Tag Archives: Sand Wars (documentary)

BSB Nanotechnology, silicon dioxide nanoparticles (SiO2), and Dow

Silicon dioxide (a form of silicon) is more commonly known as silica. There are problems with our use of *silica and so it was interesting to see this announcement (from a September 21, 2022 Dow news release on csiwire.com),

MIDLAND, Mich., September 21, 2022 /CSRwire/ – Dow (NYSE: Dow) announced a new engagement with BSB Nanotechnology Joint Stock Company, the world’s first producer of premium rice husk-based specialty silica. Rice husk, a renewable resource produced as a waste product of rice milling, is used for a plethora of diverse applications in the personal care market. This engagement helps accelerate Dow’s commitment towards a bio-based offering. The newly added ingredient – sold under the Dow trademark EcoSmooth™ Rice Husk Cosmetic Powder – delivers optical benefits and a unique sensorial experience for consumers in skin care, hair care and color cosmetic applications.

“Dow’s partnership with BSB Nanotechnology shines a light on how we continue to deliver on our commitment to transition towards a circular and low-carbon personal care offering while fostering valuable relationships with industry trailblazers,” said Isabel Almiro do Vale, global marketing and strategy director for Dow Personal Care. “This partnership is another significant milestone allowing Dow to expand its portfolio of products that enable eco-conscious claims, prioritizing solutions that deliver high-quality, benefits backed by science.”

The product of choice for the eco-conscious consumer, the EcoSmooth™ Rice Husk Cosmetic Powder is the exclusive ingredient to make its debut between the two parties. Compiled from non-GMO natural sources, this silica powder is upcycled from rice husk, a by-product from agriculture. It delivers a smooth feel combined with optical benefits like blurring imperfections and mattifying skin.

“This agreement signifies not only the first step towards a collaboration between Dow and BSB in the personal care sector but has also opened new pathways to other business sectors within Dow where BSB’s bio-based rice husk silica can offer sustainability and multifunctionality,” said Hung Nguyen, CEO of BSB. “BSB will continue to create more innovative and green solutions for the world and offer these additives through global partners like Dow.”

About Dow Personal Care Solutions

Dow Personal Care offers unique, innovative ingredients that empower customers around the world to create products with exceptional performance and exciting benefits that consumers can trust and believe in. Consumers that seek the confidence of a healthy appearance can see and feel the difference in our products through their lustrous hair or radiant and protected skin. We leverage our understanding of customer needs, deep market knowledge and technical expertise—combined with one of the broadest portfolios of technologies—to deliver personal care solutions with outstanding performance that are safe for people and the planet. We foster these innovations on global and local levels to meet the needs of diverse consumers through business centers, research and development (R&D), manufacturing plants and customer applications centers around the world. Please visit for more information.

About Dow

Dow (NYSE: DOW) combines global breadth; asset integration and scale; focused innovation and materials science expertise; leading business positions; and environmental, social and governance (ESG) leadership to achieve profitable growth and deliver a sustainable future. The Company’s ambition is to become the most innovative, customer centric, inclusive and sustainable materials science company in the world. Dow’s portfolio of plastics, industrial intermediates, coatings and silicones businesses delivers a broad range of differentiated, science-based products and solutions for its customers in high-growth market segments, such as packaging, infrastructure, mobility and consumer applications. Dow operates 104 manufacturing sites in 31 countries and employs approximately 35,700 people. Dow delivered sales of approximately $55 billion in 2021. References to Dow or the Company mean Dow Inc. and its subsidiaries. For more information, please visit www.dow.com or follow @DowNewsroom on Twitter.

About BSB Nanotechnology

BSB Nanotechnology Joint Stock Company, an established multi-faceted business, forayed into the rice world through the formulation of rice-based milk, a widely popular beverage in Vietnam. Strategically located in the Mekong Delta, the rice basket of Vietnam, BSB Nanotech taps into the country’s position as the 5th largest rice producer to access the main ingredient to its healthy beverage product. While feeding this nutritious gift of nature to the people of Vietnam, BSB Nanotech was presented with large amounts of rice husk, a waste product of rice milling. Building upon the business principle of reducing waste by reuse, BSB Nanotech has embarked on a journey to discover and create the value that rice husk could offer through its range of premium rice husk silica under the brand Biosilico. For more information, visit www.biosilico.vn .

I’m quite taken with BSB Nanotechnology’s Biosilico About page,

THE JOURNEY FROM ASH TO CASH

BSB Nanotechnology Joint Stock Company, an established multi-faceted business, forayed into the rice world through the formulation of rice-based milk, a widely popular beverage in Vietnam. Strategically located in the Mekong Delta, the rice basket of Vietnam, BSB Nanotech taps into the country’s  position as the 5th largest rice producer to access the main ingredient to its healthy beverage product. While feeding this nutritious gift of nature to the people of Vietnam, BSB Nanotech was presented with large amounts of rice husk, a waste product of rice milling. Building upon the business principle of reducing waste by reuse, BSB Nanotech has embarked on a journey to discover the value that rice husk could offer.

In the attempt to derive by-products from rice husk, BSB Nanotech learns that the most significant value held within rice husk ash is the high content of naturally present silica. Currently, sand and quartz are the only other naturally occurring silica sources. However, extracting silica from sand and quartz not only causes health hazards, but sand mining by itself presents a huge ecological and sociological problem. The utilization of rice husk ash to produce nanoporous silica is a positive step towards both a bio-based and circular economy, as ultrafine silica/nanosilica can be manufactured from this renewable resource and agricultural waste.

After 4 years of extensive research and development, a highly dedicated team of researchers of BSB Nanotech has successfully harnessed amorphous silica in its highest purity and quality from this waste material using a unique and patented technology. A new bio-based nanoporous silica under the BIOSILICO brand is now commercially available and can be customized to suit an array of applications.

OUR PROMISE TODAY FOR A BETTER TOMORROW

Today, BSB Nanotech is recognized as the world’s first producer of rice husk based nanoporous silica on a commercial scale. We are currently working with several global partners to expand the range of BIOSILICO’s applications from the Paints and Coatings to Rubber additives and Cosmetics industries.

To ensure that our products are delivered with its promised quality and committed schedule, BSB Nanotech undertook rigorous training and auditing to refine its operation, and production process and documentation to achieve the ISO [International Standards Organisation] QMS certification in 2020.

The company has embarked on a roadmap to become a global producer and developer of rice husk based nanoporous silica in both production volume and diverse applications.

Untitled.png

Maybe one of these days we’ll see BSB Nanotechnology at the annual Zero Waste Conference held here in Vancouver (Canada) during the autumn.

*See my July 10, 2014 posting scroll down [about 10%] to the University of California at Riverside news release for difficulties of working with silicon at the nanoscale, then scroll down about 40% to the discussion of Sand Wars, a documentary about how our appetite for silica (silicon dioxide) is depleting our beaches of sand.*

Sand and nanotechnology

There’s some good news coming out of the University of California, Riverside regarding sand and lithium-ion (li-ion) batteries, which I will temper with some additional information later in this posting.

First, the good news is that researchers have a new non-toxic, low cost way to produce a component in lithium-ion (li-ion) batteries according to a July 8, 2014 news item on ScienceDaily,

Researchers at the University of California, Riverside’s Bourns College of Engineering have created a lithium ion battery that outperforms the current industry standard by three times. The key material: sand. Yes, sand.

“This is the holy grail — a low cost, non-toxic, environmentally friendly way to produce high performance lithium ion battery anodes,” said Zachary Favors, a graduate student working with Cengiz and Mihri Ozkan, both engineering professors at UC Riverside.

The idea came to Favors six months ago. He was relaxing on the beach after surfing in San Clemente, Calif. when he picked up some sand, took a close look at it and saw it was made up primarily of quartz, or silicon dioxide.

His research is centered on building better lithium ion batteries, primarily for personal electronics and electric vehicles. He is focused on the anode, or negative side of the battery. Graphite is the current standard material for the anode, but as electronics have become more powerful graphite’s ability to be improved has been virtually tapped out.

A July 8, 2014 University of California at Riverside news release by Sean Nealon, which originated the news item, describes some of the problems with silicon as a replacement for graphite and how the researchers approached those problems,

Researchers are now focused on using silicon at the nanoscale, or billionths of a meter, level as a replacement for graphite. The problem with nanoscale silicon is that it degrades quickly and is hard to produce in large quantities.

Favors set out to solve both these problems. He researched sand to find a spot in the United States where it is found with a high percentage of quartz. That took him to the Cedar Creek Reservoir, east of Dallas, where he grew up.

Sand in hand, he came back to the lab at UC Riverside and milled it down to the nanometer scale, followed by a series of purification steps changing its color from brown to bright white, similar in color and texture to powdered sugar.

After that, he ground salt and magnesium, both very common elements found dissolved in sea water into the purified quartz. The resulting powder was then heated. With the salt acting as a heat absorber, the magnesium worked to remove the oxygen from the quartz, resulting in pure silicon.

The Ozkan team was pleased with how the process went. And they also encountered an added positive surprise. The pure nano-silicon formed in a very porous 3-D silicon sponge like consistency. That porosity has proved to be the key to improving the performance of the batteries built with the nano-silicon.

Now, the Ozkan team is trying to produce larger quantities of the nano-silicon beach sand and is planning to move from coin-size batteries to pouch-size batteries that are used in cell phones.

The research is supported by Temiz Energy Technologies. The UCR Office of Technology Commercialization has filed patents for inventions reported in the research paper.

Here’s a link to and a citation for the research paper,

Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries by Zachary Favors, Wei Wang, Hamed Hosseini Bay, Zafer Mutlu, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, & Cengiz S. Ozkan. Scientific Reports 4, Article number: 5623 doi:10.1038/srep05623 Published 08 July 2014

While this is good news, it does pose a conundrum of sorts. It seems that supplies of sand are currently under siege. A documentary, Sand Wars (2013) lays out the issues (from the Sand Wars website’s Synopsis page),

Most of us think of it as a complimentary ingredient of any beach vacation. Yet those seemingly insignificant grains of silica surround our daily lives. Every house, skyscraper and glass building, every bridge, airport and sidewalk in our modern society depends on sand. We use it to manufacture optical fiber, cell phone components and computer chips. We find it in our toothpaste, powdered foods and even in our glass of wine (both the glass and the wine, as a fining agent)!

Is sand an infinite resource? Can the existing supply satisfy a gigantic demand fueled by construction booms?  What are the consequences of intensive beach sand mining for the environment and the neighboring populations?

Based on encounters with sand smugglers, barefoot millionaires, corrupt politicians, unscrupulous real estate developers and environmentalists, this investigation takes us around the globe to unveil a new gold rush and a disturbing fact: the “SAND WARS” have begun.

Dr. Muditha D Senarath Yapa of John Keells Research at John Keells Holdings comments on the situation in Sri Lanka in his June 22, 2014 article (Nanotechnology – Depleting the most precious minerals for a few dollars) for The Nation,

Many have written for many years about the mineral sands of Pulmoddai. It is a national tragedy that for more than 50 years, we have been depleting the most precious minerals of our land for a few dollars. There are articles that appeared in various newspapers on how the mineral sands industry has boomed over the years. I hope the readers understand that it only means that we are depleting our resources faster than ever. According to the Lanka Mineral Sands Limited website, 90,000 tonnes of ilmenite, 9,000 tonnes of rutile, 5,500 tonnes of zircon, 100 tonnes of monazite and 4,000 tonnes of high titanium ilmenite are produced annually and shipped away to other countries.

… It is time for Sri Lanka to look at our own resources with this new light and capture the future nano materials market to create value added materials.

It’s interesting that he starts with the depletion of the sands as a national tragedy and ends with a plea to shift from a resource-based economy to a manufacturing-based economy. (This plea resonates strongly here in Canada where we too are a resource-based economy.)

Sidebar: John Keells Holdings is a most unusual company, from the About Us page,

In terms of market capitalisation, John Keells Holdings PLC is one of the largest listed conglomerate on the Colombo Stock Exchange. Other measures tell a similar tale; our group companies manage the largest number of hotel rooms in Sri Lanka, own the country’s largest privately-owned transportation business and hold leading positions in Sri Lanka’s key industries: tea, food and beverage manufacture and distribution, logistics, real estate, banking and information technology. Our investment in Sri Lanka is so deep and widely diversified that our stock price is sometimes used by international financial analysts as a benchmark of the country’s economy.

Yapa heads the companies research effort, which recently celebrated a synthetic biology agreement (from a May 2014 John Keells news release by Nuwan),

John Keells Research Signs an Historic Agreement with the Human Genetics Unit, Faculty of Medicine, University of Colombo to establish Sri Lanka’s first Synthetic Biology Research Programme.

Getting back to sand, these three pieces, ‘sand is good for li-ion batteries’, ‘sand is a diminishing resource’, and ‘let’s stop being a source of sand for other countries’ lay bare some difficult questions about our collective future on this planet.