiction and Fantasy, the largest publicly accessible collection of its kind in the world. The collection embraces every branch of science fiction, fantasy, horror and utopian/dystopian fiction.

The collection, which attracts scholars from around the world, holds more than 300,000 items including English-language science fiction, fantasy and horror published in the 20th century and a wide range of works in Spanish, French, Russian, Chinese, Japanese, German, and a dozen other languages; fanzines; comic books; anime; manga; science fiction films and television series; shooting scripts; archives of science fiction writers; and science fiction collectibles and memorabilia.

In one of those odd coincidences we all experience from time to time, Ray Harryhausen, creator of a type of stop-motion model animation known as Dynamation and well loved for his work in special effects and who was recognized with a life time achievement at the 2013 conference, died today (May 7, 2013; Wikipedia essay).

The item which moved me to publish today (May 7, 2013), Can Science Fiction Writers Inspire The World To Save Itself?, by Ariel Schwartz concerns the Hieroglyph project at Arizona State University,

Humanity’s lack of a positive vision for the future can be blamed in part on an engineering culture that’s more focused on incrementalism (and VC funding) than big ideas. But maybe science fiction writers should share some of the blame. That’s the idea that came out of a conversation in 2011 between science fiction author Neal Stephenson and Michael Crow, the president of Arizona State University.

If science fiction inspires scientists and engineers to create new things–Stephenson believes it can–then more visionary, realistic sci-fi stories can help create a better future. Hence the Hieroglyph experiment, launched this month as a collaborative website for researchers and writers. Many of the stories created on the platform will go into a HarperCollins anthology of fiction and non-fiction, set to be published in 2014.

Here’s more about the Hieroglyph project from the About page,

Inspiration is a small but essential part of innovation, and science fiction stories have been a seminal source of inspiration for innovators over many decades. In his article entitled “Innovation Starvation,” Neal Stephenson calls for a return to inspiration in contemporary science fiction. That call resonated with so many and so deeply that Project Hieroglyph was born shortly thereafter.

The name of Project Hieroglyph comes from the notion that certain iconic inventions in science fiction stories serve as modern “hieroglyphs” – Arthur Clarke’s communications satellite, Robert Heinlein’s rocket ship that lands on its fins, Issac Asimov’s robot, and so on. Jim Karkanias of Microsoft Research described hieroglyphs as simple, recognizable symbols on whose significance everyone agrees.

While the mission of Project Hieroglyph begins with creative inspiration, our hope is that many of us will be genuinely inspired towards realization.

This project is an initiative of Arizona State University’s Center for Science and Imagination.

It’s great seeing this confluence of thinking about science fiction, innovation, and science. I’m pretty sure we knew this in the 19th century (and probably before that too) and I just hope we don’t forget it again.

Nano’s grey goo and the animation series Futurama

You never know where you’re going to find nanotechnology. Most recently I found it in a review of the first few episodes of the animated US tv series, Futurama. Alasdair Wilkins recently offered a few thoughts about a recent ‘nanotechnology-influenced’ episode Benderama. From Wilkins’s June 24, 2011 commentary,

“Benderama” is an example of an episode type that pretty much only Futurama is capable of doing: taking an outlandish but vaguely plausible scientific idea and letting that guide the story. Some all-time great episodes have come from this approach: “The Farnsworth Parabox” did this with alternate universes, Bender’s Big Score used time paradoxes (or the lack thereof), and “The Prisoner of Benda” focused on mind-switching. This time around, the topic is the grey goo scenario of nanotechnology, as Bender gains the ability to create two smaller duplicates of himself, who in turn can each create two smaller duplicates of themselves, who in turn…well, you get the idea. Also, the crew deals with Patton Oswalt’s hideous space giant, who can only take so much mockery of his appearance.

The business about smaller duplicates creating smaller duplicates is very reminiscent of Waldo, the story by Robert Heinlein which according to Colin Milburn influenced the part about creating smaller and smaller hands in Richard Feynman’s famous 1959 talk, There’s plenty of room at the bottom. From a transcript of Feynman’s talk (scroll down 3/4 of the way),

A hundred tiny hands

When I make my first set of slave “hands” at one-fourth scale, I am going to make ten sets. I make ten sets of “hands,” and I wire them to my original levers so they each do exactly the same thing at the same time in parallel. Now, when I am making my new devices one-quarter again as small, I let each one manufacture ten copies, so that I would have a hundred “hands” at the 1/16th size.

The ‘grey goo’ scenario was first proposed by K. Eric Drexler in his 1986 book, The Engines of Creation. He has distanced himself from some of his original assertions about ‘grey goo’ and there is still debate as to the plausibility of the  scenario.

From a more technical perspective, Feynman, Heinlein and Benderama present a top-down engineering scenario where one continually makes things smaller and smaller as opposed to the increasingly popular bottom-up engineering scenario where one mimics biological processes in an effort to promote self-assembly.

I’m not sure I’d call the science in the episode, ‘outlandish but plausible’ as it seems old-fashioned to me both with regard to the science and the humour. Still the episode seems to offer some  gentle fun on a topic that usually lends itself to ‘end of the earth’ scenarios so it’s nice to see the change in tone.

Oil spills, environmental remediation, and nanotechnology

Oil spills have been on my mind lately as I’ve caught some of the overage about the BP (British Petroleum) oil spill in the Gulf of Mexico. One  leak (the smallest) has been fixed according to a news item on physorg.com

Days of work off the coast of Louisiana with underwater submarines nearly a mile below the surface finally bore fruit as a valve was secured over the smallest of the three leaks and the flow shut off.

The feat does not alter the overall amount of crude spilling into the sea and threatening the fragile US Gulf coast, but is significant nonetheless as the focus can now narrow on just two remaining leaks.

“Working with two leaks is going to be a lot easier than working with three leaks. Progress is being made,” US Coast Guard Petty Officer Brandon Blackwell told AFP.

More than two weeks after the Deepwater Horizon rig exploded, the full impact of the disaster is being realized as a massive slick looms off the US Gulf coast, imperilling the livelihoods of shoreline communities.

The news item goes on to detail how much crude oil is still being lost, the oil slick’s progress, the probable impact on the shoreline and animals, and the other efforts being made to ameliorate the situation.

With all the talk there is about nanotechnology’s potential for helping us to clean up these messes, there’s been no mention of it in the current  efforts as Dexter Johnson over at the IEEE’s (Institute of Electrical and Electronics Engineers)  Nanoclast blog pointed out the other day. From Dexter’s posting which features both a  discussion about patents for nanotechnology-enabled clean up products and an interview with Tim Harper,

So to get a sense of where we really are I wanted to get the perspective of my colleague, Tim Harper (principal of Cientifica), who in addition to being a noted expert on the commercialization of nanotechnologies also has devoted his attention to the use of nanotechnologies in cleantech including its remediation capabilities, leading him to his presentation this week in Australia at the conference Cleantech Science and Solutions: mainstream and at the edge.

“If you are looking for a quick fix from nanotechnology, forget it,” says Harper. “Nanotech is already making an impact in reducing energy, and therefore oil use, it is also being used to create stronger lighter materials that can be used for pipelines, and enabling better sensors for early warning of damage, but in terms of cleaning up the mess, the contribution is minor at best.”

Clearly not the hopeful words that many would have hoped for, and the pity is that it might have been different, according to Harper.

“As with all technologies, the applications take a while to develop,” he says. “If someone had come up with some funding 10 years ago for this specific application then we may have had better tools to deal with it.”

Dexter’s posting about patents and Harper’s comments reminded me of an article by Mason Inman I saw two years ago on the New Scientist website titled, Nanotech ’tissue’ loves oil spills, hates water. From the article,

A material with remarkable oil-absorbing properties has been developed by US researchers. It could help develop high-tech “towels” able to soak up oil spills at sea faster, protecting wildlife and human health.

Almost 200,000 tonnes of oil have been spilled at sea in accidents since the start of the decade, according to the International Tanker Owners Pollution Federation. [This article was posted May 30, 2008]

Clean-up methods have improved in recent years, but separating oil from thousands of gallons of water is still difficult and perhaps the biggest barrier to faster clean ups.

The new water-repellent material is based on manganese oxide nanowires and could provide a blueprint for a new generation of oil-spill cleaners. It is able to absorb up to 20 times its own weight in oil, without sucking up a drop of water.

Unfortunately,

But [Joerg] Lahann [University of Michigan in Ann Arbor, US]  points out that manganese oxide may not be the best material for real-world applications because it could be toxic. He says, though, that the new material “clearly provides a blueprint that can guide the design of future nanomaterials for environmental applications.”

I wonder if they’ve done any research to determine if manganese oxide in the shape and size required to create this nanotech ’tissue’ is toxic. Intriguingly, there was a recent news item on Nanowerk about toxicology research in a marine environment being undertaken.

Led by Dr. Emilien Pelletier, the Institut des Sciences de la Mer de Rimouski at the Université du Québec à Rimouski has obtained an LVEM5 benchtop electron microscope to help them study the short-term and long-term effects of nano-materials on the marine environment.

Dr. Pelletier is the Canada Research Chair in Marine Ecotoxicology. The overall objective of the chair is to understand the impact of natural and anthropogenic stresses on the short-and long-term high-latitude coastal ecosystems to contribute to the conservation, protection and sustainable development of cold coastal marine resources.

Since the news release was written by the company supplying the microscope there is no word as to exactly what Emilien’s team will be researching and how the work might have an impact on other members of the community such as the researchers with the ‘oil-hungry nanotech tissue’ made of nanoscale manganese oxide.

There is as always a political element to all of this discussion about what we could or couldn’t do with nanotechnology-enabled means to clean up oil spills and/or reduce/eliminate our dependence on oil. This discussion is not new as Dr. J. Storrs Hall implies during a presentation being reported in a recent (May 4, 2010) Foresight Institute blog entry by Dave Cronz, PhD. From the posting,

Here I offer my reflections on some of the highlights of the presentation by Dr. J. Storrs Hall of the Foresight Institute, entitled “Feynman’s Pathway to Nanomanufacturing,” and the panel discussion that followed, “How Do We Get There from Here?” Discussions such as these are crucial opportunities to reflect on – and potentially shape – emerging technologies whose destinies are often left to be determined by “market forces.”

Dr. Hall began with an intriguing argument: Feynman’s top-down approach to reaching the nano scale in manufacturing, achieved through a step-down method of replicating and miniaturizing an entire, fully-equipped machine shop in 1:4 scale over and over would yield countless benefits to science, engineering, and manufacturing at each step. These microscopic, tele-manipulated master-slave “Waldos” (named after Heinlein’s 1942 story “Waldo F. Jones”) would get nanotechnology back on track by focusing on machines and manufacturing, since most of our current emphasis is on science at the nano scale. Feynman’s top-down approach to nanoscale manufacturing is missing from the Foresight Institute’s roadmap, according to Hall, “for political reasons.” This raises a fundamental point: science and technology cannot develop independent of the political and social spheres, which pose as many challenges as the technology. Many would argue that social and technological processes are inseparable and treating them otherwise borders on folly. I commend Dr. Hall for offering his argument. It soon became clear that the panelists who joined him after his presentation disagreed. [bolded emphases mine]

As Dr. Hall aptly noted it’s not dispassionate calculations but “serendipity: the way science always works.”

I’m in agreement with Dr. Hall, the political and social spheres are inseparable from the scientific and technological spheres. As for “emerging technologies whose destinies  are often left to be determined by market forces”, Dexter’s posting ends with this,

But foresight is not the strong suit of businesses built around short-term profit motives as evidenced by them [BP] not even investing in the remote systems that would have turned the oil well off and possibly avoided the entire problem.

I strongly recommend reading Dexter’s posting to get the nuances and to explore his links.

I’m going to finish on a faint note of hope. There is work being done on site remediation and it seems to be successful, i.e., nonpolluting, less disruptive to the environment, and cheaper.  The Project on Emerging Nanotechnologies (PEN) has a webcast of a presentation titled, Contaminated Site Remediation: Are Nanomaterials the Answer?. You can find my comments about the webcast here (scoll down a bit) and PEN’s Nanoremediation Map which lists projects around the world although most are in the US. It’s incomplete since there is no requirement to report a nanoremediation site to PEN but it does give you an idea of what’s going on. Canada has two sites on the map.

Waldo and robot hands circa. 2009; innovation in Canada, John Manley, and the university community

Shades of Robert Heinlein’s 1943 short story, Waldo, and Richard Feynman’s 1959 talk, There’s plenty of room at the bottom, to the American Physical Society!  Both of these texts feature the development of ‘smaller and smaller robotic hands to manipulate matter at the atomic and molecular levels’ and both of these have been cited as the birth of nanotechnology. The NanoHand Project (funded by the European Union) has developed microrobots designed to handle carbon nanotubes, according to the media release on Nanowerk News.  From the media release,

The robots, about two centimetres in size, work inside a scanning electron microscope where their activities can be followed by an observer. “The whole set-up is integrated into the vacuum chamber of the microscope,” [Volkmar] Eichhorn [of the University of Oldenberg] explains. “There is a glass plate where these mobile microrobots can walk around.”

Each robot has a ‘microgripper’ that can make precise and delicate movements. It works on an electrothermal principle to open and close the jaws, much like a pair of tweezers. The jaws open to about 2 micrometres and can pick up objects less than 100 nanometres in size. “[It is] really able to grip micro or even nano objects,”

Eichhorn says. “We have handled objects down to tens of nanometres.”

If you go to Nanowerk News, you will be able to see a video of the microrobots in action or you can go to the NanoHand site here for more information.

“I don’t think you could say that innovation is deeply in the DNA of our Canadian business enterprises,” [John Manley] said, “We have built prosperity, up to and including this decade, on a fairly basic paradigm: we are rich in natural resources.” (from the article, Innovation isn’t in Canada’s DNA by Paul Wells in MacLean’s magazine here.) I agree more closely with Manley’s quote than I do with the article’s headline writer who seems to be implying that Canadians are not genetically disposed to innovation. Manley very specifically fingers business enterprises and not people. (I briefly mentioned the article in my July 31, 2009 posting in the context of a discussion[also in MacLean’s] by the big 5 Canadian universities about funding and innovation.)