Tag Archives: Robert N. Grass

Technical University of Munich: embedded ethics approach for AI (artificial intelligence) and storing a tv series in synthetic DNA

I stumbled across two news bits of interest from the Technical University of Munich in one day (Sept. 1, 2020, I think). The topics: artificial intelligence (AI) and synthetic DNA (deoxyribonucleic acid).

Embedded ethics and artificial intelligence (AI)

An August 27, 2020 Technical University of Munich (TUM) press release (also on EurekAlert but published Sept. 1, 2020) features information about a proposal to embed ethicists in with AI development teams,

The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. An interdisciplinary team at the Technical University of Munich (TUM) advocates the integration of ethics from the very beginning of the development process of new technologies. Alena Buyx, Professor of Ethics in Medicine and Health Technologies, explains the embedded ethics approach.

Professor Buyx, the discussions surrounding a greater emphasis on ethics in AI research have greatly intensified in recent years, to the point where one might speak of “ethics hype” …

Prof. Buyx: … and many committees in Germany and around the world such as the German Ethics Council or the EU Commission High-Level Expert Group on Artificial Intelligence have responded. They are all in agreement: We need more ethics in the development of AI-based health technologies. But how do things look in practice for engineers and designers? Concrete solutions are still few and far between. In a joint pilot project with two Integrative Research Centers at TUM, the Munich School of Robotics and Machine Intelligence (MSRM) with its director, Prof. Sami Haddadin, and the Munich Center for Technology in Society (MCTS), with Prof. Ruth Müller, we want to try out the embedded ethics approach. We published the proposal in Nature Machine Intelligence at the end of July [2020].

What exactly is meant by the “embedded ethics approach”?

Prof.Buyx: The idea is to make ethics an integral part of the research process by integrating ethicists into the AI development team from day one. For example, they attend team meetings on a regular basis and create a sort of “ethical awareness” for certain issues. They also raise and analyze specific ethical and social issues.

Is there an example of this concept in practice?

Prof. Buyx: The Geriatronics Research Center, a flagship project of the MSRM in Garmisch-Partenkirchen, is developing robot assistants to enable people to live independently in old age. The center’s initiatives will include the construction of model apartments designed to try out residential concepts where seniors share their living space with robots. At a joint meeting with the participating engineers, it was noted that the idea of using an open concept layout everywhere in the units – with few doors or individual rooms – would give the robots considerable range of motion. With the seniors, however, this living concept could prove upsetting because they are used to having private spaces. At the outset, the engineers had not given explicit consideration to this aspect.

Prof.Buyx: The approach sounds promising. But how can we avoid “embedded ethics” from turning into an “ethics washing” exercise, offering companies a comforting sense of “being on the safe side” when developing new AI technologies?

That’s not something we can be certain of avoiding. The key is mutual openness and a willingness to listen, with the goal of finding a common language – and subsequently being prepared to effectively implement the ethical aspects. At TUM we are ideally positioned to achieve this. Prof. Sami Haddadin, the director of the MSRM, is also a member of the EU High-Level Group of Artificial Intelligence. In his research, he is guided by the concept of human centered engineering. Consequently, he has supported the idea of embedded ethics from the very beginning. But one thing is certain: Embedded ethics alone will not suddenly make AI “turn ethical”. Ultimately, that will require laws, codes of conduct and possibly state incentives.

Here’s a link to and a citation for the paper espousing the embedded ethics for AI development approach,

An embedded ethics approach for AI development by Stuart McLennan, Amelia Fiske, Leo Anthony Celi, Ruth Müller, Jan Harder, Konstantin Ritt, Sami Haddadin & Alena Buyx. Nature Machine Intelligence (2020) DOI: https://doi.org/10.1038/s42256-020-0214-1 Published 31 July 2020

This paper is behind a paywall.

Religion, ethics and and AI

For some reason embedded ethics and AI got me to thinking about Pope Francis and other religious leaders.

The Roman Catholic Church and AI

There was a recent announcement that the Roman Catholic Church will be working with MicroSoft and IBM on AI and ethics (from a February 28, 2020 article by Jen Copestake for British Broadcasting Corporation (BBC) news online (Note: A link has been removed),

Leaders from the two tech giants met senior church officials in Rome, and agreed to collaborate on “human-centred” ways of designing AI.

Microsoft president Brad Smith admitted some people may “think of us as strange bedfellows” at the signing event.

“But I think the world needs people from different places to come together,” he said.

The call was supported by Pope Francis, in his first detailed remarks about the impact of artificial intelligence on humanity.

The Rome Call for Ethics [sic] was co-signed by Mr Smith, IBM executive vice-president John Kelly and president of the Pontifical Academy for Life Archbishop Vincenzo Paglia.

It puts humans at the centre of new technologies, asking for AI to be designed with a focus on the good of the environment and “our common and shared home and of its human inhabitants”.

Framing the current era as a “renAIssance”, the speakers said the invention of artificial intelligence would be as significant to human development as the invention of the printing press or combustion engine.

UN Food and Agricultural Organization director Qu Dongyu and Italy’s technology minister Paola Pisano were also co-signatories.

Hannah Brockhaus’s February 28, 2020 article for the Catholic News Agency provides some details missing from the BBC report and I found it quite helpful when trying to understand the various pieces that make up this initiative,

The Pontifical Academy for Life signed Friday [February 28, 2020], alongside presidents of IBM and Microsoft, a call for ethical and responsible use of artificial intelligence technologies.

According to the document, “the sponsors of the call express their desire to work together, in this context and at a national and international level, to promote ‘algor-ethics.’”

“Algor-ethics,” according to the text, is the ethical use of artificial intelligence according to the principles of transparency, inclusion, responsibility, impartiality, reliability, security, and privacy.

The signing of the “Rome Call for AI Ethics [PDF]” took place as part of the 2020 assembly of the Pontifical Academy for Life, which was held Feb. 26-28 [2020] on the theme of artificial intelligence.

One part of the assembly was dedicated to private meetings of the academics of the Pontifical Academy for Life. The second was a workshop on AI and ethics that drew 356 participants from 41 countries.

On the morning of Feb. 28 [2020], a public event took place called “renAIssance. For a Humanistic Artificial Intelligence” and included the signing of the AI document by Microsoft President Brad Smith, and IBM Executive Vice-president John Kelly III.

The Director General of FAO, Dongyu Qu, and politician Paola Pisano, representing the Italian government, also signed.

The president of the European Parliament, David Sassoli, was also present Feb. 28.

Pope Francis canceled his scheduled appearance at the event due to feeling unwell. His prepared remarks were read by Archbishop Vincenzo Paglia, president of the Academy for Life.

You can find Pope Francis’s comments about the document here (if you’re not comfortable reading Italian, hopefully, the English translation which follows directly afterward will be helpful). The Pope’s AI initiative has a dedicated website, Rome Call for AI ethics, and while most of the material dates from the February 2020 announcement, they are keeping up a blog. It has two entries, one dated in May 2020 and another in September 2020.

Buddhism and AI

The Dalai Lama is well known for having an interest in science and having hosted scientists for various dialogues. So, I was able to track down a November 10, 2016 article by Ariel Conn for the futureoflife.org website, which features his insights on the matter,

The question of what it means and what it takes to feel needed is an important problem for ethicists and philosophers, but it may be just as important for AI researchers to consider. The Dalai Lama argues that lack of meaning and purpose in one’s work increases frustration and dissatisfaction among even those who are gainfully employed.

“The problem,” says the Dalai Lama, “is … the growing number of people who feel they are no longer useful, no longer needed, no longer one with their societies. … Feeling superfluous is a blow to the human spirit. It leads to social isolation and emotional pain, and creates the conditions for negative emotions to take root.”

If feeling needed and feeling useful are necessary for happiness, then AI researchers may face a conundrum. Many researchers hope that job loss due to artificial intelligence and automation could, in the end, provide people with more leisure time to pursue enjoyable activities. But if the key to happiness is feeling useful and needed, then a society without work could be just as emotionally challenging as today’s career-based societies, and possibly worse.

I also found a talk on the topic by The Venerable Tenzin Priyadarshi, first here’s a description from his bio at the Dalai Lama Center for Ethics and Transformative Values webspace on the Massachusetts Institute of Technology (MIT) website,

… an innovative thinker, philosopher, educator and a polymath monk. He is Director of the Ethics Initiative at the MIT Media Lab and President & CEO of The Dalai Lama Center for Ethics and Transformative Values at the Massachusetts Institute of Technology. Venerable Tenzin’s unusual background encompasses entering a Buddhist monastery at the age of ten and receiving graduate education at Harvard University with degrees ranging from Philosophy to Physics to International Relations. He is a Tribeca Disruptive Fellow and a Fellow at the Center for Advanced Study in Behavioral Sciences at Stanford University. Venerable Tenzin serves on the boards of a number of academic, humanitarian, and religious organizations. He is the recipient of several recognitions and awards and received Harvard’s Distinguished Alumni Honors for his visionary contributions to humanity.

He gave the 2018 Roger W. Heyns Lecture in Religion and Society at Stanford University on the topic, “Religious and Ethical Dimensions of Artificial Intelligence.” The video runs over one hour but he is a sprightly speaker (in comparison to other Buddhist speakers I’ve listened to over the years).

Judaism, Islam, and other Abrahamic faiths examine AI and ethics

I was delighted to find this January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event as it brought together a range of thinkers from various faiths and disciplines,

New technologies are transforming our world every day, and the pace of change is only accelerating.  In coming years, human beings will create machines capable of out-thinking us and potentially taking on such uniquely-human traits as empathy, ethical reasoning, perhaps even consciousness.  This will have profound implications for virtually every human activity, as well as the meaning we impart to life and creation themselves.  This conference will provide an introduction for non-specialists to Artificial Intelligence (AI):

What is it?  What can it do and be used for?  And what will be its implications for choice and free will; economics and worklife; surveillance economies and surveillance states; the changing nature of facts and truth; and the comparative intelligence and capabilities of humans and machines in the future? 

Leading practitioners, ethicists and theologians will provide cross-disciplinary and cross-denominational perspectives on such challenges as technology addiction, inherent biases and resulting inequalities, the ethics of creating destructive technologies and of turning decision-making over to machines from self-driving cars to “autonomous weapons” systems in warfare, and how we should treat the suffering of “feeling” machines.  The conference ultimately will address how we think about our place in the universe and what this means for both religious thought and theological institutions themselves.

UTS [Union Theological Seminary] is the oldest independent seminary in the United States and has long been known as a bastion of progressive Christian scholarship.  JTS [Jewish Theological Seminary] is one of the academic and spiritual centers of Conservative Judaism and a major center for academic scholarship in Jewish studies. The Riverside Church is an interdenominational, interracial, international, open, welcoming, and affirming church and congregation that has served as a focal point of global and national activism for peace and social justice since its inception and continues to serve God through word and public witness. The annual Greater Good Gathering, the following week at Columbia University’s School of International & Public Affairs, focuses on how technology is changing society, politics and the economy – part of a growing nationwide effort to advance conversations promoting the “greater good.”

They have embedded a video of the event (it runs a little over seven hours) on the January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event page. For anyone who finds that a daunting amount of information, you may want to check out the speaker list for ideas about who might be writing and thinking on this topic.

As for Islam, I did track down this November 29, 2018 article by Shahino Mah Abdullah, a fellow at the Institute of Advanced Islamic Studies (IAIS) Malaysia,

As the global community continues to work together on the ethics of AI, there are still vast opportunities to offer ethical inputs, including the ethical principles based on Islamic teachings.

This is in line with Islam’s encouragement for its believers to convey beneficial messages, including to share its ethical principles with society.

In Islam, ethics or akhlak (virtuous character traits) in Arabic, is sometimes employed interchangeably in the Arabic language with adab, which means the manner, attitude, behaviour, and etiquette of putting things in their proper places. Islamic ethics cover all the legal concepts ranging from syariah (Islamic law), fiqh ( jurisprudence), qanun (ordinance), and ‘urf (customary practices).

Adopting and applying moral values based on the Islamic ethical concept or applied Islamic ethics could be a way to address various issues in today’s societies.

At the same time, this approach is in line with the higher objectives of syariah (maqasid alsyariah) that is aimed at conserving human benefit by the protection of human values, including faith (hifz al-din), life (hifz alnafs), lineage (hifz al-nasl), intellect (hifz al-‘aql), and property (hifz al-mal). This approach could be very helpful to address contemporary issues, including those related to the rise of AI and intelligent robots.


Part of the difficulty with tracking down more about AI, ethics, and various religions is linguistic. I simply don’t have the language skills to search for the commentaries and, even in English, I may not have the best or most appropriate search terms.

Television (TV) episodes stored on DNA?

According to a Sept. 1, 2020 news item on Nanowerk, the first episode of a tv series, ‘Biohackers’ has been stored on synthetic DNA (deoxyribonucleic acid) by a researcher at TUM and colleagues at another institution,

The first episode of the newly released series “Biohackers” was stored in the form of synthetic DNA. This was made possible by the research of Prof. Reinhard Heckel of the Technical University of Munich (TUM) and his colleague Prof. Robert Grass of ETH Zürich.

They have developed a method that permits the stable storage of large quantities of data on DNA for over 1000 years.

A Sept. 1, 2020 TUM press release, which originated the news item, proceeds with more detail in an interview format,

Prof. Heckel, Biohackers is about a medical student seeking revenge on a professor with a dark past – and the manipulation of DNA with biotechnology tools. You were commissioned to store the series on DNA. How does that work?

First, I should mention that what we’re talking about is artificially generated – in other words, synthetic – DNA. DNA consists of four building blocks: the nucleotides adenine (A), thymine (T), guanine (G) and cytosine (C). Computer data, meanwhile, are coded as zeros and ones. The first episode of Biohackers consists of a sequence of around 600 million zeros and ones. To code the sequence 01 01 11 00 in DNA, for example, we decide which number combinations will correspond to which letters. For example: 00 is A, 01 is C, 10 is G and 11 is T. Our example then produces the DNA sequence CCTA. Using this principle of DNA data storage, we have stored the first episode of the series on DNA.

And to view the series – is it just a matter of “reverse translation” of the letters?

In a very simplified sense, you can visualize it like that. When writing, storing and reading the DNA, however, errors occur. If these errors are not corrected, the data stored on the DNA will be lost. To solve the problem, I have developed an algorithm based on channel coding. This method involves correcting errors that take place during information transfers. The underlying idea is to add redundancy to the data. Think of language: When we read or hear a word with missing or incorrect letters, the computing power of our brain is still capable of understanding the word. The algorithm follows the same principle: It encodes the data with sufficient redundancy to ensure that even highly inaccurate data can be restored later.

Channel coding is used in many fields, including in telecommunications. What challenges did you face when developing your solution?

The first challenge was to create an algorithm specifically geared to the errors that occur in DNA. The second one was to make the algorithm so efficient that the largest possible quantities of data can be stored on the smallest possible quantity of DNA, so that only the absolutely necessary amount of redundancy is added. We demonstrated that our algorithm is optimized in that sense.

DNA data storage is very expensive because of the complexity of DNA production as well as the reading process. What makes DNA an attractive storage medium despite these challenges?

First, DNA has a very high information density. This permits the storage of enormous data volumes in a minimal space. In the case of the TV series, we stored “only” 100 megabytes on a picogram – or a billionth of a gram of DNA. Theoretically, however, it would be possible to store up to 200 exabytes on one gram of DNA. And DNA lasts a long time. By comparison: If you never turned on your PC or wrote data to the hard disk it contains, the data would disappear after a couple of years. By contrast, DNA can remain stable for many thousands of years if it is packed right.

And the method you have developed also makes the DNA strands durable – practically indestructible.

My colleague Robert Grass was the first to develop a process for the “stable packing” of DNA strands by encapsulating them in nanometer-scale spheres made of silica glass. This ensures that the DNA is protected against mechanical influences. In a joint paper in 2015, we presented the first robust DNA data storage concept with our algorithm and the encapsulation process developed by Prof. Grass. Since then we have continuously improved our method. In our most recent publication in Nature Protocols of January 2020, we passed on what we have learned.

What are your next steps? Does data storage on DNA have a future?

We’re working on a way to make DNA data storage cheaper and faster. “Biohackers” was a milestone en route to commercialization. But we still have a long way to go. If this technology proves successful, big things will be possible. Entire libraries, all movies, photos, music and knowledge of every kind – provided it can be represented in the form of data – could be stored on DNA and would thus be available to humanity for eternity.

Here’s a link to and a citation for the paper,

Reading and writing digital data in DNA by Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weida D. Chen, A. Xavier Kohll, Wendelin J. Stark, Reinhard Heckel & Robert N. Grass. Nature Protocols volume 15, pages86–101(2020) Issue Date: January 2020 DOI: https://doi.org/10.1038/s41596-019-0244-5 Published [online] 29 November 2019

This paper is behind a paywall.

As for ‘Biohackers’, it’s a German science fiction television series and you can find out more about it here on the Internet Movie Database.

Slaughterhouse yarn (scientists looking for business investment)

Not everyone is going to feel comfortable with the idea of using gelatine to create fibres for yarn. Nonetheless, here’s a July 29, 2015 ETH Zurich (Swiss Federal Institute of Technology in Zurich, [Eidgenössische Technische Hochschule Zürich]) press release (also on EurekAlert) describes the research (a plea for business investment follows),

Some 70 million tonnes of fibres are traded worldwide every year. Man-made fibres manufactured from products of petroleum or natural gas account for almost two-thirds of this total. The most commonly used natural fibres are wool and cotton, but they have lost ground against synthetic fibres.

Despite their environmental friendliness, fibres made of biopolymers from plant or animal origin remain very much a niche product. At the end of the 19th century, there were already attempts to refine proteins into textiles. For example, a patent for textiles made of gelatine was filed in 1894. After the Second World War, however, the emerging synthetic fibres drove biological protein fibres swiftly and thoroughly from the market.

Over the past few years, there has been increased demand for natural fibres produced from renewable resources using environmentally friendly methods. Wool fibre in particular has experienced a renaissance in performance sportswear made of merino wool. And a few years ago, a young entrepreneur in Germany started making high-quality textiles from the milk protein casein.

New use for waste product

Now Philipp Stössel, a 28-year-old PhD student in Professor Wendelin Stark’s Functional Materials Laboratory (FML), is presenting a new method for obtaining high-quality fibres from gelatine. The method was developed in cooperation with the Advanced Fibers Laboratory at Empa St. Gallen. Stössel was able to spin the fibres into a yarn from which textiles can be manufactured.

Gelatine consists chiefly of collagen, a main component of skin, bone and tendons. Large quantities of collagen are found in slaughterhouse waste and can be easily made into gelatine. For these reasons, Stark and Stössel decided to use this biomaterial for their experiments.

Coincidence helps provide a solution

In his experiments, Stössel noticed that when he added an organic solvent (isopropyl) to a heated, aqueous gelatine solution, the protein precipitated at the bottom of the vessel. He removed the formless mass using a pipette and was able to effortlessly press an elastic, endless thread from it. This was the starting point for his unusual research work.

As part of his dissertation, Stössel developed and refined the method, which he has just recently presented in an article for the journal Biomacromolecules.

The refined method replaces the pipette with several syringe drivers in a parallel arrangement. Using an even application of pressure, the syringes push out fine endless filaments, which are guided over two Teflon-coated rolls. The rolls are kept constantly moist in an ethanol bath; this prevents the filaments from sticking together and allows them to harden quickly before they are rolled onto a conveyor belt. Using the spinning machine he developed, Stössel was able to produce 200 metres of filaments a minute. He then twisted around 1,000 individual filaments into a yarn with a hand spindle and had a glove knitted from the yarn as a showpiece.

Attractive luster

Extremely fine, the individual fibres have a diameter of only 25 micrometres, roughly half the thickness of a human hair. With his first laboratory spinning machines, the fibre thickness was 100 micrometres, Stössel recalls. That was too thick for yarn production.

Whereas natural wool fibres have tiny scales, the surface of the gelatine fibres is smooth. “As a result, they have an attractive luster,” Stössel says. Moreover, the interior of the fibres is filled with cavities, as shown by the researchers’ electron microscope images. This might also be the reason for the gelatine yarn’s good insulation, which Stössel was able to measure in comparison with a glove made of merino wool.

Water-resistant fibres

Gelatine’s major drawback is that it its water-solubility. Stössel had to greatly improve the water resistance of the gelatine yarn through various chemical processing stages. First he treated the glove with an epoxy in order to bond the gelatine components more firmly together. Next, he treated the material with formaldehyde so that it would harden better. Finally, he impregnated the yarn with lanolin, a natural wool grease, to make it supple.

As he completes his dissertation over the coming months, Stössel will research how to make the gelatine fibres even more water-resistant. Sheep’s wool is still superior to the gelatine yarn in this respect. However, Stössel is convinced that he is very close to his ultimate goal: making a biopolymer fibre from a waste product.

It’s been a few months since I’ve seen one of these pleas for commercial interest/partnership (from the press release),

Three years ago, the researchers applied for a patent on their invention. Stössel explains that they have reached the point where their capacity in the laboratory is at its limit, but commercial production will only be possible if they can find partners and funding.

Here’s a link to and a citation for the researchers’ latest published paper (there are also two previous paper listed in the press release),

Porous, Water-Resistant Multifilament Yarn Spun from Gelatin by Philipp R. Stoessel, Urs Krebs, Rudolf Hufenus, Marcel Halbeisen, Martin Zeltner, Robert N. Grass, and Wendelin J. Stark. Biomacromolecules, 2015, 16 (7), pp 1997–2005 DOI: 10.1021/acs.biomac.5b00424 Publication Date (Web): June 2, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

How do you know that’s extra virgin olive oil?

Who guarantees that expensive olive oil isn’t counterfeit or adulterated? An invisible label, developed by ETH researchers, could perform this task. The tag consists of tiny magnetic DNA particles encapsulated in a silica casing and mixed with the oil.

So starts Barbara Vonarburg’s April 24, 2014 ETH Zurich (Swiss Federal Institute of Technology or Eidgenössische Technische Hochschule Zürich) news release (also on EurekAlert). She goes on to describe the scope of the situation regarding counterfeit foods,

The worldwide need for anti-counterfeiting labels for food is substantial. In a joint operation in December 2013 and January 2014, Interpol and Europol confiscated more than 1,200 tonnes of counterfeit or substandard food and almost 430,000 litres of counterfeit beverages. The illegal trade is run by organised criminal groups that generate millions in profits, say the authorities. The confiscated goods also included more than 131,000 litres of oil and vinegar.

Jon Henley’s Jan. 4, 2012 article for the UK’s Guardian provides more insight into the specifics of counterfeit olive oil (Note: A link has been removed),

Last month [December 2011], the Olive Oil Times reported that two Spanish businessmen had been sentenced to two years in prison in Cordoba for selling hundreds of thousands of litres of supposedly extra virgin olive oil that was, in fact, a mixture of 70-80% sunflower oil and 20-30% olive.

… So with a litre of supermarket extra virgin costing up to £4, and connoisseurs willing to pay 10 times that sum for a far smaller bottle of seasonal, first cold stone pressed, single estate, artisan-milled oil from Italy or Greece, can we be sure of getting what we’re paying for?

The answer, according to Tom Mueller in a book out this month [January 2012], is very often not. In Extra Virginity: the Sublime and Scandalous World of Olive Oil, Mueller, an American who lives in Italy, lays bare the workings of an industry prey, he argues, to hi-tech, industrial-scale fraud. The problem, he says, is that good olive oil is difficult, time-consuming and expensive to make, but easy, quick and cheap to doctor.

Most commonly, it seems, extra virgin oil is mixed with a lower grade olive oil, often not from the same country. Sometimes, another vegetable oil such as colza or canola is used. The resulting blend is then chemically coloured, flavoured and deodorised, and sold as extra-virgin to a producer. Almost any brand can, in theory, be susceptible: major names such as Bertolli (then owned by Unilever [see Henley’s article for details about the 2008 Italian olive oil scandal]) have found themselves in court having to argue, successfully in this instance, that they had themselves been defrauded by their supplier.

Meanwhile, the chemical tests that should by law be performed by exporters of extra virgin oil before it can be labelled and sold as such can often fail to detect adulterated oil, particularly when it has been mixed with products such as deodorised, lower-grade olive oil in a sophisticated modern refinery.

Given the benefits claimed for olive oil, I imagine lower grade olive oil which is more highly processed or, worse yet, a completely different kind of oil would diminish or, possibly, eliminate any potential health benefit.

Getting back to the ETH Zurich news release, here’s more about the anti-counterfeiting ‘label’,

Just a few grams of the new substance are enough to tag [label] the entire olive oil production of Italy. If counterfeiting were suspected, the particles added at the place of origin could be extracted from the oil and analysed, enabling a definitive identification of the producer. “The method is equivalent to a label that cannot be removed,” says Robert Grass, lecturer in the Department of Chemistry and Applied Biosciences at ETH Zurich.

A forgery-proof label should not only be invisible but also safe, robust, cheap and easy to detect. To fulfil these criteria ETH researchers used nanotechnology and nature’s information storehouse, DNA. A piece of artificial genetic material is the heart of the mini-label. “With DNA, there are millions of options that can be used as codes,” says Grass. Moreover, the material has an extremely low detection limit, so tiny amounts are sufficient for labelling purposes.

However, DNA also has some disadvantages. If the material is used as an information carrier outside a living organism, it cannot repair itself and is susceptible to light, temperature fluctuations and chemicals. Thus, the researchers used a silica coating to protect the DNA, creating a kind of synthetic fossil. The casing represents a physical barrier that protects the DNA against chemical attacks and completely isolates it from the external environment – a situation that mimics that of natural fossils, write the researchers in their paper, which has been published in the journal ACS Nano. To ensure that the particles can be fished out of the oil as quickly and simply as possible, Grass and his team employed another trick: they magnetised the tag by attaching iron oxide nanoparticles.

Experiments in the lab showed that the tiny tags dispersed well in the oil and did not result in any visual changes. They also remained stable when heated and weathered an ageing trial unscathed. The magnetic iron oxide, meanwhile, made it easy to extract the particles from the oil. The DNA was recovered using a fluoride-based solution and analysed by PCR, a standard method that can be carried out today by any medical lab at minimal expense. “Unbelievably small quantities of particles down to a millionth of a gram per litre and a tiny volume of a thousandth of a litre were enough to carry out the authenticity tests for the oil products,” write the researchers. The method also made it possible to detect adulteration: if the concentration of nanoparticles does not match the original value, other oil – presumably substandard – must have been added. The cost of label manufacture should be approximately 0.02 cents per litre.

The researchers have plans for other products that could benefit from this technology and answers to questions about whether or not people would be willing to ingest a label/tag along with their olive oil,

Petrol could also be tagged using this method and the technology could be used in the cosmetics industry as well. In trials the researchers also successfully tagged expensive Bergamot essential oil, which is used as a raw material in perfumes. Nevertheless, Grass sees the greatest potential for the use of invisible labels in the food industry. But will consumers buy expensive ‘extra-virgin’ olive oil when synthetic DNA nanoparticles are floating around in it? “These are things that we already ingest today,” says Grass. Silica particles are present in ketchup and orange juice, among other products, and iron oxide is permitted as a food additive E172.

To promote acceptance, natural genetic material could be used in place of synthetic DNA; for instance, from exotic tomatoes or pineapples, of which there are a great variety – but also from any other fruit or vegetable that is a part of our diet. Of course, the new technology must yield benefits that far outweigh any risks, says Grass. He concedes that as the inventor of the method, he might not be entirely impartial. “But I need to know where food comes from and how pure it is.” In the case of adulterated goods, there is no way of knowing what’s inside. “So I prefer to know which particles have been intentionally added.”

Here’s a link to and a citation for the researchers’ paper,

Magnetically Recoverable, Thermostable, Hydrophobic DNA/Silica Encapsulates and Their Application as Invisible Oil Tags by Michela Puddu , Daniela Paunescu , Wendelin J. Stark , and Robert N. Grass. ACS Nano, 2014, 8 (3), pp 2677–2685 DOI: 10.1021/nn4063853 Publication Date (Web): February 25, 2014

Copyright © 2014 American Chemical Society

This article is behind a paywall.

The Swiss aren’t the only ones interested in tagging petrol (gas), they’re already tagging petrol with nanoparticles in Malaysia with as per my Oct. 7, 2011 posting on the topic.

ATMs (automated teller machines) fend off attackers with biomimicry and nanoparticles

Attack an ATM (automated teller machine) and you will be in peril one day soon, if Swiss researchers at ETH Zurich (Swiss Federal Institute of Technology in Zurich) have their way. An April 11, 2014 news item on Nanowerk describes the inspiration,

Hot foam may soon send criminals running if they damage [an] ATM. ETH researchers have developed a special film that triggers an intense reaction when destroyed. The idea originates from a beetle that uses a gas explosion to fend off attackers.

An April 11, 2014 ETH Zurich news release (also on EurekAlert), which originated the news, item, provides more details about the insect inspiring this new approach to protecting ATMs and information about the increase of ATM attacks,

Its head and pronotum are usually rusty red, and its abdomen blue or shiny green: the bombardier beetle is approximately one centimetre long and common to Central Europe. At first glance, it appears harmless, but it possesses what is surely the most aggressive chemical defence system in nature. When threatened, the bombardier beetle releases a caustic spray, accompanied by a popping sound. This spray can kill ants or scare off frogs. The beetle produces the explosive agent itself when needed. Two separately stored chemicals are mixed in a reaction chamber in the beetle’s abdomen. An explosion is triggered with the help of catalytic enzymes.

“When you see how elegantly nature solves problems, you realise how deadlocked the world of technology often is,” says Wendelin Jan Stark, a professor from the ETH Department of Chemistry and Applied Biosciences. He and his team therefore looked to the bombardier beetle for inspiration and developed a chemical defence mechanism designed to prevent vandalism – a self-defending surface composed of several sandwich-like layers of plastic. If the surface is damaged, hot foam is sprayed in the face of the attacker. This technology could be used to prevent vandalism or protect valuable goods. “This could be used anywhere you find things that shouldn’t be touched,” said Stark. In agriculture and forestry, for example, it could be used to keep animals from gnawing on trees.

The newly developed film may be particularly well suited to protecting ATMs or cash transports, write the researchers in their paper published in the Journal of Materials Chemistry A. In ATMs, banknotes are kept in cash boxes, which are exchanged regularly. The Edinburgh-based European ATM Security Team reports that the number of attacks on ATMs has increased in recent years. During the first half of 2013, more than 1,000 attacks on ATMs took place in Europe, resulting in losses of EUR 10 million.

While protective devices that can spray robbers and banknotes already exist, these are mechanical systems, explains Stark. “A small motor is set in motion when triggered by a signal from a sensor. This requires electricity, is prone to malfunctions and is expensive.” The objective of his research group is to replace complicated control systems with cleverly designed materials.

More technical information about the films and about an earlier project applying a similar technology to seeds is offered in the news release,

The researchers use plastic films with a honeycomb structure for their self-defending surface. The hollow spaces are filled with one of two chemicals: hydrogen peroxide or manganese dioxide. The two separate films are then stuck on top of each another. A layer of clear lacquer separates the two films filled with the different chemicals. When subjected to an impact, the interlayer is destroyed, causing the hydrogen peroxide and manganese dioxide to mix. This triggers a violent reaction that produces water vapour, oxygen and heat. Whereas enzymes act as catalysts in the bombardier beetle, manganese dioxide has proven to be a less expensive alternative for performing this function in the lab.

The researchers report that the product of the reaction in the film is more of a foam than a spray when compared to the beetle, as can be seen in slow motion video footage. Infrared images show that the temperature of the foam reaches 80 degrees. Just as in nature, very little mechanical energy is required in the laboratory to release a much greater amount of chemical energy – quite similar to a fuse or an electrically ignited combustion cycle in an engine.

To protect the cash boxes, the researchers prepare the film by adding manganese dioxide. They then add a dye along with DNA enveloped in nanoparticles. If the film is destroyed, both the foam and the dye are released, thereby rendering the cash useless. The DNA nanoparticles that are also released mark the banknotes so that their path can be traced. Laboratory experiments with 5 euro banknotes have shown that the method is effective. The researchers write that the costs are also reasonable and expect one square meter of film to cost approximately USD 40.

In a similar earlier project, ETH researchers developed a multi-layer protective envelope for seed that normally undergoes complex chemical treatment. Researchers emulated the protective mechanism of peaches and other fruit, which releases toxic hydrogen cyanide to keep the kernels from being eaten. Wheat seeds are coated with substances that also form hydrocyanic acid when they react. However, the base substances are separated from each other in different layers and react only when the seeds are bitten by a herbivore. Stark describes the successful research method as “imitating nature and realising simple ideas with high-tech methods.”

Here are links to and citations for both research papers (ATM & seeds),

Self-defending anti-vandalism surfaces based on mechanically triggered mixing of reactants in polymer foils by Jonas G. Halter, Nicholas H. Cohrs, Nora Hild, Daniela Paunescu, Robert N. Grass, and Wendelin Jan Stark. J. Mater. Chem. A, 2014, DOI: 10.1039/C3TA15326F First published online 07 Mar 2014

Induced cyanogenesis from hydroxynitrile lyase and mandelonitrile on wheat with polylactic acid multilayer-coating produces self-defending seeds by Jonas G. Halter, Weida D. Chen, Nora Hild, Carlos A. Mora, Philipp R. Stoessel, Fabian M. Koehler, Robert N. Grass, and Wendelin J. Stark. J. Mater. Chem. A, 2014,2, 853-858 DOI: 10.1039/C3TA14249C
First published online 03 Dec 2013

The ‘anti-vandalism’ paper is open access but the ‘cyanogenesis’ paper is not. As for the beetle who inspired this work, here’s an image of one courtesy of ETH,

The bombardier beetle inspired the researchers of ETH Zurich. (Photo: jayvee18 – Fotolia)

The bombardier beetle inspired the researchers of ETH Zurich. (Photo: jayvee18 – Fotolia)

It looks rather pretty with its hard green (iridescent?) back shell.