Tag Archives: scanning transmission electron holography microscope

University of Victoria’s (Canada) microscope, world’s most powerful, unveiled

This new microscope at the University of Victoria (UVic) was supposed to be unveiled in 2011 according to my July 28, 2009 posting about the purchase,

In other BC news, the University of Victoria (Canada) will be getting a new microscope which senses at subatomic levels. (From the media release on Azonano),

The new microscope-called a Scanning Transmission Electron Holography Microscope (STEHM) — will use an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution as small as one-fiftieth the size of an atom.

This is being done in collaboration with Hitachi High-Technologies which is building the microscope in Japan and installing it at U Vic in late 2010. The microscope will be located in a specially adapted room where work to prepare and calibrate it will continue until it becomes operational sometime in 2011.

I had been wondering if I’d ever hear of the microscope again, so finding a June 18, 2013 news item on Nanowerk announcing the world’s most powerful microscope at the University of Victoria (British Columbia, Canada) answered the question for me (Note: A link has been removed),

The world’s most powerful microscope, which resides in a specially constructed room at the University of Victoria, has now been fully assembled and tested, and has a lineup of scientists and businesses eager to use it.

The seven-tonne, 4.5-metre tall Scanning Transmission Electron Holography Microscope (STEHM), the first such microscope of its type in the world, came to the university in parts last year,. A team from Hitachi, which constructed the ultra high-resolution, ultra-stable instrument, spent one year painstakingly assembling the STEHM in a carefully controlled lab in the basement of the Bob Wright Centre.

The wait was worth it, says Rodney Herring, a professor of mechanical engineering and director of UVic’s Advanced Microscopy Facility. [emphasis mine]

The June 17, 2013 University of Victoria news release, which originated the news item, doesn’t address the two year delay directly as Herring’s quote seems to be in reference to the one-year assembly period. The news release goes on to describe the microscope’s resolution,

Herring viewed gold atoms through the microscope at a resolution of 35 picometres. One picometre is a trillionth of a metre. This resolution is much better than the previous best image with 49-picometre resolution taken at the Lawrence Berkley National Laboratory in California, and is about 20 million times human sight.

The STEHM allows researchers to see the atoms in a manner never before possible. It has full analytical capabilities that can determine the types and number or elements present, and high-resolution cameras for collecting data.

It will be used by researchers of many science and engineering disciplines for projects requiring knowledge of small atomic scale structures (nanoscience) and nanotechnology. Dr. Vincenzo Grillo from the Istituto Nanoscienze Consiglio Nazionale Delle Ricerche in Modena [Italy] will be the first visiting researcher later this month.

A line-up seems to have formed (from the news release),

Local scientists and businesses are also eager to use it. Ned Djilali, a UVic professor of mechanical engineering, is working with the National Research Council, Ballard Power Systems in Vancouver and Mercedes-Benz on fuel cell research. The STEHM “opens up entirely new possibilities” in fuel cell technology, says Djilali.

Redlen Technologies, a local company that manufactures high resolution semiconductor radiation detectors that are used for such things as nuclear cardiology, CT scanning, baggage scanning and dirty bomb detection, has been waiting for the STEHM to open for the company’s research and development.

If you are curious but don’t have any special influence, you can find out about the microscope (and perhaps view it?) later this week (from the news release),

Herring will give details of the results at a microscopy conference this week at UVic, as well as during a talk Thursday, June 20, that is open to the public. [emphasis mine] It is from 4:30 to 5 p.m. at the Bob Wright Centre, in Flury Hall, room B150.

I don’t usually include funding information but since I am from British Columbia, I have more of an interest than usual (from the news release),

The STEHM microscope is supported by $9.2 million in funding from the government of Canada through the Canadian Foundation for Innovation, the BC Knowledge Development Fund and UVic, as well as significant in-kind support from Hitachi.

Since microscopes and big equipment (in general) are weirdly fascinating to me, here are some details from UVic’s STEHM backgrounder,

The Scanning Transmission Electron Holography Microscope (STEHM) is the highest resolution microscope ever built and the only one of its kind in the world. It’s arrival makes the University of Victoria a global leader in the competitive field of advanced microscopy.

Unlike conventional microscopes, which use light to peer at specimens, the STEHM uses an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution smaller than the size of an atom.

The STEHM will see materials beyond the nanoscale to the picoscale. A nanometer is one-billionth of a metre, while a picometre is one-trillionth of a metre. Atoms are typically between 62 and 520 picometres in diameter.

The STEHM will not only see individual atoms, but it will indicate what type of atoms they are. It also features an electron vortex beam, which researchers can use like tweezers to manipulate individual atoms in a specimen.

The microscope itself is a 4.5-metre tall cylinder encased in metal shielding to block magnetic fields. It has a footprint of six square metres and weighs seven tonnes.

The microscope is so huge that researchers will climb a stepladder to insert their specimens through a tiny airlock into the vacuum of the column. They’ll then leave the room, wait for the air currents in the room to calm, and then operate the microscope remotely from an adjoining room.

The microscope is so sensitive that its image could be affected by little more than a passing cloud. …

I don’t know how many times the public will have any access to this microscope given its extreme sensitivity so you might want to make a point of attending the public talk on Thursday, June 20, 2013 at the University of Victoria.

One final comment, I find it a bit disconcerting that the only ‘academic’ research mentioned seems to be Italian and that the ‘Canadian’ research is primarily commercial. It’s very nice that Dr. Herring saw a gold nanoparticle but are there any local or Canadian publicly funded academic researchers using this microscope, which seems to have been paid for by taxpayers? Hopefully, this is a case where excitement took over and the writer who almost always focuses on local, academic research got carried away with the international involvement and big name companies (Mercedes Benz).

Memristors and nuances in a classification tug-of-war; NRC of Canada insights; rapping scientists

Interestingly, there’s an item posted with today’s (April 8, 2010) date on the Nanowerk website from HP Labs reiterating the ‘memristor as a fourth circuit element’ concept that Forrest H Bennett has convincingly argued against first in his comments to my original posting (April 5, 2010) and, at greater length, in yesterday’s (April 7, 2010) interview.

Oddly, the item on Nanowerk, which I’m assuming is a news release from HP Labs as no author is listed, mostly regurgitates the HP Labs work on the memristor.

HP Labs researchers have discovered that the “memristor“ – a resistor with memory that represents the fourth basic circuit element in electrical engineering – has more capabilities than was previously thought. In addition to being useful in storage devices, the memristor can perform logic, enabling computation to one day be performed in chips where data is stored, rather than on a specialized central processing unit.

In fact, much of what’s mentioned in the news release and in the accompanying video was discussed in 2008 when they first published their work. The new excitement has been generated by a team at the University of Michigan (see April 5, 2010 posting), led by Dr. Wei Lu, who’ve proved that synapses in biological organisms behave like memristors. This means that the speculations that the HP Lab folks made in 2008 about hardware that learns are more likely.

As for the ‘fourth circuit element’ mentioned in the item, this brings me to classification schemes. These sorts of discussions can seem picayune to people who are not directly involved but classification schemes have a huge impact on how we think about the world around us and the ways in which we interact with it. For example, we think of the tomato and treat it as if it’s a vegetable when in fact, it’s a fruit. When was the last time you had some tomatoes and ice cream?

Whether the memristor is thought of as a ‘fourth circuit element’ (as per HP Labs and Dr. Leon Chua [as of 2003]) or a member of an ‘infinite periodic table of circuit elements’ (as per Forrest H Bennett) will have an impact on how memristors and other as yet unknown elements are investigated and understood.

As someone who doesn’t understand the particulars especially well, I find Forrest’s approach the more flexible one and therefore preferable. Classification schemes or models that are rigid both buckle as new information is added and tend to constrain it. For example, the Dewey decimal classification scheme used in most public libraries has been buckling under the pressure of adding new categories since the 1950s, at least. It’s the reason most academic libraries use the more flexible Library of Congress classification scheme, although that scheme has its problems too.

One final note, it seems that HP Labs is supporting the notion of a ‘fourth circuit element’ being added to the previous three (capacitors, inductors, and resistors) and they have the resources to distribute their preferred notion far and wide and repeatedly. Or as Forrest put it in one of his comments, “This “4th circuit element” business is marketing spin from HP …”

National Research Council of Canada Insights

In the wake of John McDougall’s appointment as the new president of the Canada’s National Research Council (NRC), Rob Annan over at the Don’t Leave Canada Behind blog has written a very important (if Canadian science policy interests you) piece about NRC.  Rob traces the organization from its beginnings.  From the posting,

The NRC was founded more than 90 years ago to advise the government on matters related to science and technology. It evolved into a federal research laboratory with the construction of the Sussex Dr. labs in the 1930s, and was the focus of Canada’s research efforts during WWII. Post-war, the NRC expanded and was a major source of Canadian research success, with notable achievements like the invention of the pacemaker, development of Canola and the crash position indicator.

From the 1950s through the 1970s, NRC’s success, growth, and increasing complexity led to the creation of spin-off organizations. Atomic research went to the Atomic Energy of Canada, defense research went to the Defense Research Board. Medical research funding went to the Medical Research Council, later the CIHR. Lastly, support for academic research was passed to NSERC.

All of these organizations have grown and prospered. The NRC? Not so much.

He goes on to trace developments to the present day,

The NRC has research institutes in every province in the country, from the Herzberg Institute of Astrophysics in BC to the Institute for Ocean Technology in Newfoundland. A total of 26 institutes across the country, covering all aspects of science and technology, and employing more than 4,000 people. It’s a broad effort and employs a lot of great scientists.

But since the 1980s, the NRC has been without a strong sense of self. Is it a basic research organization or an applied research organization? Does it exist to perform independent, government-sponsored research, or does it provide research services in support of the private sector? Does it perform early-stage research and then partner with industry, or is it a fee-for-service research organization? The answer is yes.

I encourage you to read his posting as there’s more to his history and analysis and he goes on to make some suggestions. Please don’t forget to read the comments which offer additional insights.

Dave Bruggeman (at Pasco Phronesis) also mentions Rob’s NRC posting in the context of explaining that the current US National Research Council differs greatly from the Canadian one and warns against assuming that organizations with similar names are the same. You can go read Dave’s description of the US NRC here. This is a timely reminder as the ‘reinventing technology assessment’ webcast that the Project on Emerging Nanotechnologies is hosting later this month features a speaker from the US National Research Council.

Rapping biologists and physicists

While browsing on Dave’s (Pasco Phronesis) blog, I found an item that features two videos of scientists rapping. The first comes from some physicists and the second comes from biologists. I agree with Dave that the biologists have the edge since they rap in front of a live audience although both videos are quite entertaining.

Viruses mine for copper at the University of BC; microscopy at the University of Victoria; the Henry Louis Gates Jr. affair, human nature, & human enhancement

Professor Scott Dunbar at the University of British Columbia’s (Canada) Norman B. Keevil Institute of Mining Engineering needed to partner with colleagues Sue Curtis and Ross MacGillivray from the Centre for Blood Research and the Department of Biochemistry and Molecular Biology after (from the media release on Nanowerk News),

“I read an article about bacteriophage – viruses that infect bacteria – being used to create nanodevices in which proteins on the phage surface are engineered to bind to gold and zinc sulfide,” says Dunbar. “And it struck me: if zinc sulfide, why not copper sulfide? And if so, then it might be possible to use these bio-engineered proteins to separate common economic sulfide minerals from waste during mineral extraction.”

Together the researchers have developed a procedure called “biopanning.” It’s a kind of genetic engineering which could lead to some useful applications.

It turns out that the phage that bind to a mineral do affect the mineral surfaces, causing them to have a different electrical charge than other minerals. The proteins on the phage also form links to each other leading to aggregation of the specific sulfide particles. “The physical and chemical changes caused by phage may be the basis for a highly selective method of mineral separation with better recovery. Another possible application is bioremediation, where metals are removed from contaminated water” says Dunbar.

In other BC news, the University of Victoria (Canada) will be getting a new microscope which senses at subatomic levels. (From the media release on Azonano),

The new microscope-called a Scanning Transmission Electron Holography Microscope (STEHM) — will use an electron beam and holography techniques to observe the inside of materials and their surfaces to an expected resolution as small as one-fiftieth the size of an atom.

This is being done in collaboration with Hitachi High-Technologies which is building the microscope in Japan and installing it at U Vic in late 2010. The microscope will be located in a specially adapted room where work to prepare and calibrate it will continue until it becomes operational sometime in 2011.

After my recent series on robots and human enhancement, I feel moved to comment on the situation in the US vis a vis Henry Louis Gates, Jr. and his arrest by the police officer, James Crowley. It’s reported here and elsewhere that neither the recording of the 911 call nor the concerned neighbour who made the call support Sergeant Crowley’s contention that the two men allegedly breaking into the house were described as ‘black’.

Only the participants know what happened and I don’t fully understand the nuances of race, class, and cultural differences that exist in the US so I can’t comment on anything other than this. It is human to hear what we expect to hear and I have an example from a much less charged situation.

Many years ago, I was transcribing notes from a taped interview (one of my first) for an article that I was writing for a newsletter. As I was transcribing, I noticed that I kept changing words so that the interview subject sounded more like me. They were synonyms but they were my words not his. Over the years I’ve gotten much better at being more exact but I’ve never forgotten how easy it is to insert your pet words (biased or not) when you’re remembering what someone said. Note: I was not in a stressful situation and I could rewind and listen again at my leisure.

I hope that Crowley and Gates, Jr. are able to work this out in some fashion and I really hope that it is done in a way that is respectful to both men and not a rush to a false resolution for the benefit of the cameras. For a more informed discussion of the situation, you may find this essay by Richard Thompson Ford  in Slate helpful. It was written before the recording of the 911 call was made public but I think it still stands.

My reason for mentioning this incident is that human nature tends to assert itself in all kinds of situations including the building of robots and the debates on human enhancement, something I did not mention in my series posted (July 22 – 24, 27, 2009).