Tag Archives: Rui Li

Seeing things from a bug’s perspective—a new type of digital camera

The new digital cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods

The new digital cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods

A May 1, 2013 news item on Nanowerk provides some details about a new ‘bug-eyed’ digital camera,

An interdisciplinary team of researchers has created the first digital cameras with designs that mimic those of ocular systems found in dragonflies, bees, praying mantises and other insects. This class of technology offers exceptionally wide-angle fields of view, with low aberrations, high acuity to motion, and nearly infinite depth of field.

Taking cues from Mother Nature, the cameras exploit large arrays of tiny focusing lenses and miniaturized detectors in hemispherical layouts, just like eyes found in arthropods. The devices combine soft, rubbery optics with high performance silicon electronics and detectors, using ideas first established in research on skin and brain monitoring systems by John A. Rogers, a Swanlund Chair Professor at the University of Illinois at Urbana-Champaign, and his collaborators.

The May 1, 2013 University of Illinois news release by John Kubetz, which originated the news item, describes the special properties of an insect eye and how the camera mimics those properties,

Eyes in arthropods use compound designs, in which arrays of smaller eyes act together to provide image perception. Each small eye, known as an ommatidium, consists of a corneal lens, a crystalline cone, and a light sensitive organ at the base. The entire system is configured to provide exceptional properties in imaging, many of which lie beyond the reach of existing man-made cameras.

The researchers developed new ideas in materials and fabrication strategies allowing construction of artificial ommatidia in large, interconnected arrays in hemispherical layouts. Building such systems represents a daunting task, as all established camera technologies rely on bulk glass lenses and detectors constructed on the planar surfaces of silicon wafers which cannot be bent or flexed, much less formed into a hemispherical shape.

“A critical feature of our fly’s eye cameras is that they incorporate integrated microlenses, photodetectors, and electronics on hemispherically curved surfaces,” said Jianliang Xiao, an assistant professor of mechanical engineering at University of Colorado Boulder and coauthor of the study. “To realize this outcome, we used soft, rubbery optics bonded to detectors/electronics in mesh layouts that can be stretched and deformed, reversibly and without damage.”

On a more technical note, from the news release,

The fabrication starts with electronics, detectors and lens arrays formed on flat surfaces using advanced techniques adapted from the semiconductor industry, said Xiao [Jianliang Xiao, an assistant professor of mechanical engineering at University of Colorado Boulder and coauthor of the study], who began working on the project as a postdoctoral researcher in Rogers’ lab at Illinois. The lens sheet—made from a polymer material similar to a contact lens—and the electronics/detectors are then aligned and bonded together. Pneumatic pressure deforms the resulting system into the desired hemispherical shape, in a process much like blowing up a balloon, but with precision engineering control.

The individual electronic detectors and microlenses are coupled together to avoid any relative motion during this deformation process. Here, the spaces between these artificial ommatidia can stretch to allow transformation in geometry from planar to hemispherical. The electrical interconnections are thin, and narrow, in filamentary serpentine shapes; they deform as tiny springs during the stretching process.

According to the researchers, each microlens produces a small image of an object with a form dictated by the parameters of the lens and the viewing angle. An individual detector responds only if a portion of the image formed by the associated microlens overlaps the active area. The detectors stimulated in this way produce a sampled image of the object that can then be reconstructed using models of the optics.

Katherine Bourzac in her May 1, 2013 article for Nature magazine provides some additional insight and a perspective (intentional wordplay) from a researcher who has an idea of how he might like to integrate this new type of camera into his own work,

Insect eyes are made up of hundreds or even thousands of light-sensing structures called ommatidia. Each contains a lens and a cone that funnels light to a photosensitive organ. The long, thin ommatidia are bunched together to form the hemispherical eye, with each ommatidium pointing in a slightly different direction. This structure gives bugs a wide field of view, with objects in the periphery just as clear as those in the centre of the visual field, and high motion sensitivity. It also allows a large depth of field — objects are in focus whether they’re nearby or at a distance.

“The whole thing [the new digital camera] is stretchy and thin, and we blow it up like a balloon” so that it curves like a compound eye, says Rogers. The current prototype produces black-and-white images only, but Rogers says a colour version could be made with the same design.

With the basic designs in place, Rogers says, his team can now increase the resolution of the camera by incorporating more ommatidia. “We’d like to do a dragonfly, with 20,000 ommatidia,” he says, which will require some miniaturization of the components.

Alexander Borst, who builds miniature flying robots at the Max Planck Institute of Neurobiology in Martinsried, Germany, says that he is eager to integrate the camera into his machines. Insects’ wide field of vision helps them to monitor and stabilize their position during flight; robots with artificial compound eyes might be better fliers, he says.

For interested parties, here’s a link to and a citation for the research paper,

Digital cameras with designs inspired by the arthropod eye by Young Min Song, Yizhu Xie, Viktor Malyarchuk, Jianliang Xiao, Inhwa Jung, Ki-Joong Choi, Zhuangjian Liu, Hyunsung Park, Chaofeng Lu, Rak-Hwan Kim, Rui Li, Kenneth B. Crozier, Yonggang Huang, & John A. Rogers.
Nature 497, 95–99 (02 May 2013) doi:10.1038/nature12083 Published online 01 May 2013

This article is behind a paywall.

I last mentioned John A. Rogers and the University of Illinois in a Feb. 28, 2013 posting about a bendable, stretchable lithium-ion battery.

Surgery with fingertip control

In the future, ‘surgery at your fingertips’ could be literally true. Researchers at the University of Illinois at Urbana-Champaign have created a silicon nanomembrane that can be fitted onto the fingertips and could, one day, be used in surgical procedures. From the Aug. 9, 2012 news item on ScienceDaily,

The intricate properties of the fingertips have been mimicked and recreated using semiconductor devices in what researchers hope will lead to the development of advanced surgical gloves.

The devices, shown to be capable of responding with high precision to the stresses and strains associated with touch and finger movement, are a step towards the creation of surgical gloves for use in medical procedures such as local ablations [excising or removing tissue] and ultrasound scans.

Researchers from the University of Illinois at Urbana-Champaign, Northwestern University and Dalian University of Technology have published their study August 10, in IOP [Institute of Physics] Publishing’s journal Nanotechnology.

The Aug. 10,2012 posting on the IOP website  offers this detail about the research,

The electronic circuit on the ‘skin’ is made of patterns of gold conductive lines and ultrathin sheets of silicon, integrated onto a flexible polymer called polyimide. The sheet is then etched into an open mesh geometry and transferred to a thin sheet of silicone rubber moulded into the precise shape of a finger.

This electronic ‘skin’, or finger cuff, was designed to measure the stresses and strains at the fingertip by measuring the change in capacitance – the ability to store electrical charge – of pairs of microelectrodes in the circuit.  Applied forces decreased the spacing in the skin which, in turn, increased the capacitance.

The fingertip device could also be fitted with sensors for measuring motion and temperature, with small-scale heaters as actuators for ablation and other related operations

The researchers experimented with having the electronics on the inside of the device, in contact with wearer’s skin, and also on the outside. They believe that because the device exploits materials and fabrication techniques adopted from the established semiconductor industry, the processes can be scaled for realistic use at reasonable cost.

“Perhaps the most important result is that we are able to incorporate multifunctional, silicon semiconductor device technologies into the form of soft, three-dimensional, form-fitting skins, suitable for integration not only with the fingertips but also other parts of the body,” continued Professor Rogers [John Rogers, co-author of the study].

Here’s what an image of these e-fingertips,

Virtual touch. Electronic fingertips could one day allow us to feel virtual sensations. Credit: John Rogers/University of Illinois at Urbana-Champaign

Krystnell A offers a more detailed description of the e-fingetips in an Aug. 9, 2012 story for Science NOW,

Hoping to create circuits with the flexibility of skin, materials scientist John Rogers of the University of Illinois, Urbana-Champaign, and colleagues cut up nanometer-sized strips of silicon; implanted thin, wavy strips of gold to conduct electricity; and mounted the entire circuit in a stretchable, spider web-type mesh of polymer as a support. They then embedded the circuit-polyimide structure onto a hollow tube of silicone that had been fashioned in the shape of a finger. Just like turning a sock inside out, the researchers flipped the structure so that the circuit, which was once on the outside of the tube, was on the inside where it could touch a finger placed against it.

To test the electronic fingers, the researchers put them on and pressed flat objects, such as the top of their desks. The pressure created electric currents that were transferred to the skin, which the researchers felt as mild tingling. That’s a first step in creating electrical signals that could be sent to the fingers, which could virtually recreate sensations such as heat, pressure, and texture, the team reports online today in Nanotechnology.

Rogers says another application of the technology is to custom fit the “electronic skin” around entire organs, allowing doctors to remotely monitor changes in temperature and blood flow. Electronic skin could also restore sensation to people who have lost their natural skin, he says, such as burn victims or amputees.

Here’s a link to the article which is freely accessible for 30 days after publication, from the Aug. 9, 2012 news item on ScienceDaily,

Ming Ying, Andrew P Bonifas, Nanshu Lu, Yewang Su, Rui Li, Huanyu Cheng, Abid Ameen, Yonggang Huang, John A Rogers. Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012; 23 (34): 344004 DOI: 10.1088/0957-4484/23/34/344004

My best guess is that free access will no longer be available by Sept. 7 (or so) , 2012. I last wrote about John Rogers’ work in an Aug. 12, 2011 posting about electronic tattoos.