Tag Archives: Ryerson University

Meet Pepper, a robot for health care clinical settings

A Canadian project to introduce robots like Pepper into clinical settings (aside: can seniors’ facilities be far behind?) is the subject of a June 23, 2017 news item on phys.org,

McMaster and Ryerson universities today announced the Smart Robots for Health Communication project, a joint research initiative designed to introduce social robotics and artificial intelligence into clinical health care.

A June 22, 2017 McMaster University news release, which originated the news item, provides more detail,

With the help of Softbank’s humanoid robot Pepper and IBM Bluemix Watson Cognitive Services, the researchers will study health information exchange through a state-of-the-art human-robot interaction system. The project is a collaboration between David Harris Smith, professor in the Department of Communication Studies and Multimedia at McMaster University, Frauke Zeller, professor in the School of Professional Communication at Ryerson University and Hermenio Lima, a dermatologist and professor of medicine at McMaster’s Michael G. DeGroote School of Medicine. His main research interests are in the area of immunodermatology and technology applied to human health.

The research project involves the development and analysis of physical and virtual human-robot interactions, and has the capability to improve healthcare outcomes by helping healthcare professionals better understand patients’ behaviour.

Zeller and Harris Smith have previously worked together on hitchBOT, the friendly hitchhiking robot that travelled across Canada and has since found its new home in the [Canada] Science and Technology Museum in Ottawa.

“Pepper will help us highlight some very important aspects and motives of human behaviour and communication,” said Zeller.

Designed to be used in professional environments, Pepper is a humanoid robot that can interact with people, ‘read’ emotions, learn, move and adapt to its environment, and even recharge on its own. Pepper is able to perform facial recognition and develop individualized relationships when it interacts with people.

Lima, the clinic director, said: “We are excited to have the opportunity to potentially transform patient engagement in a clinical setting, and ultimately improve healthcare outcomes by adapting to clients’ communications needs.”

At Ryerson, Pepper was funded by the Co-lab in the Faculty of Communication and Design. FCAD’s Co-lab provides strategic leadership, technological support and acquisitions of technologies that are shaping the future of communications.

“This partnership is a testament to the collaborative nature of innovation,” said dean of FCAD, Charles Falzon. “I’m thrilled to support this multidisciplinary project that pushes the boundaries of research, and allows our faculty and students to find uses for emerging tech inside and outside the classroom.”

“This project exemplifies the value that research in the Humanities can bring to the wider world, in this case building understanding and enhancing communications in critical settings such as health care,” says McMaster’s Dean of Humanities, Ken Cruikshank.

The integration of IBM Watson cognitive computing services with the state-of-the-art social robot Pepper, offers a rich source of research potential for the projects at Ryerson and McMaster. This integration is also supported by IBM Canada and [Southern Ontario Smart Computing Innovation Platform] SOSCIP by providing the project access to high performance research computing resources and staff in Ontario.

“We see this as the initiation of an ongoing collaborative university and industry research program to develop and test applications of embodied AI, a research program that is well-positioned to integrate and apply emerging improvements in machine learning and social robotics innovations,” said Harris Smith.

I just went to a presentation at the facility where my mother lives and it was all about delivering more individualized and better care for residents. Given that most seniors in British Columbia care facilities do not receive the number of service hours per resident recommended by the province due to funding issues, it seemed a well-meaning initiative offered in the face of daunting odds against success. Now with this news, I wonder what impact ‘Pepper’ might ultimately have on seniors and on the people who currently deliver service. Of course, this assumes that researchers will be able to tackle problems with understanding various accents and communication strategies, which are strongly influenced by culture and, over time, the aging process.

After writing that last paragraph I stumbled onto this June 27, 2017 Sage Publications press release on EurekAlert about a related matter,

Existing digital technologies must be exploited to enable a paradigm shift in current healthcare delivery which focuses on tests, treatments and targets rather than the therapeutic benefits of empathy. Writing in the Journal of the Royal Society of Medicine, Dr Jeremy Howick and Dr Sian Rees of the Oxford Empathy Programme, say a new paradigm of empathy-based medicine is needed to improve patient outcomes, reduce practitioner burnout and save money.

Empathy-based medicine, they write, re-establishes relationship as the heart of healthcare. “Time pressure, conflicting priorities and bureaucracy can make practitioners less likely to express empathy. By re-establishing the clinical encounter as the heart of healthcare, and exploiting available technologies, this can change”, said Dr Howick, a Senior Researcher in Oxford University’s Nuffield Department of Primary Care Health Sciences.

Technology is already available that could reduce the burden of practitioner paperwork by gathering basic information prior to consultation, for example via email or a mobile device in the waiting room.

During the consultation, the computer screen could be placed so that both patient and clinician can see it, a help to both if needed, for example, to show infographics on risks and treatment options to aid decision-making and the joint development of a treatment plan.

Dr Howick said: “The spread of alternatives to face-to-face consultations is still in its infancy, as is our understanding of when a machine will do and when a person-to-person relationship is needed.” However, he warned, technology can also get in the way. A computer screen can become a barrier to communication rather than an aid to decision-making. “Patients and carers need to be involved in determining the need for, and designing, new technologies”, he said.

I sincerely hope that the Canadian project has taken into account some of the issues described in the ’empathy’ press release and in the article, which can be found here,

Overthrowing barriers to empathy in healthcare: empathy in the age of the Internet
by J Howick and S Rees. Journaly= of the Royal Society of Medicine Article first published online: June 27, 2017 DOI: https://doi.org/10.1177/0141076817714443

This article is open access.

Inaugural Italian Scientists and Scholars of North America Foundation (ISSNAF) annual meeting

Thanks to a May 17, 2017 announcement I received via email from the ArtSci Salon, I’ve learned of a rather intriguing annual meeting to be held May 19-20, 2017 in Toronto, Ontario,

We are pleased to invite you to attend the Italian Scientists and
Scholars of North America Foundation (ISSNAF) inaugural annual
conference in Canada, which will be held on May 19-20th, 2017 at the
Istituto Italiano di Cultura, Toronto, Ontario.

During the event, the Italian scientific community will meet the
institutions, the industry, academia to discuss breakthrough ideas, to
network, and to award projects of young Italians through the ISSNAF
Young Investigators Awards.

The event is organized under the auspices of H.E. Ambassador CLAUDIO
TAFFURI, Consul General of Italy in Toronto, GIUSEPPE PASTORELLI,
Director of the Istituto Italiano di Cultura in Toronto, ALESSANDRO
RUGGERA and Scientific Attaché of the Italian Embassy in Ottawa, ANNA
GALLUCCIO. This year’s exciting conference will focus on innovation,
exploring innovation as invention and transformation, as well as its
impact on how we live and think.

After an introduction by H.E. Ambassador of Italy, CLAUDIO TAFFURI,
and other representatives of Italian institutions, the event will open
with two prominent speakers: PAOLO MACCARIO, Chief Operating Officer
and General Manager at Silfab Ontario Inc. and FRANCO VACCARINO,
President and Vice-Chancellor of Guelph University, who will discuss
current and future strategies in academia and industry required for
students and workers to deal with the disruptive technologies and the
exponential increase in knowledge.

The later part of the day will feature speakers from different
institutions from all over Canada. CORRADO PAINA, President of the
Italian Chamber of Commerce, will address the importance of innovation
and research from the industry prospective. UMBERTO BERARDI, Associate
Professor, Faculty of Engineering and Architecture, Ryerson
University, will bring his experience as winner of the Franco
Strazzabosco Award for Engineers. Nicola Fameli, Research Associate of
Anesthesiology, Pharmacology and Therapeutics, U. of British Columbia
and Franco Mammarella, Group leader [TRIUMF] Canada’s National Laboratory for
Particle and Nuclear Physics, president and vice-president of ARPICO
(Society of Italian Researchers & Professionals in Western Canada),
will explain the importance of developing a global network amongst
researchers. The day will be closed by GABRIELLA GOBBI, Associate
Professor, Dept. Psychiatry, McGill University on the current status
of the Italian Scientific Community in Quebec.

Day One of ISSNAF’s Annual event will conclude with a reception at the
Istituto. Day Two of the event is dedicated to young Italian
researchers and scientists who will present their work and will
receive the ISSNAF Certificate for Young Investigators. The day will
end with a round table and a discussion directed by the ISSNAF Ontario
chapter Chairs, BARBARA CIFRA, VITO MENNELLA AND LEONARDO SALMENA on
how to build a successful academic network and how ISSNAF can
contribute to the process.

The event is limited to 50 people only [emphasis mine]. Please confirm your presence
by May 17th [2017] by sending an email to: iictoronto@esteri.it

Sorry to be posting this so late in the day (fingers crossed it’s not too late).

I did do some searching and found this description of the event on the ARPICO website,

On May 19-20th SIRO (Society of Italian researcher in Ontario) official Chapter of the Italian Scientists and Scholars of North America Foundation (ISSNAF) will host in cooperation with the Embassy of Italy in Ottawa the inaugural Canadian Annual ISSNAF meeting.

The event is organized under the auspices of H.E. Ambassador Claudio Taffuri, Consul General of Italy in Toronto, Giuseppe Pastorelli, and Director of the Istituto Italiano di Cultura in Toronto, Alessandro Ruggera and Scientific Attache’ of the Italian Embassy in Ottawa, Anna Galluccio. This year’s exciting conference will focus on innovation, exploring innovation as invention and transformation and its impact on how we live and think.

During the event, the italian scientific community meets the institutions, the industry, academia to discuss breakthrough ideas, to network, and to award projects of young Italians through the ISSNAF Young Investigators Awards.

For this year the event will be attended by 60 selected researchers and scholars working in Canada. [emphasis mine]

For more information email issnafontario@gmail.com

Good luck at getting to attend the event whether there are 50 or 60 participants.

The insanity of Canadian science outreach (Science Odyssey, May 12 – 21, 2017 and Science RendezVous on May 13, 2017)

When was the last time you saw a six-year old or a twelve-year old attend a political candidates’ meeting or vote in an election? Sadly, most creative science outreach in Canada is aimed at children and teenagers in the misbegotten belief that adults don’t matter and ‘youth are the future’. There are three adult science outreach scenarios although they didn’t tend to be particularly creative. (1) Should scientists feel hard done by elected representatives, they reach out to other adults for support. (2) Should those other adults become disturbed by any scientific or technological ‘advance’ then scientific experts will arrive to explain why that’s wrong. (3) Should the science enterprise want money, then a call goes out (see my May 12, 2017 posting about the Canada Science and Technology Museums Corporation gala and, yes, they were a bit creative about it).

I am oversimplifying the situation but not by much especially if one considers two upcoming national Canadian science events: Science Rendezvous which is a day-long (May 13, 2017) cross country science event taking place during while the Science Odyssey holds a 10-day (May 12 – 2017) cross country science event. The two groups arranged their events separately and then decided to coordinate their efforts. Science Odyssey is a rebranding of the Canada Science and Technology Week organized by the federal government for at least two decades and which was held (until 2016) in the fall of each year. Science Rendezvous (About page) was launched in Toronto in 2008 (University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT)).

Regardless, both events are clearly aimed at children (and families).

I’m not suggesting that exciting science outreach for children should be curtailed. Let’s expand the efforts to9 include the adult and senior populations too.

In all the talk about Canada’s adult and ageing populations, perhaps we could approach it all more creatively. For example, there’s this (from an April 18, 2017 University of California at San Diego University news release (also on EurekAlert) by Inga Kiderra,

Philip Guo caught the coding bug in high school, at a fairly typical age for a Millennial. Less typical is that the UC San Diego cognitive scientist is now eager to share his passion for programming with a different demographic. And it’s not one you’re thinking of – it’s not elementary or middle school-aged kids. Guo wants to get adults age 60 and up.

In the first known study of older adults learning computer programming, Guo outlines his reasons: People are living and working longer. This is a growing segment of the population, and it’s severely underserved by learn-to-code intiatives, which usually target college students and younger. Guo wants to change that. He would like this in-demand skill to become more broadly accessible.

“Computers are everywhere, and digital literacy is becoming more and more important,” said Guo, assistant professor in the Department of Cognitive Science, who is also affiliated with UC San Diego’s Design Lab and its Department of Computer Science and Engineering. “At one time, 1,000 years ago, most people didn’t read or write – just some monks and select professionals could do it. I think in the future people will need to read and write in computer language as well. In the meantime, more could benefit from learning how to code.”

Guo’s study was recently awarded honorable mention by the world’s leading organization in human-computer interaction, ACM SIGCHI. Guo will present his findings at the group’s premier international conference, CHI, in May [2017].

When prior human-computer interaction studies have focused on older adults at all, Guo said, it has been mostly as consumers of new technology, of social networking sites like Facebook, say, or ride-sharing services. While a few have investigated the creation of content, like blogging or making digital music, these have involved the use of existing apps. None, to his knowledge, have looked at older adults as makers of entirely new software applications, so he set out to learn about their motivations, their frustrations and if these provided clues to design opportunities.

The Study

For his study, Guo surveyed users of pythontutor.com. A web-based education tool that Guo started in 2010, Python Tutor helps those learning to program visualize their work. Step by step, it displays what a computer is doing with each line of code that it runs. More than 3.5 million people in more than 180 countries have now used Python Tutor, including those around the world taking MOOCs (massive open online courses). Despite its legacy name, the tool helps people supplement their studies not only of the Python programming language but also Java, JavaScript, Ruby, C and C++, all of which are commonly used to teach programing. The users of Python Tutor represent a wide range of demographic groups.

Guo’s survey included 504 people between the ages of 60 and 85, from 52 different countries. Some were retired and semi-retired while others were still working.

What Guo discovered: Older adults are motivated to learn programming for a number of reasons. Some are age-related. They want to make up for missed opportunities during youth (22 percent) and keep their brains “challenged, fresh and sharp” as they age (19 percent). A few (5 percent) want to connect with younger family members.

Reasons not related to age include seeking continuing education for a current job (14 percent) and wanting to improve future job prospects (9 percent). A substantial group is in it just for personal enrichment: 19 percent to implement a specific hobby project idea, 15 percent for fun and entertainment, and 10 percent out of general interest.

Interestingly, 8 percent said they wanted to learn to teach others.

Topping the list of frustrations for older students of coding was bad pedagogy. It was mentioned by 21 percent of the respondents and ranged from the use of jargon to sudden spikes in difficulty levels. Lack of real-world relevance came up 6 percent of the time. A 74-year-old retired physician wrote: “Most [tutorials] are offered by people who must know how to program but don’t seem to have much training in teaching.”

Other frustrations included a perceived decline in cognitive abilities (12 percent) and no human contact with tutors and peers (10 percent).

The study’s limitations are tied in part to the instrument – self-reporting on an online survey – and in part to the survey respondents themselves. Most hailed from North America and other English-speaking nations. Most, 84 percent, identified themselves as male; this stat is consistent with other surveys of online learning, especially in math and science topics. There was a diverse array of occupations reported, but the majority of those surveyed were STEM professionals, managers and technicians. These learners, Guo said, likely represent “early adopters” and “the more technology-literate and self-motivated end of the general population.” He suggests future studies look both at in-person learning and at a broader swath of the public. But he expects the lessons learned from this group will generalize.

The Implications

Based on this first set of findings and using a learner-centered design approach, Guo proposes tailoring computer-programming tools and curricula specifically for older learners. He notes, for example, that many of his respondents seemed to take pride in their years and in their tech-savvy, so while it may be good to advertise products as targeting this age group, they should not appear patronizing. It might make sense to reframe lessons as brain-training games, like Lumosity, now popular among the older set.

Just as it’s key to understand who the learners are so is understanding where they have trouble. Repetition and frequent examples might be good to implement, as well as more in-person courses or video-chat-based workshops, Guo said, which may lead to improvements in the teaching of programming not just for older adults but across the board.

Context matters, too. Lessons are more compelling when they are put into domains that people personally care about. And Guo recommends coding curricula that enable older adults to tell their life stories or family histories, for example, or write software that organizes health information or assists care-givers.

Guo, who is currently working on studies to extend coding education to other underrepresented groups, advocates a computing future that is fully inclusive of all ages.

“There are a number of social implications when older adults have access to computer programming – not merely computer literacy,” he said. “These range from providing engaging mental stimulation to greater gainful employment from the comfort of one’s home.”

By moving the tech industry away from its current focus on youth, Guo argues, we all stand to gain. [emphasis mine]

Guo joined the UC San Diego cognitive science faculty in 2016 after two years as an assistant professor at the University of Rochester. He received his bachelor’s and master’s degrees in computer science from MIT in 2006 and his Ph.D. from Stanford in 2012. Before becoming a professor, he built online learning tools as a software engineer at Google and a research scientist at edX. He also blogs, vlogs and podcasts at http://pgbovine.net/

When was the last time you heard about a ‘coding’ camp for adults and seniors in Canada? Also,, ask yourself if after you’d reached a certain age (40? 50? more? less?) you’d feel welcome at the Science Rendezvous events (without a child in tow), Science Odyssey events (without a child in tow), or the May 17, 2017 National Science and Innovation Gala in Ottawa (from my May 12, 2017 posting “It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox.”)?

Let’s open the door a bit wider, eh?

Canadian Science Policy Centre hosts panel discussion on April 18, 2017 about the April 22, 2017 US March for Science

Coming soon (April 22, 2017) to a city near you is a US ‘March for Science’. The big one will be held in Washington, DC but some 400 satellite marches are planned in cities across the US and around the world.

The Canadian Science Policy Centre has organized two panel discussions (one in Toronto and one in Ottawa) as a prelude to those cities’ marches,

A ‘March for Science’ is set to take place in over 400 locations around the world, including in Ottawa and Toronto, on April 22nd [2017]. The Canadian Science Policy Centre (CSPC) invites you to attend public panels discussing the implications of the march.

To RSVP for the Ottawa event [4:30 pm – 6 pm EDT], please click here

To RSVP for the Toronto event [4:30 – 6:30 pm EDT] please click here

The Ottawa panel features:

Paul Dufour

Paul Dufour is a Fellow and Adjunct Professor at the Institute for Science, Society and Policy in the University of Ottawa and science policy Principal with PaulicyWorks in Gatineau, Québec. He is on the Board of Directors of the graduate student led Science Policy Exchange based in Montréal, and is member of the Investment Committee for Grand Challenges Canada. Paul Dufour has been senior advisor in science policy with several Canadian agencies and organizations over the course of the past 30 years. Among these: Senior Program Specialist with the International Development Research Centre, and interim Executive Director at the former Office of the National Science Advisor to the Canadian Government advising on international S&T matters and broad questions of R&D policy directions for the country. Mr. Dufour lectures regularly on science policy, has authored numerous articles on international S&T relations, and Canadian innovation policy. He is series co-editor of the Cartermill Guides to World Science and is the author of the Canada chapter for the UNESCO 2015 Science Report released in November 2015.

Dr. Kristin Baetz

Dr. Kristin Baetz is a Canada Research Chair in Chemical and Functional Genomics, Director of the Ottawa Institute of Systems Biology at uOttawa, President of the Canadian Society for Molecular Biosciences.

Katie Gibbs

Katie Gibbs is a scientist, community organizer and advocate for science and evidence-based policies. While completing her PhD at the University of Ottawa researching threats to endangered species, she was the lead organizer of the ‘Death of Evidence’ rally which was one of the largest science rallies in Canadian history. Katie is a co-founder and Executive Director of Evidence for Democracy, a national, non-partisan, not-for- profit organization that promotes science integrity and the transparent use of evidence in government decision-making. She has a diverse background organizing and managing various causes and campaigns including playing an integral role in Elizabeth May’s winning election campaign in 2011. Katie is frequently asked to comment on science policy issues and has been quoted and published in numerous media outlets, including the CBC, The Hill Times, the Globe and Mail and the National Post.

Professor Kathryn O’Hara

Professor Kathryn O’Hara has been a faculty member in the School of Journalism and Communication at Carleton University since 2001. She is the first person to hold the School’s CTV Chair in Science Broadcast Journalism, the first such chair of its kind in anglophone Canada. A long-standing broadcast journalist, Professor O’Hara is the former consumer columnist with CBC’s Midday , a former co- anchor of CBC’s Newsday in Ottawa, and the former host of Later the Same Day , CBC Radio Toronto’s “drive-home” program. Her work has also appeared on CBC’s Quirks and Quarks and Ideas programs. Three years before coming to Carleton University, Professor O’Hara was an independent health and science producer for outlets such as RTE and CBC. She serves on the Science and Technology Advisory Boards for Environment Canada and Health Canada and chairs the EC panel on Environment and Health. She is an Associate Professor with the Carleton School of Journalism and Communication.

The Toronto panel is organized a little differently:

Canadian Science Policy Centre in collaboration with Ryerson University’s Faculty of Science presents a panel discussion on the ‘March for Science’. Join us for coffee/tea and light refreshment at 4:00pm followed by the panel discussion at 4:30pm.

Light reception sponsored by Ryerson University’s Faculty of Science

Dr. Imogen Coe

Dr. Imogen R. Coe is currently the Dean of the Faculty of Science at Ryerson University. Imogen possesses a doctorate (Ph.D.) and masters degree in Biology from the University of Victoria, B.C. and a bachelor’s degree from Exeter University in the U.K.  She is an affiliate scientist with Li Ka Shing Knowledge Institute, Keenan Research Centre at St. Michael’s Hospital which is where her research program is located.  She is an accomplished cell biologist and is internationally known for her work on membrane transport proteins (transporters) that are the route of entry into cells for a large class of anti-cancer, anti-viral and anti-parasite drugs.  She has served on NSERC, CIHR and NCIC scientific review panels and continues to supervise research projects of undergraduates, graduate students, postdoctoral fellows and research associates in her group. More about her research can be found  at her research website.

Mehrdad Hariri

Mehrdad Hariri is the founder and CEO of Canadian Science Policy Centre. The Centre is becoming the HUB for science technology and innovation policy in the country. He established the first national annual Canadian Science Policy Conference (CSPC), a forum dedicated to the Canadian Science Technology and Innovation (STI) Policy issues. The Conference engages stakeholders from the science and innovation field, academia and government in discussions of policy issues at the intersection of science and society. Now in its 9th year, CSPC has become the most comprehensive national forum on science and innovation policy issues.

Dr. Jim Woodgett

In his dual roles as Investigator and Director of Research of the Lunenfeld-Tanenbaum Research Institute, Dr. Jim Woodgett applies his visionary approach to research into the manipulation of cell processes to treat certain cancers, diabetes and neurodegenerative conditions, and to ensuring that discoveries made by the world-renowned Institute are applied to patient care. Dr. Woodgett is interested in the causes and treatment of breast cancer, colorectal cancer, diabetes, Alzheimer Disease and bipolar disorder. What links this apparently broad range of diseases is their common basis in disruption of the lines of communication within the cells, or the signalling pathways. By studying the ways in which components of these pathways are mutated and transformed by disease, Dr. Woodgett can identify new and more effective therapeutic targets. Study of the WNT pathway, which contains a number of genes which account for about 90% of human colon cancer, is a particular area of interest. Recent advancements made by Dr. Woodgett’s team in adult stem cell division pave the way for scientists to harvest large quantities of these specialized cells which hold great promise for the treatment and cure of life- threatening illnesses.

Margrit Eichler

Margrit Eichler is Professor emerita of Sociology and Equity Studies at OISE/UT. Her over 200 publications deal, among other topics, with feminist methodology, gender issues, public health, environmental issues, and paid and unpaid work. She is a fellow Fellow of the Royal Society of Canada and the European Academy of Sciences. Since her retirement, she has been active in various citizens’ organizations, including as Secretary of Science for Peace and as President of the advocacy group Our Right to Know.

Ivan Semeniuk [science writer for Globe & Mail newspaper]

Dan Weaver

Dan Weaver is a Ph.D. candidate at the U of T Dept. of Physics. His research involves collecting and analyzing atmospheric measurements taken at the Polar Environment Atmospheric Research Laboratory (PEARL) on Ellesmere Island, Nunavut. He is also involved in the validation of satellites such as Canada’s Atmospheric Chemistry Experiment.In 2012, Dan was at PEARL for fieldwork when the federal government cut science funding that supported PEARL and other research programs across the country. He started a campaign called Save PEARL to advocate for continued funding for climate and Arctic atmospheric research. Dan joined Evidence for Democracy to advocate for science and evidence-based decision-making in 2013 and is a member of its Board of Directors. Dan is also a member of the Toronto March for Science organizing committee.

Toronto tickets are going faster than Ottawa tickets.

I’m feeling just a bit indignant; there are not just two Canadian satellite marches as you might expect given how this notice is written up. There are 18! Eight provinces are represented with marches in Calgary (Alberta), Montréal (Québec), Prince George (British Columbia), Vancouver (British Columbia), Edmonton (Alberta), Winnipeg (Manitoba), Halifax (Nova Scotia), London (Ontario), Windsor (Ontario),  Hamilton (Ontario), Ottawa (Ontario), Toronto (Ontario), Victoria (British Columbia), Lethbridge (Alberta), St. John’s (Newfoundland and Labrador), Kitchener-Waterloo (Ontario), Sudbury (Ontario), and Saskatoon (Saskatchewan). Honestly, these folks in Ontario seem to have gotten quite insular. In any event, you can figure out how to join in by clicking here.

For those who might appreciate some cogent insight into the current science situation in the US (and an antidote to what I suspect will be a great deal of self-congratulation on these April 18, 2017 CSPC panels), there’s an April 14, 2017 article by Jason Lloyd for Slate.com (Note: Links have been removed),

The most prominent response to the situation will come April 22 [2017], as science advocates—including members of major organizations like the Union of Concerned Scientists, the American Geophysical Union, and the American Association for the Advancement of Science—“walk out of the lab and into the streets” for the first-ever March for Science. Modeled in part on January’s record-breaking Women’s March, organizers have planned a march in Washington and satellite marches in more than 400 cities across six continents. The March for Science is intended to be the largest assemblage of science advocates in history.

Too bad it will likely undermine their cause.

The goals of organizers and participants are varied and worthy, but its critics—most prominently the president himself—will smear the march as simply anti-Trump or anti-Republican partisanship. Whether that’s true is beside the point, and scientists who are keen to participate ought to do so without worrying that they’re sullying their objectivity. The many communities distressed by the actions of this administration should of course exercise their right to protest, and the March for Science may inspire deeper social and political engagement.

But participants must understand that the social and political context in which this march takes place means that it cannot produce the outcomes intended by its organizers. The officially nonpartisan march embodies in miniature the larger challenges that confront the scientific enterprise in its relationship with a society that’s undergoing profound and often distressing changes.

Let’s start by looking at what the largest representative of the scientific community, the American Association for the Advancement of Science, intends by endorsing the march. According to the AAAS’s statement of support, the march will help:

…  protect the rights of scientists to pursue and communicate their inquiries unimpeded, expand the placement of scientists throughout the government, build public policies upon scientific evidence, and support broad educational efforts to expand public understanding of the scientific process.

In other words, scientists want support for instructing—not involving—the public in the scientific process, a greater influence on policymaking, and no political accountability. That’s a pretty audacious power play, and it’s easy to see how critics might cast the march’s intent as a privileged group seeking to protect and enhance its privileges. The thing is, they wouldn’t be entirely wrong.

As science policy journalist Colin Macilwain points out in Nature, scientists and other members of the technocratic class have generally enjoyed stable, middle-class employment and society’s respect and admiration for most of the past 70 years. They have benefited from scientific and technological progress while mostly remaining insulated from the collateral damage wrought by creative destruction. Federal funding has remained generous under progressive and conservative governments and through economic booms and busts. Scientists possess a variety of relatively comfortable perches from which they can express their ideas and shape public policy.

But there are a lot of people to whom the past seven decades have not been nearly so kind. They’ve struggled to find and keep well-paying jobs in a world in which technological advancement has decoupled economic growth from employment opportunities. They’ve lost a sense of having their voices heard in policymaking, as governance and regulation becomes increasingly complex. To see a select group of people and institutions profit from this complexity has, understandably, bred resentment throughout post-industrial countries.

So what should scientists do to safeguard and support their community instead? A good first step would be to acknowledge the scope and depth of the problem. The biggest issue confronting science is not a malicious and incompetent executive, or a research enterprise that might receive less generous funding than it’s enjoyed in the past. The critical challenge—and one that will still be relevant long after Donald Trump has gone back to making poor real estate decisions—is figuring out how scientists can build an enduring relationship with all segments of the American public, so that discounting, defunding, or vilifying scientists’ important work is politically intolerable.

This does not excuse whatever appalling policies Trump will no doubt seek to implement, against which scientists should speak out forcefully in the language of public values like free speech. They did this successfully against requests for the names of Department of Energy employees who attended U.N. climate talks and the clampdown on federal agencies’ external communications. But over the longer term, scientists need to improve their connection to the public and articulate their importance to society in a way that resonates with all Americans.

Academia can also challenge the insularity of scientific practice (and not just in the sciences). Instead of an overriding focus on publishing and grants, renewed attention to teaching could train more students in academic rigor and critical appraisal of, among other things, the false claims of a populist demagogue. With research universities scattered throughout the country, academics should be incentivized to improve ties with people who might otherwise consider scientists to be condescending eggheads who only give them bad news about the climate or the economy. University medical centers and military bases provide great models for these types of strong local relationships.

Finally, scientists and technologists must also attend to the social implications of their research. This includes anticipating and mitigating the socioeconomic effects of their innovations (here’s looking at you, Silicon Valley) by allocating resources to address problems they may exacerbate, such as inequality and job loss. The high-level discussion around CRISPR, the revolutionary gene-editing technology, is a good example of both the opportunity for and difficulty of responsible innovation. This process might be made more effective by bringing the public into scientific practice and policymaking using the tools of citizen science and deliberative democracy, rather than simply telling people what scientists are doing or explaining what policymakers have already decided.

If you have the time, please read Lloyd’s piece in its entirety. The piece has certainly generated a fair number of comments (121 when I last looked).

I have run a couple of posts which feature some well-meaning advice for our southern neighbours from Canadians along with my suggestion that they might not be as helpful as we hope.

Jan. 27, 2017 posting (scroll down past the internship announcement, about 15% of the way down)

Feb. 13, 2017 posting

Blood, memristors, cyborgs plus brain-controlled computers, prosthetics, and art

The memristor, a circuit element that quite interests me [April 7, 2010 posting], seems to be moving from being a purely electrical engineering term to one that’s used metaphorically to describe biological processes in a way that is transforming my understanding of machine/human (and other animal) interfaces from a science fiction concept to reality.

March 2, 2011 Kate McAlpine wrote an article for the New Scientist which suggested that skin has memristive properties while noting that the same has been said of the brain. From Sweat ducts make skin a memristor,

Synapses, junctions between neurons in the brain, display electrical behaviour that depends on past activity and are said to behave like memristors. This has raised the prospect of using memristors as the basis of an artificial brain.

Now, by re-examining data from the early 1980s on the electrical conductivity of human skin in response to various voltages, Gorm Johnsen and his colleagues at the University of Oslo in Norway have uncovered a more prosaic example of memristive behaviour in nature.

They found that when a negative electrical potential is applied to skin on various parts of the arm, creating a current, that stretch of skin exhibits a low resistance to a subsequent current flowing through the skin. But if the first potential is positive relative to the skin, then a subsequent potential produces a current that meets with a much higher resistance. In other words, the skin has a memory of previous currents. The finding is due to be published in Physical Review E.
The researchers attribute skin’s memristor behaviour to sweat pores.

More recently, there’s been some excitement about a research team in India that’s working with blood so they can eventually create a ‘liquid memristor’. Rachel Courtland wrote a brief item on the ‘blood memristor’ on April 1, 2011 for the IEEE Tech Talk blog,

S.P. Kosta of the Education Campus Changa in Gujarat, India and colleagues have published a paper in the International Journal of Medical Engineering and Informatics showing that human blood changes its electrical resistance depending on how much voltage is applied. It also seems to retain memory of this resistance for at least five minutes.

The team says that makes human blood a memristor: the fourth in the family of fundamental circuit elements that includes the resistor, the capacitor, and the inductor. Proposed in 1971, the memristor’s existence wasn’t proven until 2008, when HP senior fellow Stanley Williams and colleagues demonstrated a memristor device made of doped titanium dioxide.

There was also a March 30, 2011 news item about the Indian research titled, Blood simple circuitry for cyborgs, on Nanowerk, which provided this information,

They [the research team] constructed the laboratory-based biological memristor using a 10 ml test tube filled with human blood held at 37 Celsius into which two electrodes are inserted; appropriate measuring instrumentation was attached. The experimental memristor shows that resistance varies with applied voltage polarity and magnitude and this memory effect is sustained for at least five minutes in the device.

Having demonstrated memristor behavior in blood, the next step was to test that the same behavior would be observed in a device through which blood is flowing. This step was also successful. The next stage will be to develop a micro-channel version of the flow memristor device and to integrate several to carry out particular logic functions. This research is still a long way from an electronic to biological interface, but bodes well for the development of such devices in the future.

Kit Eaton in an April 4, 2011 article (Electronics Made from Human Blood Cells Suggest Cyborg Interfaces, Spark Nightmares) on the Fast Company website gives more details about possible future applications,

Ultimately, the fact that a biological system could be used to interact with a hard semiconductor system could revolutionize biomechanics. That’s because wiring devices like cochlear implants, nerve-triggered artificial limbs and artificial eyeballs into the body at the moment involves a terribly difficult integration of metal wiring–with all the associated risk of infection and rejection. Plus it’s really a very promising first step toward making a cyborg. Countdown to military interest in this tech in 5…4…3…

It should be noted that the team in India is working towards applications in neuroprosthetics. As for the Norwegian team with their ‘sweat duct/skin memristor’, the article did not specify what types of applications, if any, their work might lead to.

As evidenced by the research covered in these news items, the memristor seems to be drifting or, more accurately, developing a second identity/ghost identity as the term is applied to biological processes.

The body as a machine is a notion that’s been around for a while as has the notion of combining the two. The first notion is a metaphor while the second is a staple in science fiction which, in a minor way, has found a home in the real life practice of body hacking where someone implants a magnetic or computer chip into their body (my May 27, 2010 posting). So the memristor becoming a metaphor for certain biological processes doesn’t seem something new but rather the next step in a process that’s well on its way.

Two students at Ryerson University (Toronto, Canada) recently announced that they had developed a brain-controlled prosthetic. From the March 30, 2011 news item on Nanowerk,

Two Ryerson University undergraduate biomedical engineering students are changing the world of medical prosthetics with a newly developed prosthetic arm that is controlled by brain signals. The Artificial Muscle-Operated (AMO) Arm not only enables amputees more range of movement as compared to other prosthetic arms but it allows amputees to avoid invasive surgeries and could potentially save hundreds of thousands of dollars. The AMO Arm is controlled by the user’s brain signals and is powered by ‘artificial muscles’ – simple pneumatic pumps and valves – to create movements. In contrast, traditional prosthetic limbs – which typically offer more limited movements – rely on intricate and expensive electrical and mechanical components.

Developed by third-year student Thiago Caires and second-year student Michal Prywata, the AMO Arm is controlled by the brain and uses compressed air as the main source of power. The digital device makes use of signals in the brain that continue to fire even after a limb is amputated. Users wear a head-set that senses a signal – for example, the thought “up” – and sends it wirelessly to a miniature computer in the arm. The computer then compares the signal to others in a database. The resulting information is sent to the pneumatic system, which in turn, activates the arm to create the correct movement. Simulating the expansion and contraction of real muscles, the system makes use of compressed air from a small, refillable tank in the user’s pocket.

I think what they mean is that the components are not traditionally electrical and mechanical but in fact informed by emerging technologies and the science that supports them. After all, the computer must run on some kind of electricity and brain activity (wireless signals from the brain will be controlling the prosthetic) is often described as electrical. The result is that the human and the machine are effectively made one since the prosthetic arm is controlled as if it were ‘biological’ arm.

On another part of the spectrum, Iraqui artist Wafaa Bilal made headlines recently when he had a camera implanted into the back of his head creating a third eye. Designed to be a one year project, the artist had to remove the camera when he developed an infection at the site of one of the metal posts used to anchor the camera to his head. From the Feb. 11, 2011 BBC news item,

An artist who had a camera implanted into the back of his head has been forced to remove it after his body rejected part of the device.

Iraqi-born Wafaa Bilal had surgery last week to remove one of three posts holding the camera in place as it posed a risk of infection.

The camera had been taking a photo every minute as part of a year-long project.

Wafaa Bilal and camera (image downloaded from BBC website)

(The artist would like to try it again but, in the meantime, has slung the camera around his neck as a substitute.)

In Bilal’s case, the body is being significantly altered as the machine (camera) is implanted in a place (back of head) where no animal has them located.

What I’m getting at with all of this is that at the same time we seem to be expanding the memristor’s meaning from a term used to describe a concept in electrical engineering to include biological processes, we are exploring new ways of integrating machinery into our bodies. In effect our relationships to our bodies and machines are changing and that change can be traced in the language we use to describe ourselves.
 

Walking on eggshells? and sunshine too?

Tissue scaffolding, egg shells, and nanostructures all come together in work being done by Ryerson University (Toronto, Ontario, Canada) researchers Bo Tan and Krishnan Venkatakrishnan. From the Feb. 28, 2011 news item on physorg.com,

… Venkatakrishnan and Tan first began studying nanostructures within micro-electronics. More recently, though, the researchers have started developing nanostructures using a variety of materials.

One example: the pair’s research on eggshell-based nanostructures – co-authored with Ryerson PhD candidate Amirhossein Tavangar – was published last month in the Journal of Nanobiotechnology. But eggshells aren’t the only materials that can support nanostructures; bones and other natural bio-materials are also being studied in Venkatakrishnan and Tan’s lab.

Typically, fragile ceramics or rigid polymers are used in surgery to fix broken, old or cancer-damaged bones. Nanostructures embedded within actual bones, however, offer a better solution and can help “glue” deteriorated or fragmented bones back together. Through a biomedical process called tissue scaffolding, a porous, artificially created material is used to simulate real tissue and stimulate new bone growth in the body – something that other grafting materials are limited in their capacity to do.

This couple (partners in research and in life) are also working on solar energy panels and water quality monitoring as part of their investigations into nanostructures. I recommend reading this article for a good general introduction about how multidisciplinary research on nanostructures can be applied to many fields.

After writing my headline about “walking on eggshells” I was reminded of a song, “Walking on Sunshine” by Katrina and the Waves. Enjoy a happy weekend,