Tag Archives: São Paulo Research Foundation (FAPESP)

Adding as little as 0.1% of rosmarinic acid reduced amount of sunscreen needed to protect skin and more

Since metallic nanoparticles are now pretty much accepted as being relatively safe ingredients, I don’t write about sunscreens very often anymore. Of course metallic nanoparticles had to be rebranded as ‘minerals’ after some civil society groups raised a great fuss. (See my February 9, 2012 posting “Unintended consequences: Australians not using sunscreens to avoid nanoparticles?” for a rundown of the situation.)

This April 5, 2023 news item about a different kind of sunscreen ingredient on phys.org caught my eye,

An article published in the journal Cosmetics reports an investigation of the effects of including rosmarinic acid, an active antioxidant, in a sunscreen along with two conventional ultraviolet light filters, ethylhexyl methoxycinnamate (against UVB) and avobenzone (against UVA).

They don’t seem to have tested this new ingredient in any ‘mineral’ sunscreens but it seems an intriguing possibility. Here’s more about rosmarinic acid and why it may be a good addition to sunscreens from an April 5, 2023 Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation; FAPESP) press release (also on EurekAlert), which originated the news item, Note: Links have been removed)

The research group increased the sunscreen’s photoprotective efficacy by adding rosmarinic acid at 0.1%, a very small proportion compared with those of conventional UV filters. They believe their findings suggest that incorporating natural molecules with antioxidant activities into sunscreens could decrease the proportion of conventional UV filters in the final product, with the advantage of providing other functional properties.

The product’s performance improved without the need to increase active principle levels, reducing both the amount of sunscreen needed to protect the same skin area and the volume of synthetic chemicals discharged into the environment.

In vitro and clinical trials obtained a 41% increase in sun protection factor (SPF). The higher the SPF, the more sunburn protection increases.

Another advantage of including rosmarinic acid was the addition of antioxidant activity to photoprotection so that the product could be used in antiaging cosmetics, for example.

“Our research on photoprotective systems aims primarily to evaluate potential sunscreen enhancement strategies. We’re interested above all in discovering ways to increase sunburn protection while also improving the stability of the product so that it remains safe and effective for longer,” said pharmaceutical scientist and biochemist André Rolim Baby, last author of the article and a professor at the University of São Paulo’s School of Pharmaceutical Sciences (FCF-USP) in Brazil.

“We’re also looking for products or systems with less environmental impact and ways of reducing the concentration of conventional filters by including natural ingredients that enhance the formulation. And we’re very interested in mapping other cosmetic properties of photoprotective molecules, such as anti-free radical action and protection of biomarkers in the outermost skin layers.”

Multifunctional compound

The investigation was part of a project supported by FAPESP to map chemopreventive properties of various UV filters.

In addition to being an antioxidant, rosmarinic acid, a natural polyphenol antioxidant found in rosemary, as well as sage, peppermint and many other herbal plants, has antiviral, anti-inflammatory, immunomodulatory, antibiotic and anticancer properties.

In a review article published in 2022 in the journal Nutrients, the research group highlighted the beneficial effects of rosmarinic acid as a food supplement, such as improvement in skin firmness and wrinkle reduction.

“In another investigation, we found potential benefits of rosmarinic acid for skin surface hydration, reinforcing the need for more research on the substance in the field of cosmetology,” Baby said.

Here’s a link to and a citation for the research team’s latest paper,

Photoprotective Efficacy of the Association of Rosmarinic Acid 0.1% with Ethylhexyl Methoxycinnamate and Avobenzone by Maíra de Oliveira Bispo, Ana Lucía Morocho-Jácome, Cassiano Carlos Escudeiro, Renata Miliani Martinez, Claudinéia Aparecida Sales de Oliveira Pinto, Catarina Rosado, Maria Valéria Robles Velasco and André Rolim Baby. Cosmetics 2023, 10(1), 11; https://doi.org/10.3390/cosmetics10010011 Published: 5 January 2023 (This article belongs to the Special Issue Feature Papers in Cosmetics in 2022)

This paper is open access.

Optical fibers made from marine algae

Apparently after you’ve finished imaging with your marine algae-based optical fibers, you can eat them. A July 24, 2020 news item on Nanowerk announces the new research,

An optical fiber made of agar has been produced at the University of Campinas (UNICAMP) in the state of São Paulo, Brazil. This device is edible, biocompatible and biodegradable. It can be used in vivo for body structure imaging, localized light delivery in phototherapy or optogenetics (e.g., stimulating neurons with light to study neural circuits in a living brain), and localized drug delivery.

Another possible application is the detection of microorganisms in specific organs, in which case the probe would be completely absorbed by the body after performing its function.

Caption: Edible, biocompatible and biodegradable, these fibers have potential for various medical applications. Credit: Eric Fujiwara

A July 24, 2020 Fundação de Amparo à Pesquisa dFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) do Estado de São Paulo press release on EurekAlert, which originated the news item, provides a few more details about the researches and the work,

The research project, which was supported by São Paulo Research Foundation – FAPESP, was led by Eric Fujiwara, a professor in UNICAMP’s School of Mechanical Engineering, and Cristiano Cordeiro, a professor in UNICAMP’s Gleb Wataghin Institute of Physics, in collaboration with Hiromasa Oku, a professor at Gunma University in Japan.

An article on the study is published) in Scientific Reports, an online journal owned by Springer Nature.

Agar, also called agar-agar, is a natural gelatin obtained from marine algae. Its composition consists of a mixture of two polysaccharides, agarose and agaropectin. “Our optical fiber is an agar cylinder with an external diameter of 2.5 millimeters [mm] and a regular inner arrangement of six 0.5 mm cylindrical airholes around a solid core. Light is confined owing to the difference between the refraction indices of the agar core and the airholes,” Fujiwara told.

“To produce the fiber, we poured food-grade agar into a mold with six internal rods placed lengthwise around the main axis,” he continued. “The gel distributes itself to fill the available space. After cooling, the rods are removed to form airholes, and the solidified waveguide is released from the mold. The refraction index and geometry of the fiber can be adapted by varying the composition of the agar solution and mold design, respectively.”

The researchers tested the fiber in different media, from air and water to ethanol and acetone, concluding that it is context-sensitive. “The fact that the gel undergoes structural changes in response to variations in temperature, humidity and pH makes the fiber suitable for optical sensing,” Fujiwara said.

Another promising application is its simultaneous use as an optical sensor and a growth medium for microorganisms. “In this case, the waveguide can be designed as a disposable sample unit containing the necessary nutrients. The immobilized cells in the device would be optically sensed, and the signal would be analyzed using a camera or spectrometer,” he said.

###

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

As per my usual practice, here’s a link to and a citation for the paper,

Agarose-based structured optical fibre by Eric Fujiwara, Thiago D. Cabral, Miko Sato, Hiromasa Oku & Cristiano M. B. Cordeiro. Scientific Reports volume 10, Article number: 7035 (2020) DOI: https://doi.org/10.1038/s41598-020-64103-3 Published: 27 April 2020

This paper is open access.

Should you have a problem accessing the English language version of the FAPESP website, the Portuguese language version of the site seems more accessible (assuming you have the language skills).

Proposed nanodevice made possible by particle that is its own antiparticle (Majorana particle)

I’m not sure how much the mystery of Ettore Majorana’s disappearance in 1938 has to do with the latest research from Brazil on Majorana particles but it’s definitely fascinating,. From an April 6, 2018 news item on ScienceDaily,

In March 1938, the young Italian physicist Ettore Majorana disappeared mysteriously, leaving his country’s scientific community shaken. The episode remains unexplained, despite Leonardo Scascia’s attempt to unravel the enigma in his book The Disappearance of Majorana (1975).

Majorana, whom Enrico Fermi called a genius of Isaac Newton’s stature, vanished a year after making his main contribution to science. In 1937, when he was only 30, Majorana hypothesized a particle that is its own anti-particle and suggested that it might be the neutrino, whose existence had recently been predicted by Fermi and Wolfgang Pauli.

Eight decades later, Majorana fermions, or simply majoranas, are among the objects most studied by physicists. In addition to neutrinos — whose nature, whether or not they are majoranas, is one of the investigative goals of the mega-experiment Dune — another class not of fundamental particles but of quasi-particles or apparent particles has been investigated in the field of condensed matter. These Majorana quasi-particles can emerge as excitations in topological superconductors.

An April 6, 2018 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) press release on EurekAlert, which originated the news item,  reveals more about the Brazilian research (Note: Links have been removed),

A new study by PhD student Luciano Henrique Siliano Ricco with a scholarship from the São Paulo Research Foundation – FAPESP, in collaboration with his supervisor Antonio Carlos Ferreira Seridonio and others, was conducted on the Ilha Solteira campus of São Paulo State University (UNESP) in Brazil and described in an article in Scientific Reports.

“We propose a theoretical device that acts as a thermoelectric tuner – a tuner of heat and charge – assisted by Majorana fermions,” Seridonio said.

The device consists of a quantum dot (QD), represented in the Figure A by the symbol ε1. QDs are often called “artificial atoms.” In this case, the QD is located between two metallic leads at different temperatures.

The temperature difference is fundamental to allowing thermal energy to flow across the QD. A quasi-one-dimensional superconducting wire – called a Kitaev wire after its proponent, Russian physicist Alexei Kitaev, currently a professor at the California Institute of Technology (Caltech) in the US – is connected to the QD.

In this study, the Kitaev wire was ring- or U-shaped and had two majoranas (η1 and η2) at its edges. The majoranas emerge as excitations characterized by zero-energy modes.

“When the QD is coupled to only one side of the wire, the system behaves resonantly with regard to electrical and thermal conductance. In other words, it behaves like a thermoelectric filter,” said the principal investigator for the FAPESP fellowship.

“I should stress that this behavior as a filter for thermal and electrical energy occurs when the two majoranas ‘see’ each other via the wire, but only one of them ‘sees’ the QD in the connection.”

Another possibility investigated by the researchers involved making the QD “see” the two majoranas at the same time by connecting it to both ends of the Kitaev wire.

“By making the QD ‘see’ more of η1 or η2, i.e., by varying the system’s asymmetry, we can use the artificial atom as a tuner, where the thermal or electrical energy that flows through it is redshifted or blueshifted,” Seridonio said (see Figure B for illustrative explanation).

This theoretical paper, he added, is expected to contribute to the development of thermoelectric devices based on Majorana fermions.

Here’s a link to and a citation for the paper,

Tuning of heat and charge transport by Majorana fermions by L. S. Ricco, F. A. Dessotti, I. A. Shelykh, M. S. Figueira & A. C. Seridonio. Scientific Reportsvolume 8, Article number: 2790 (2018) doi:10.1038/s41598-018-21180-9 Published online: 12 February 2018

This paper is open access.

As I prepared to publish this piece I stumbled across a sad Sept. 3, 2018 article about Brazil and its overnight loss of heritage in a fire by Henry Grabar for slate.com (Note: Links have been removed),

On Sunday night, a fire ripped through Brazil’s National Museum in Rio de Janeiro, destroying the country’s most valuable storehouse of natural and anthropological history within hours.

Most of the 20 million items housed inside—including the skull of Luzia, the oldest human remains ever found in the Americas; one of the world’s largest archives of South America’s indigenous cultures; more than 26,000 fossils, 55,000 stuffed birds, and 5 million insect specimens; and a library of more than 500,000 books—are thought to have been destroyed.

The loss is a symptom of a larger problem as Grabar notes in his article.

Using melanin in bioelectronic devices

Brazilian researchers are working with melanin to make biosensors and other bioelectronic devices according to a Dec. 20, 2016 news item on phys.org,

Bioelectronics, sometimes called the next medical frontier, is a research field that combines electronics and biology to develop miniaturized implantable devices capable of altering and controlling electrical signals in the human body. Large corporations are increasingly interested: a joint venture in the field has recently been announced by Alphabet, Google’s parent company, and pharmaceutical giant GlaxoSmithKline (GSK).

One of the challenges that scientists face in developing bioelectronic devices is identifying and finding ways to use materials that conduct not only electrons but also ions, as most communication and other processes in the human organism use ionic biosignals (e.g., neurotransmitters). In addition, the materials must be biocompatible.

Resolving this challenge is one of the motivations for researchers at São Paulo State University’s School of Sciences (FC-UNESP) at Bauru in Brazil. They have succeeded in developing a novel route to more rapidly synthesize and to enable the use of melanin, a polymeric compound that pigments the skin, eyes and hair of mammals and is considered one of the most promising materials for use in miniaturized implantable devices such as biosensors.

A Dec. 14, 2016 FAPESP (São Paulo Research Foundation) press release, which originated the news item, further describes both the research and a recent meeting where the research was shared (Note: A link has been removed),

Some of the group’s research findings were presented at FAPESP Week Montevideo during a round-table session on materials science and engineering.

The symposium was organized by the Montevideo Group Association of Universities (AUGM), Uruguay’s University of the Republic (UdelaR) and FAPESP and took place on November 17-18 at UdelaR’s campus in Montevideo. Its purpose was to strengthen existing collaborations and establish new partnerships among South American scientists in a range of knowledge areas. Researchers and leaders of institutions in Uruguay, Brazil, Argentina, Chile and Paraguay attended the meeting.

“All the materials that have been tested to date for applications in bioelectronics are entirely synthetic,” said Carlos Frederico de Oliveira Graeff, a professor at UNESP Bauru and principal investigator for the project, in an interview given to Agência FAPESP.

“One of the great advantages of melanin is that it’s a totally natural compound and biocompatible with the human body: hence its potential use in electronic devices that interface with brain neurons, for example.”

Application challenges

According to Graeff, the challenges of using melanin as a material for the development of bioelectronic devices include the fact that like other carbon-based materials, such as graphene, melanin is not easily dispersible in an aqueous medium, a characteristic that hinders its application in thin-film production.

Furthermore, the conventional process for synthesizing melanin is complex: several steps are hard to control, it can last up to 56 days, and it can result in disorderly structures.

In a series of studies performed in recent years at the Center for Research and Development of Functional Materials (CDFM), where Graeff is a leading researcher and which is one of the Research, Innovation and Dissemination Centers (RIDCs) funded by FAPESP, he and his collaborators managed to obtain biosynthetic melanin with good dispersion in water and a strong resemblance to natural melanin using a novel synthesis route.

The process developed by the group at CDMF takes only a few hours and is based on changes in parameters such as temperature and the application of oxygen pressure to promote oxidation of the material.

By applying oxygen pressure, the researchers were able to increase the density of carboxyl groups, which are organic functional groups consisting of a carbon atom double bonded to an oxygen atom and single bonded to a hydroxyl group (oxygen + hydrogen). This enhances solubility and facilitates the suspension of biosynthetic melanin in water.

“The production of thin films of melanin with high homogeneity and quality is made far easier by these characteristics,” Graeff said.

By increasing the density of carboxyl groups, the researchers were also able to make biosynthetic melanin more similar to the biological compound.

In living organisms, an enzyme that participates in the synthesis of melanin facilitates the production of carboxylic acids. The new melanin synthesis route enabled the researchers to mimic the role of this enzyme chemically while increasing carboxyl group density.

“We’ve succeeded in obtaining a material that’s very close to biological melanin by chemical synthesis and in producing high-quality film for use in bioelectronic devices,” Graeff said.

Through collaboration with colleagues at research institutions in Canada [emphasis mine], the Brazilian researchers have begun using the material in a series of applications, including electrical contacts, pH sensors and photovoltaic cells.

More recently, they have embarked on an attempt to develop a transistor, a semiconductor device used to amplify or switch electronic signals and electrical power.

“Above all, we aim to produce transistors precisely in order to enhance this coupling of electronics with biological systems,” Graeff said.

I’m glad to have gotten some information about the work in South America. It’s one of FrogHeart’s shortcomings that I have so little about the research in that area of the world. I believe this is largely due to my lack of Spanish language skills. Perhaps one day there’ll be a universal translator that works well. In the meantime, it was a surprise to see Canada mentioned in this piece. I wonder which Canadian research institutions are involved with this research in South America.