Tag Archives: Sally Tinkle

US National Nanotechnology Initiative reports on last year’s recommendations

Richard M. Jones at the American Institute of Physics (AIP) reports in a Dec. 9, 2011 article in the AIP Bulletin no. 145,

Members of the President’s Council of Advisors on Science and Technology [PCAST] were briefed last month on the implementation of the council’s recommendations regarding the National Nanotechnology Initiative (NNI).  Now in its tenth year, federal agencies participating in the NNI expend about $2 billion per year, having spent a cumulative $14 billion on nanotechnology R&D since its inception.

Jones summarized the presentations (here’s a sampling),

Sally Tinkle, Deputy Director of the National Nanotechnology Coordination Office was the first of four speakers in this sixty-minute briefing. … As examples, she described an increase in the number of public-private partnerships (citing examples from the NIH and NIST), outreach to states (including a full-time employee dedicated to this effort), interactions with officials from the European Union,  better information dissemination programs, and research on health, environmental, safety, ethical, and legal matters.  …

Carlos Pena, Director of Emerging Technology at the Office of Science and Health Coordination of the Food and Drug Administration was the second speaker. He described FDA’s efforts to carefully protect human health while fostering the development of nanotechnology, using science-based decision making. Among those steps it has taken is increasing training of its staff and improved coordination and cooperation with other agencies. …

Other topics covered in a concluding question-and-answer period included monthly inter-agency briefings, meetings with the European Union, products awaiting FDA approval, federal agency funding collaborations, the desirability of a multi-agency roadmap to support further development of nanotechnology, the engagement of nongovernmental stakeholders, and computational support.

You can access the webcast, briefing materials, minutes, etc. from the Nov. 2, 2011 meeting here.

You can view the webcast here.

What I find most interesting is that this particular US government administration is making a big effort at offering access and information about science matters. It seems strange to me that I rarely come across similar information from the Canadian government, which makes no great effort to let us know about their (it is most definitely theirs and not ours) science.

More on US National Nanotechnology Initiative (NNI) and EHS research strategy

In my Oct, 18, 2011 posting I noted that the US National Nanotechnology Initiative (NNI) would be holding a webinar on Oct. 20, 2011 to announce an environmental, health, and safety (EHS) research strategy for federal agencies participating in the NNI. I also noted that I was unable to register for the event. Thankfully all is not lost. There are a couple of news items on Nanowerk which give some information about the research strategy. The first news item, U.S. government releases environmental, health, and safety research strategy for nanotechnology, from the NNI offers this,

The strategy identifies six core categories of research that together can contribute to the responsible development of nanotechnology: (1) Nanomaterial Measurement Infrastructure, (2) Human Exposure Assessment, (3) Human Health, (4) Environment, (5) Risk Assessment and Risk Management, and (6) Informatics and Modeling. The strategy also aims to address the various ethical, legal, and societal implications of this emerging technology. Notable elements of the 2011 NNI EHS Research Strategy include:

  • The critical role of informatics and predictive modeling in organizing the expanding nanotechnology EHS knowledge base;
  • Targeting and accelerating research through the prioritization of nanomaterials for research; the establishment of standardized measurements, terminology, and nomenclature; and the stratification of knowledge for different applications of risk assessment; and
  • Identification of best practices for the coordination and implementation of NNI interagency collaborations and industrial and international partnerships. “The EHS Research Strategy provides guidance to all the Federal agencies that have been producing gold-standard scientific data for risk assessment and management, regulatory decision making, product use, research planning, and public outreach,” said Dr. Sally Tinkle, NNI EHS Coordinator and Deputy Director of the National Nanotechnology Coordination Office (NNCO), which coordinates activities of the 25 agencies that participate in the NNI. “This continues a trend in this Administration of increasing support for nanotechnology-related EHS research, as exemplified by new funding in 2011 from the Food and Drug Administration and the Consumer Product Safety Commission and increased funding from both the Environmental Protection Agency and the National Institute of Occupational Safety and Health within the Centers for Disease Control and Prevention.”

The other news item, Responsible development of nanotechnology: Maximizing results while minimizing risk, from Sally Tinkle, Deputy Director of the National Nanotechnology Coordination Office and Tof Carim, Assistant Director for Nanotechnology at OSTP (White House Office of Science and Technology Policy) adds this,

Core research areas addressed in the 2011 strategy include: nanomaterial measurement, human exposure assessment, human health, environment, risk assessment and management, and the new core area of predictive modeling and informatics. Also emphasized in this strategy is a more robust risk assessment component that incorporates product life cycle analysis and ethical, legal, and societal implications of nanotechnology. Most importantly, the strategy introduces principles for targeting and accelerating nanotechnology EHS research so that risk assessment and risk management decisions are based on sound science.

Progress in EHS research is occurring on many fronts as the NNI EHS research agencies have joined together to plan and fund research programs in core areas. For example, the Food and Drug Administration and National Institutes of Health have researched the safety of nanomaterials used in skin products like sunscreen; the Environmental Protection Agency and Consumer Product Safety Commission are monitoring the health and environmental impacts of products containing silver nanoparticles, and National Institute of Occupational Safety and Health has recommended safe handling guidelines for workers in industries and laboratories.

Erwin Gianchandani of the Computing Community Consortium blog focuses, not unnaturally, on the data aspect of the research strategy in his Oct. 20, 2011 posting titled, New Nanotechnology Strategy Touts Big Data, Modeling,

From the EHS Research Strategy:

Expanding informatics capabilities will aid development, analysis, organization, archiving, sharing, and use of data that is acquired in nanoEHS research projects… Effective management of reliable, high-quality data will also help support advanced modeling and simulation capabilities in support of future nanoEHS R&D and nanotechnology-related risk management.

Research needs highlighted span “Big Data”…

Data acquisition: Improvements in data reliability and reproducibility can be effected quickly by leveraging the widespread use of wireless and video-enabled devices by the public and by standards development organizations to capture protocol detail through videos…

Data analysis: The need for sensitivity analysis in conjunction with error and uncertainty analysis is urgent for hazard and exposure estimation and the rational design of nanomaterials… Collaborative efforts in nanomaterial design [will include] curation of datasets with known uncertainties and errors, the use of sensitivity analysis to predict changes in nanomaterial properties, and the development of computational models to augment and elucidate experimental data.

Data sharing: Improved data sharing is a crucial need to accelerate progress in nanoscience by removing the barriers presented by the current “siloed” data environment. Because data must be curated by those who have the most intimate knowledge of how it was obtained and analyzed and how it will be used, a central repository to facilitate sharing is not an optimal solution. However, federating database systems through common data elements would permit rapid semantic search and transparent sharing over all associated databases, while leaving control and curation of the data in the hands of the experts. The use of nanomaterial ontologies to define those data elements together with their computer-readable logical relationships can provide a semantic search capability.

…and predictive modeling:

Predictive models and simulations: The turnaround times for the development and validation of predictive models is measured in years. Pilot websites, applications, and tools should be added to the NCN [Network for Computational Nanotechnology] to speed collaborative code development among relevant modeling and simulation disciplines, including the risk modeling community. The infrastructure should provide for collaborative code development by public and private scientists, code validation exercises, feedback through interested user communities, and the transfer of validated versions to centers such as NanoHUB… Collaborative efforts could supplement nanomaterial characterization measurements to provide more complete sensitivity information and structure-property relationships.

Gianchandani’s post provides an unusual insight into the importance of data where research is considered. I do recommend more of his posting.

Dr. Andrew Maynard on his 2020 Science blog has posted as of Oct. 20, 2011 with a comparison of the original draft to the final report,

Given the comments received, I was interested to see how much they had influenced the final strategy.  If you take the time to comment on a federal document, it’s always nice to know that someone has paid attention.  Unfortunately, it isn’t usual practice for the federal government to respond directly to public comments, so I had the arduous task of carrying out a side by side comparison of the draft, and today’s document.

As it turns out, there are extremely few differences between the draft and the final strategy, and even fewer of these alter the substance of the document.  Which means that, by on large, my assessment of the document at the beginning of the year still stands.

Perhaps the most significant changes were on chapter 6 – Risk Assessment and Risk Management Methods. The final strategy presents a substantially revised set of current research needs, that more accurately and appropriately (in my opinion) reflect the current state of knowledge and uncertainty (page 66).  This is accompanied by an updated analysis of current projects (page 73), and additional text on page 77 stating

“Risk communication should also be appropriately tailored to the targeted audience. As a result, different approaches may be used to communicate risk(s) by Federal and state agencies, academia, and industry stakeholders with the goal of fostering the development of an effective risk management framework.”

Andrew examines the document further,

Comparing the final strategy to public comments from Günter Oberdörster [professor of Environmental Medicine at the University of Rochester in NY state] on the draft document. I decided to do this as Günter provided some of the most specific public comments, and because he is one of the most respected experts in the field.  The specificity of his comments also provided an indication of the extent to which they had been directly addressed in the final strategy.

Andrew’s post is well worth reading especially if you’ve ever made a submission to a public consultation held by your government.

The research strategy and other associated documents are now available for access and the webinar will be available for viewing at a later date. Go here.

Aside, I was a little surprised that I was unable to register to view the webinar live (I wonder if I’ll encounter the same difficulties later). It’s the first time I’ve had a problem viewing any such event hosted by a US government agency.

RTI and nanotechnology regulation

This is a classic public relations ploy: RTI is hosting a workshop of experts to discuss nanotechnology regulation at the National Press Club in Washington, DC on May 4, 2011. From the April 28, 2011 news item on Nanowerk,

Leading experts will gather at the National Press Club in Washington, D.C., May 4 to discuss the challenges of regulating nanotechnologies.

The policy forum, titled Nanotechnology: the Huge Challenge of Regulating Tiny Technologies, will bring together thought leaders who represent public, private and academic communities to discuss the issues, concerns and public policies needed to maximize the benefits of this emerging technology while minimizing the risks and encouraging further development and scientific exploration.

The event, held from 9 to 10:30 a.m., is being hosted by RTI International. Speakers include Michele Ostraat, Ph.D. senior director of the Center for Aerosol and Nanomaterials Engineering at RTI; Sally Tinkle, Ph.D., deputy director, National Nanotechnology Coordination Office; Jim Alwood, Toxic Substances Control Act Nanotechnology Coordinator at the U.S. Environmental Protection Agency; and Cole Matson, Ph.D., executive director at the Center for the Environmental Implications of Nanotechnology at Duke University.

RTI (trade name for Research Triangle Institute) is not a speaker’s agency as you might have thought after reading this item. From RTI’s About page,

RTI International is one of the world’s leading research institutes, dedicated to improving the human condition by turning knowledge into practice. Our staff of more than 2,800 provides research and technical services to governments and businesses in more than 40 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory testing and chemical analysis.

This is really quite well done. It’s being held at an impressive venue, the National Press Club, which associates this event with journalism in a subtle way. Three of the speakers are impressive due to their reputations and association with the National Nanotechnology Coordination Office, the Environmental Protection Agency, and Duke University, respectively. Additionally, someone from RTI is moderating the event and one of their senior directors is a speaker so the event is wrapped within the RTI brand. On a personal note, my hat’s off to whoever organized this panel for managing to get gender parity. That can be tough to achieve when it’s a science-related topic.

If you’re curious about the event you can read more about it here at RTI’s website.

Bumper crop of nano news from NISE Net

The January issue of the NISE Net (Nanoscale Informal Science Education Network) newsletter features information about a new resource for scientists who need to talk or communicate about their work, Mastering Science and Public Presentations is a video. This talk was given by Tim Masters of Spoken Science at Duke University in the summer of 2010.

Larry Bell on his NISE Net blog discusses some of the meetings (National Science Foundation and National Nanotechnology Initiative) he attended in Washington, DC. I found the one about a Periodic Table of Nanoparticles particularly interesting as it includes an image which features the particles in 3 dimensions representing shape, size, and composition.

There’s a very good nanotechnology article by Corinna Wu in the American Association for Engineering Education (ASEE) magazine, PRISM, Peril in Small Places; What dangers lurk in our expanding use of nanotechnology? It does have an ominous title but the writer does a good job of covering the positive and exciting aspects as well as the risks. From the article,

The wonder of nanotechnology is the abundance of materials, devices, and systems made possible by controlling and manipulating matter at the atomic and molecular levels. But with that wonder comes concern that these now ubiquitous nanoparticles could spread new hazardous pollutants that threaten health and the environment. “We’re trying to say, ‘These are new materials. We don’t know if there’s a problem, so let’s ask now,’” says Sally Tinkle, senior science adviser at the National Institute for Environmental Health Sciences, part of the National Institutes of Health. With prodding from the National Research Council and other institutions, inquiry into the health and environmental effects of nanotechnology has gone hand in hand with research on potential applications. The work is interdisciplinary, and engineers play a critical role. By helping to figure out what makes a nanoparticle toxic, they can, for instance, design nanoparticles that kill cancer cells yet don’t harm healthy tissues, or that remove pollutants from soil without poisoning wildlife.

It’s focused on the US scene and, one quibble, I’m not sure about some of the numbers. (For example, Wu gives a value for the number of nanotechnology products on the market but offers no details as to how this number was derived or where it came from.)

There’s a four-part series, Making Stuff, that’s going to be broadcast as part of the NOVA program on PBS. It starts Jan. 19, 2010. From the website,

Invisibility cloaks. Spider silk that is stronger than steel. Plastics made of sugar that dissolve in landfills. Self-healing military vehicles. Smart pills and micro-robots that zap diseases. Clothes that monitor your mood. What will the future bring, and what will it be made of? In NOVA’s four-hour series, “Making Stuff,” popular New York Times technology reporter David Pogue takes viewers on a fun-filled tour of the material world we live in, and the one that may lie ahead. Get a behind-the-scenes look at scientific innovations ushering in a new generation of materials that are stronger, smaller, cleaner, and smarter than anything we’ve ever seen.

Beginning January 19, 2011, NOVA will premiere the new four-hour series on consecutive Wednesday nights at 9 pm ET/PT on PBS (check local listings): “Making Stuff: Stronger, Smaller, Cleaner, Smarter.”

I wonder if they’ve made any changes to the series. After previewing it a few months ago, Andrew Maynard at 2020 Science featured the program in his Nov. 2, 2010 posting and it provoked a bit of a discussion about how to present science. From the posting,

Last week while at the NISE Net network-wide meeting, I was fortunate enough to see a preview of part of NOVA’s forthcoming series Making Stuff. The series focuses on the wonders of modern materials science. But rather than coming away enthralled by the ingenuity of scientists, I found myself breaking out in a cold sweat as I watched something that set my science-engagement alarm-bells ringing: New York Times tech reporter and host David Pogue enthusing about splicing spider genes into a goat so it produces silk protein-containing milk, then glibly drinking the milk while joking about transforming into Spider Man.

I was sitting there thinking, “You start with a spider – not everyone’s favorite creature. And you genetically cross it with a goat – dangerous territory at the best of times. Then you show a middle aged dude drinking the modified milk from a transgenic animal and having a laugh about it. And all this without any hint of a question over the wisdom or ramifications of what’s going on? Man, this is going to go down well!”

Andrew goes on to ask if his reaction was justified. Comments ensued including one from the producer of the series, Chris Schmidt.

Now, the nano haiku. Again this month there are two:

Asian hornets are
powered by nano solar
at the sun’s zenith.

by Frank Kusiak of the Lawrence Hall of Science. This Haiku relates to the BBC article Oriental hornets powered by ‘solar energy’.

After reading about the use of cinnamon in the production of gold nanoparticles, Vrylena Olney got hungry – and creative:

Cinnamon: good for
pumpkin pie, Moroccan stew,
nanoparticles.