Jordan Iacobucci is quite excited about Ironheart’s move away from using nanotechnology in its recent Marvel Comics Universe (MCU) television adaptation. From Iacobucci’s July 7, 2025 article for CBR (self-proclaimed World’s Top Destination for Comic, Movie & TV News), Note: Links have been removed,
After years of delays, Ironheart is finally streaming on Disney+. The six-episode series follows up on Dominique Thorne’s Riri Williams a few days after her adventures with Shuri and the Wakandans during the events of Black Panther: Wakanda Forever as she returns home to Chicago in hopes of building something “iconic.” Though she must navigate several trials and tribulations, Riri finally succeeds in her goal, completing a brand-new version of her Ironheart suit.
As Ironheart wraps up its run on Disney+, fans have plenty to break down, from its groundbreaking finale to its surprisingly great visuals. Many fans may find that the series is much better than they may have anticipated, especially after review-bombing tried to dismiss Ironheart before it even premiered. The series fixes several long-standing issues with the Marvel Cinematic Universe, including one particularly annoying trend that has plagued the franchise since Avengers: Infinity War
The MCU Uses Way Too Much Nanotechnology
Fans Aren’t Fond of the Nanotechnology Trend in the MCU
It all started in Avengers: Infinity War. During a confrontation with Ebony Maw and Cull Obsidian, Tony Stark debuted his new nanotechnology, which spread out across his body from a small compartment on his chest to form a new suit of armor.
Iron Man’s “Bleeding Edge” armor was only the beginning of the MCU’s love affair with nanotechnology, particularly when it comes to superhero suits. Infinity War also gives Spider-Man his own nanotech suit, the Iron Spider armor, which he wears for the remainder of the film and in his next several MCU appearances. Since then, almost every masked MCU hero has upgraded to similar costumes, from Black Panther to Ant-Man. As impressive as the technology may be, fans aren’t fond of the nanotech suits.
Nanotech suits make sense from a practical standpoint. If a hero can cause their suit to form around them with the press of a button, then they don’t have to worry about being caught off-guard by an emerging threat. Though these upgrades make sense, viewers lose something special as a result. The “Bleeding Edge” Iron Man armor and other nanotech suits lose the tangibility of previous MCU superhero costumes.
With nanotech, viewers are never made to feel as if the hero is really wearing a suit. This is largely because the actor isn’t wearing the suit on set. Often, nanotech is implemented as an excuse to use CGI to cover or uncover an actor’s face with their superhero mask at any given point in a scene. As a result, however, the suits themselves feel less real, looking more like images composited in a computer than something that someone would wear while fighting crime.
This issue gets worse when a particular film or series doesn’t allow its graphics team enough time to complete their animation processes. Films like Ant-Man and the Wasp: Quantumania are horrible examples of this trend, featuring suits that sometimes look as though they were cobbled together on a laptop an hour before the movie hit theaters. Fans have been vocal about their distaste for nanotech suits for years, but Marvel has only doubled down on this trend since Infinity War–until now.
The Ironheart armor feels real–much more real than any of the new nanotech suits introduced in recent MCU projects. In place of nanotechnology, Ironheart uses real technology to build her suit, and her series is so much better for it. It is much more visually appealing for viewers to see a tangible suit of armor on set with the actors.
…
Iacobucci has a point in that, while nanotechnology is a real technology; the nanotechnology in Iron Man is not (at this time).
So, what about the science in science fiction?
Officially launched in 2008 by the US National Academy of Sciences (NAS), the Science and Entertainment Exchange (see its Wikipedia entry), is one of the programs that filmmakers and others can consult when producing a science fiction piece. This March 16, 2022 article by Marian Caballo for The Science Survey delves into the topic of the science in science fiction, Note: Links have been removed,
Science is the backbone of our world, which means that it inevitably underlies the plots of many popular films and television shows. As an avid cinephile and biology research student myself, I often catch myself trying to break down characters’ scientific name-drops, or pausing to examine the scribbles of equations on background blackboards.
For example: in Don’t Look Up, an original Netflix movie that depicts the danger of a comet hurtling towards Earth, scientists lay out a plan to warn the world of its impending doom. In The Amazing Spider-Man, Peter Parker accidentally helps to create villainous mutant lizards with his solution to the “The Decay Rate Algorithm,” a fictional derivation of the Gompertz–Makeham law of mortality. Avengers: Endgame features an elaborate time travel plan involving Deutsch propositions, eigenvalues and inverted Möbius strips. None were technically real scientific developments, of course, but how do they sound so real?
The answer: scientific consulting. This hidden field is dedicated to scientific advising in the entertainment industry, and it’s an exciting way for STEM [science, technology, engineering, and mathematics] professionals to become engaged in the world of fiction. These interactions connect Hollywood (writers, producers, directors), “with top STEM experts to create synergy between accurate science and engaging storytelling,” said Emilie Lorditch, founder of Real2Reel Science, a science consulting service for writers.
Media greatly impacts the public’s perception of science. According to The Pew Research Center, 81% of U.S. adults say they watch media involving criminal investigations, hospital/medical settings, or science fiction. The average American watches 84 movies a year. By placing STEM professionals on movie sets, scientists can not only assist in executing a narrative vision but also aid in sharing more engaging portrayals of STEM.
“The Hollywood, Health & Society program at USC [University of Southern California] has worked with multiple TV shows to develop storylines about organ donation, and has studied the impact of the plot on viewers’ knowledge, attitudes, and behavior,” said Lorditch, who believes science advising fosters mutual exchange. The USC Annenberg Norman Lear Center’s longitudinal impact studies focus on providing — then studying the impact of — information about health, safety and security in Hollywood projects.
While many science consultants work independently or through institutions like USC, the science advising wing of Hollywood primarily stems from The National Academy of Sciences’ Science & Entertainment Exchange. Founded in 2008, the Exchange aims to improve the science that appears in narrative mainstream media through a “soft-sell” approach. The Exchange has completed more than 2,300 consultations on projects such as A Wrinkle in Time, Watchmen, and various Marvel Studios films. The organization essentially serves as a direct hotline for filmmakers to reach researchers, medical professionals, and more — as befits the Exchange’s actual phone number, 1-844-NEED-SCI.
However, it isn’t a scientific consultant’s job to make sure films are 100% accurate. Science fiction is called science fiction for a reason, and scientists aren’t keen on incorporating factual science when it comes at the expense of compelling storytelling. “The story always comes first. Period,” said Jennifer Ouellette, founding director of The Science & Entertainment Exchange. She now covers science and culture as a senior writer at Ars Technica, and has published several science-related books.
Ouellette always made sure to advise scientists working on their first Hollywood films to not just shake their heads when presented with a script. “They should think about what needs to happen in that scene, and come up with an even better scientific explanation. That makes it a win-win,” said Ouellette, who cites The Expanse as some of the best science representation in film and TV.
Insisting that science/scientists should only be portrayed in a positive light is not a solution, either. “Scientists are flawed human beings just like everyone else, and those flaws are what make us interesting and complex characters,” she continued.
Ouellette’s husband — theoretical physicist Sean M. Caroll at the California Institute of Technology — has served as a science consultant himself, helping to devise Tony Stark’s famous time-warping plan in Avengers: Endgame. He also advised one of Ouellette’s favorite science TV moments: an episode of BONES, when a physicist represses his grief over his gymnast daughter’s death. Caroll spent days on set writing a series of physics equations on blackboards. But he wasn’t developing hard science for the sake of science.
By the end of the episode, the characters learn that “each equation represents a moment in his daughter’s life: learning to walk, then run; doing her first backflip; a vault; and so on, until the final equation, showing her finally at rest. The writers turned it into a poem written in equations, and it remains one of the most amazing moments I’ve seen on television in a long time,” said Ouellette.
On top of the fundamental fact that science must be in service of the story, the science doesn’t always have to be precise. “In the world of STEM, precision is crucial but for the majority of the public, not so much,” said Lorditch. Most viewers would agree. Spring Lin ’22 ignores “slightly questionable” scientific explanations, claiming they don’t interfere with the cinematic experience. “When there are no obvious wrongs in a movie, I usually don’t question it,” said Rita Chen ’22.
Science advisors also lurk on a surprisingly wide range of sets — whether it is on reality TV such as MTV’s Teen Mom, or behind the scenes of The Simpsons. …
It seems that physicists are having a moment in the pop culture scene and they are excited about two television series (Fallout and 3 Body Problem) televised earlier this year in US/Canada.
The world ends on Oct. 23, 2077, in a series of radioactive explosions—at least in the world of “Fallout,” a post-apocalyptic video game series that has now been adapted into a blockbuster TV show on Amazon’s Prime Video.
The literal fallout that ensues creates a post-apocalyptic United States that is full of mutated monstrosities, irradiated humans called ghouls and hard scrabble survivors who are caught in the middle of it all. It’s the material of classic Atomic Age sci-fi, the kind of pulp stories “Fallout” draws inspiration from for its retro-futuristic version of America.
But there is more science in this science fiction story than you might think, according to Pran Nath, Matthews distinguished university professor of physics at Northeastern University.
…
“Fallout” depicts a post-apocalyptic world centuries after nuclear war ravaged the United States. Amazon MGM Studios Photo
In the opening moments of “Fallout,” which debuted on April 10 [2024], Los Angeles is hit with a series of nuclear bombs. Although it takes place in a clearly fictional version of La La Land –– the robots and glistening, futuristic skyscrapers in the distance are dead giveaways –– the nuclear explosions themselves are shockingly realistic.
Nath says that when a nuclear device is dropped there are three stages.
“When the nuclear blast occurs, because of the chain reaction, in a very short period of time, a lot of energy and radiation is emitted,” Nath says. “In the first instance, a huge flash occurs, which is the nuclear reaction producing gamma rays. If you are exposed to it, people, for example, in Hiroshima were essentially evaporated, leaving shadows.”
Depending on how far someone is from the blast, even those who are partially protected will have their body rapidly heat up to 50 degrees Celsius, or 122 degrees Fahrenheit, causing severe burns. The scalded skin of the ghouls in “Fallout” are not entirely unheard of (although their centuries-long lifespan stretches things a bit).
The second phase is a shockwave and heat blast –– what Nath calls a “fireball.” The shockwave in the first scene of “Fallout” quickly spreads from the blast, but Nath says it would probably happen even faster and less cinematically. It would travel around the speed of sound, around 760 miles per hour.
The shockwave also has a huge amount of pressure, “so huge … that it can collapse concrete buildings.” It’s followed by a “fireball” that would burn every building in the blast area with an intense heatwave.
“The blast area is defined as the area where the shockwaves and the fireball are the most intense,” Nath says. “For Hiroshima, that was between 1 and 2 miles. Basically, everything is destroyed in that blast area.”
The third phase of the nuclear blast is the fallout, which lasts for much longer and has even wider ranging impacts than the blast and shockwave. The nuclear blast creates a mushroom cloud, which can reach as high as 10 miles into the atmosphere. Carried by the wind, the cloud spreads radioactivity far outside the blast area.
“In a nuclear blast, up to 100 different radioactive elements are produced,” Nath says. “These radioactive elements have lifetimes which could be a few seconds, and they could be up to millions of years. … It causes pollution and damage to the body and injuries over a longer period, causing cancer and leukemia, things like this.”
A key part of the world of “Fallout” is the Vaults, massive underground bunkers the size of small towns that the luckiest of people get to retreat into when the world ends. The Vaults are several steps above most real-world fallout shelters, but Nath says that kind of protection would be necessary if you wanted to stay safe from the kind of radiation released by nuclear weapons, particularly gamma rays that can penetrate several feet of concrete.
“If you are further away and you keep inside and behind concrete, then you can avoid both the initial flash of the nuclear blast and also could probably withstand the shockwaves and the heatwave that follows, so the survivability becomes larger,” Nath says.
But what about all the radioactive mutants wandering around the post-apocalyptic wasteland?
It might seem like the colossal, monstrous mutant salamanders and giant cockroaches of “Fallout” are a science fiction fabrication. But there is a real-world basis for this, Nath says.
“There are various kinds of abnormalities that occur [with radiation,]” Nath says. “They can also be genetic. Radiation can create mutations, which are similar to spontaneous mutation, in animals and humans. In Chernobyl, for example, they are discovering animals which are mutated.”
In the Chernobyl Exclusion Zone, the genetics of wild dogs have been radically altered. Scientists hypothesize that thewolves near Chernobyl may have developed to be more resistant to radiation, which could make them “cancer resistant,” or at least less impacted by cancer. And frogs have adapted to have more melanin in their bodies, a form of protection against radiation, turning them black.
“Fallout” takes the horrifying reality of nuclear war and spins a darkly comic sci-fi yarn, but Nath says it’s important to remember how devastating these real-world forces are.
It’s estimated that as many as 146,000 people in Hiroshima and 80,000 people in Nagasaki were killed by the effects of the bombs dropped by the U.S. Today’s nuclear weapons are so much more powerful that there is very little understanding of the impact these weapons could have. Nath says the fallout could even exacerbate global warming.
“Thermonuclear war would be a global problem,” Nath says.
Although “Fallout” is a piece of science fiction, the reality of its world-ending scenario is terrifyingly real, says Pran Nath, Matthews distinguished university professor of physics at Northeastern University. Photo by Adam Glanzman/Northeastern University
Kudos to the photographer!
3 Body Problem (television series)
This one seems to have a lit a fire in the breasts of physicists everywhere. I have a number of written pieces and a video about this this show, which is based on a book by Liu Cixn. (You can find out more about Cixin and his work in his Wikipedia entry.)
“3 Body Problem,” Netflix’s new big-budget adaptation of Liu Cixin’s book series helmed by the creators behind “Game of Thrones,” puts the science in science fiction.
The series focuses on scientists as they attempt to solve a mystery that spans decades, continents and even galaxies. That means “3 Body Problem” throws some pretty complicated quantum mechanics and astrophysics concepts at the audience as it, sometimes literally, tries to bring these ideas down to earth.
However, at the core of the series is the three-body problem, a question that has stumped scientists for centuries.
What exactly is the three-body problem, and why is it still unsolvable? Jonathan Blazek, an assistant professor of physics at Northeastern University, explains that systems with two objects exerting gravitational force on one another, whether they’re particles or stars and planets, are predictable. Scientists have been able to solve this two-body problem and predict the orbits of objects since the days of Isaac Newton. But as soon as a third body enters the mix, the whole system gets thrown into chaos.
“The three-body problem is the statement that if you have three bodies gravitating toward each other under Newton’s law of gravitation, there is no general closed-form solution for that situation,” Blazek says. “Little differences get amplified and can lead to wildly unpredictable behavior in the future.”
In “3 Body Problem,” like in Cixin’s book, this is a reality for aliens that live in a solar system with three suns. Since all three stars are exerting gravitational forces on each other, they end up throwing the solar system into chaos as they fling each other back and forth. For the Trisolarans, the name for these aliens, it means that when a sun is jettisoned far away, their planet freezes, and when a sun is thrown extremely close to their planet, it gets torched. Worse, because of the three-body problem, these movements are completely unpredictable.
For centuries, scientists have pondered the question of how to determine a stable starting point for three gravitational bodies that would result in predictable orbits. There is still no generalizable solution that can be taken out of theory and modeled in reality, although recently scientists have started to find some potentially creative solutions, including with models based on the movements of drunk people.
“If you want to [predict] what the solar system’s going to do, we can put all the planets and as many asteroids as we know into a computer code and basically say we’re going to calculate the force between everything and move everything forward a little bit,” Blazek says. “This works, but to the extent that you’re making some approximations … all of these things will eventually break down and your prediction is going to become inaccurate.”
Blazek says the three-body problem has captivated scientific minds because it’s a seemingly simple problem. Most high school physics students learn Newton’s law of gravity and can reasonably calculate and predict the movement of two bodies.
Three-body systems, and more than three-body systems, also show up throughout the universe, so the question is incredibly relevant. Look no further than our solar system.
The relationship between the sun, Earth and our moon is a three-body system. But Blazek says since the sun exerts a stronger gravitational force on Earth and Earth does the same on the moon, it creates a pair of two-body systems with stable, predictable orbits –– for now.
Blazek says that although our solar system appears stable, there’s no guarantee that it will stay that way in the far future because there are still multi-body systems at play. Small changes like an asteroid hitting one of Jupiter’s moons and altering its orbit ever so slightly could eventually spiral into larger changes.
That doesn’t mean humanity will face a crisis like the one the Trisolarans face in “3 Body Problem.” These changes happen extremely slowly, but Blazek says it’s another reminder of why these concepts are interesting and important to think about in both science and science fiction.
“I don’t think anything is going to happen on the time scale of our week or even probably our species –– we have bigger problems than the instability of orbits in our solar system,” Blazek says. “But, that said, if you think about billions of years, during that period we don’t know that the orbits will stay as they currently are. There’s a good chance there will be some instability that changes how things look in the solar system.”
An April 12, 2024 news item on phys.org covers some of the same ground, Note: A link has been removed.
The science fiction television series 3 Body Problem, the latest from the creators of HBO’s Game of Thrones, has become the most watched show on Netflix since its debut last month. Based on the bestselling book trilogy Remembrance of Earth’s Past by Chinese computer engineer and author Cixin Liu, 3 Body Problem introduces viewers to advanced concepts in physics in service to a suspenseful story involving investigative police work, international intrigue, and the looming threat of an extraterrestrial invasion.
Yet how closely does the story of 3 Body Problem adhere to the science that it’s based on? The very name of the show comes from the three-body problem, a mathematical problem in physics long considered to be unsolvable.
Virginia Tech physicist Djordje Minic says, “The three-body problem is a very famous problem in classical and celestial mechanics, which goes back to Isaac Newton. It involves three celestial bodies interacting via the gravitational force—that is, Newton’s law of gravity. Unlike mathematical predictions of the motions of two-body systems, such as Earth-moon or Earth-sun, the three-body problem does not have an analytic solution.”
“At the end of the 19th century, the great French mathematician Henri Poincaré’s work on the three-body problem gave birth to what is known as chaos theory and the concept of the ‘butterfly effect.'”
Both the novels and the Netflix show contain a visualization of the three-body problem in action: a solar system made up of three suns in erratic orbit around one another. Virginia Tech aerospace engineer and mathematics expert Shane Ross discussed liberties the story takes with the science that informs it.
“There are no known configurations of three massive stars that could maintain an erratic orbit,” Ross said. “There was a big breakthrough about 20 years ago when a figure eight solution of the three-body problem was discovered, in which three equal-sized stars chase each other around on a figure eight-shaped course. In fact, Cixin Liu makes reference to this in his books. Building on that development, other mathematicians found other solutions, but in each case the movement is not chaotic.”
Ross elaborated, “It’s even more unlikely that a fourth body, a planet, would be in orbit around this system of three stars, however erratically — it would either collide with one or be ejected from the system. The situation in the book would therefore be a solution of the ‘four-body problem,’ which I guess didn’t have quite the right ring to use as a title.
“Furthermore, a stable climate is unlikely even on an Earth-like planet. At last count, there are at least a hundred independent factors that are required to create an Earth-like planet that supports life as we know it,” Ross said. “We have been fortunate to have had about 10,000 years of the most stable climate in Earth’s history, which makes us think climate stability is the norm, when in fact, it’s the exception. It’s likely no coincidence that this has corresponded with the rise of advanced human civilization.”
About Ross A professor of Aerospace and Ocean Engineering at Virginia Tech, Shane Ross directs the Ross Dynamics Lab, which specializes in mathematical modeling, simulation, visualization, and experiments involving oceanic and atmospheric patterns, aerodynamic gliding, orbital mechanics, and many other disciplines. He has made fundamental contributions toward finding chaotic solutions to the three-body problem. Read his bio …
About Minic Djordje Minic teaches physics at Virginia Tech. A specialist in string theory and quantum gravity, he has collaborated on award-winning research related to dark matter and dark energy. His most recent investigation involves the possibility that in the context of quantum gravity the geometry of quantum theory might be dynamical in analogy with the dynamical nature of spacetime geometry in Einstein’s theory of gravity. View his full bio …
For the last ‘3 Body Problem’ essay, there’s this April 5, 2023 article by Tara Bitran and Phillipe Thao for Netflix.com featuring comments from a physicist concerning a number of science questions,, Note: Links have been removed,
If you’ve raced through 3 Body Problem, the new series from Game of Thrones creators David Benioff and D.B. Weiss and True Blood writer Alexander Woo, chances are you want to know more about everything from Sophons and nanofibers to what actually constitutes a three-body problem. After all, even the show’s scientists are stumped when they witness their well-known theories unravel at the seams.
But for physicists like 3 Body Problem’s Jin (Jess Hong) and real-life astrophysicist Dr. Becky Smethurst (who researches how supermassive black holes grow at the University of Oxford and explains how scientific phenomena work in viral videos), answering the universe’s questions is a problem they’re delighted to solve. In fact, it’s part of the fun. “I feel like scientists look at the term ‘problem’ more excitedly than anybody else does,” Smethurst tells Tudum. “Every scientist’s dream is to be told that they got it wrong before and here’s some new data that you can now work on that shows you something different where you can learn something new.”
The eight-episode series, based on writer Cixin Liu’s internationally celebrated Remembrance of Earth’s Past trilogy, repeatedly defies human science standards and forces the characters to head back to the drawing board to figure out how to face humanity’s greatest threat. Taking us on a mind-boggling journey that spans continents and timelines, the story begins in ’60s China, when a young woman makes a fateful decision that reverberates across space and time into the present day. With humanity’s future in danger, a group of tight-knit scientists, dubbed the Oxford Five, must work against time to save the world from catastrophic consequences.
Dr. Matt Kenzie, associate professor of physics at University of Cambridge and 3 Body Problem’s science advisor, sits down with Tudum to dive into the science behind the series. So if you can’t stop thinking about stars blinking and chaotic eras, keep reading for all the answers to your burning scientific questions. Education time!
What is a Cherenkov tank?
In Episode 1, the Oxford Five’s former college professor, Dr. Vera Ye (Vedette Lim), walks out onto a platform at the top of a large tank and plunges to her death in a shallow pool of water below. If you were wondering what that huge tank was, it’s called a particle detector (sometimes also known as a Cherenkov tank). It’s used to observe, measure, and identify particles, including, in this case, neutrinos, a common particle that comes largely from the sun. “Part of the reason that they’re kind of interesting is that we don’t really understand much about them, and we suspect that they could be giving us clues to other types of physics in the universe that we don’t yet understand,” Dr. Kenzie told Netflix.
When a neutrino interacts with the water molecules stored inside the tank, it sets off a series of photomultiplier tubes — the little circles that line the tank Vera jumps into. Because Vera’s experiment is shut down and the water is reduced to a shallow level, the fall ends up killing her.
…
What are nanofibers?
In the show, Auggie’s a trailblazer in nanofiber technology. She runs a company that designs self-assembling synthetic polymer nanofibers and hopes to use her latest innovation to solve world problems, like poverty and disease. But what are nanofibers and how do they work? Dr. Kenzie describes nanofiber technology as “any material with a width of nanometers” — in other words, one millionth of a millimeter in thickness. Nanofibers can be constructed out of graphene (a one-atom thick layer of carbon) and are often very strong. “They can be very flexible,” he adds. “They tend to be very good conductors of both heat and electricity.”
Is nanofiber technology real, and can it actually cut through human flesh?
Nanofiber technology does exist, although Dr. Kenzie says it’s curated and grown in labs under very specific conditions. “One of the difficulties is how you hold them in place — the scaffolding it’s called,” he adds. “You have to design molecules which hold these things whilst you’re trying to build them.”
After being tested on a synthetic diamond cube in Episode 2, we see the real horrors of nanofiber technology when it’s used to slice through human bodies in Episode 5. Although the nanofiber technology that exists today is not as mass produced as Auggie’s — due to the cost of producing and containing it — Dr. Kenzie says it’s still strong enough to slice through almost anything.
What can nanofiber technology be used for?
According to Dr. Kenzie, the nanofiber technology being developed today can be used in several ways within the manufacturing and construction industries. “If you wanted a machine that could do some precision cutting, then maybe [nanofiber] would be good,” he says. “I know they’re also tested in the safety of the munitions world. If you need to bulletproof a room or bulletproof a vest, they’re incredibly light and they’re incredibly strong.” He also adds that nanofiber technology is viewed as a material of the future, which can be used for water filtration — just as we see Auggie use it in the season finale.
…
The Bitran and Thao piece includes another description of the 3 Body Problem but it’s the first I’ve seen that describes some of the other science.
Also mentioned in one of the excerpts in this posting is The Science and Entertainment Exchange (also known as The Science & Entertainment Exchange or Science & Entertainment Exchange) according to its Wikipedia entry, Note: Links have been removed,
The Science & Entertainment Exchange[1] is a program run and developed by the United States National Academy of Sciences (NAS) to increase public awareness, knowledge, and understanding of science and advanced science technology through its representation in television, film, and other media. It serves as a pro-science movement with the main goal of re-cultivating how science and scientists truly are in order to rid the public of false perceptions on these topics. The Exchange provides entertainment industry professionals with access to credible and knowledgeable scientists and engineers who help to encourage and create effective representations of science and scientists in the media, whether it be on television, in films, plays, etc. The Exchange also helps the science community understand the needs and requirements of the entertainment industry, while making sure science is conveyed in a correct and positive manner to the target audience.
Officially launched in November 2008, the Exchange can be thought of as a partnership between NAS and Hollywood, as it arranges direct consultations between scientists and entertainment professionals who develop science-themed content. This collaboration allows for industry professionals to accurately portray the science that they wish to capture and include in their media production. It also provides scientists and science organizations with the opportunity to communicate effectively with a large audience that may otherwise be hard to reach such as through innovative physics outreach. It also provides a variety of other services, including scheduling briefings, brainstorming sessions, screenings, and salons. The Exchange is based in Los Angeles, California.
…
I hadn’t realized the exchange was physics specific. Given the success with physics, I’d expect the biology and chemistry communities would be eager to participate or start their own exchanges.
Back in 2019 Canada was having a problem with Malaysia and the Phillipines over the garbage (this is meant literally) that we were shipping over to those counties, which is why an article about Chinese science fiction writer, Chen Qiufan and his 2013 novel, The Waste Tide, caught my attention and I pubisihed this May 31, 2019 posting, “Chen Qiufan, garbage, and Chinese science fiction stories.” There’s a very brief mention of Liu Cxin in one of the excerpts.
Clifford V. Johnson is very good at promoting books. I tip my hat to him; that’s an excellent talent to have, especially when you’ve written a book, in his case, it’s a graphic novel titled ‘The Dialogues: Conversations about the Nature of the Universe‘.
I first stumbled across professor (University of Southern California) and physicist Johnson and his work in this January 18, 2018 news item on phys.org,
How often do you, outside the requirements of an assignment, ponder things like the workings of a distant star, the innards of your phone camera, or the number and layout of petals on a flower? Maybe a little bit, maybe never. Too often, people regard science as sitting outside the general culture: A specialized, difficult topic carried out by somewhat strange people with arcane talents. It’s somehow not for them.
But really science is part of the wonderful tapestry of human culture, intertwined with things like art, music, theater, film and even religion. These elements of our culture help us understand and celebrate our place in the universe, navigate it and be in dialogue with it and each other. Everyone should be able to engage freely in whichever parts of the general culture they choose, from going to a show or humming a tune to talking about a new movie over dinner.
Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.
Here’s more his January 18, 2018 essay on The Conversation (which was the origin for the news item), Note: Links have been removed,
… in addition to being a professor, I work as a science advisor for various forms of entertainment, from blockbuster movies like the recent “Thor: Ragnarok,” or last spring’s 10-hour TV dramatization of the life and work of Albert Einstein (“Genius,” on National Geographic), to the bestselling novel “Dark Matter,” by Blake Crouch. People spend a lot of time consuming entertainment simply because they love stories like these, so it makes sense to put some science in there.
Science can actually help make storytelling more entertaining, engaging and fun – as I explain to entertainment professionals every chance I get. From their perspective, they get potentially bigger audiences. But good stories, enhanced by science, also spark valuable conversations about the subject that continue beyond the movie theater.
Science can be one of the topics woven into the entertainment we consume – via stories, settings and characters. ABC Television
Nonprofit organizations have been working hard on this mission. The Alfred P. Sloan Foundation helps fund and develop films with science content – “The Man Who Knew Infinity” (2015) and “Robot & Frank” (2012) are two examples. (The Sloan Foundation is also a funding partner of The Conversation US.)
The National Academy of Sciences set up the Science & Entertainment Exchange to help connect people from the entertainment industry to scientists. The idea is that such experts can provide Hollywood with engaging details and help with more accurate portrayals of scientists that can enhance the narratives they tell. Many of the popular Marvel movies – including “Thor” (2011), “Ant-Man” (2015) and the upcoming “Avengers: Infinity War” – have had their content strengthened in this way.
Encouragingly, a recent Pew Research Center survey in the U.S. showed that entertainment with science or related content is watched by people across “all demographic, educational and political groups,” and that overall they report positive impressions of the science ideas and scenarios contained in them.
…
Many years ago I realized it is hard to find books on the nonfiction science shelf that let readers see themselves as part of the conversation about science. So I envisioned an entire book of conversations about science taking place between ordinary people. While “eavesdropping” on those conversations, readers learn some science ideas, and are implicitly invited to have conversations of their own. It’s a resurrection of the dialogue form, known to the ancient Greeks, and to Galileo, as a device for exchanging ideas, but with contemporary settings: cafes, restaurants, trains and so on.
…
Clifford Johnson at his drafting table.Clifford V. Johnson, CC BY-ND
So over six years I taught myself the requisite artistic and other production techniques, and studied the language and craft of graphic narratives. I wrote and drew “The Dialogues: Conversations About the Nature of the Universe” as proof of concept: A new kind of nonfiction science book that can inspire more people to engage in their own conversations about science, and celebrate a spirit of plurality in everyday science participation.
…
I so enjoyed Johnson’s writing and appreciated how he introduced his book into the piece that I searched for more and found a three-part interview with Henry Jenkins on his Confessions of an Aca-Fan (Academic-Fan) blog. Before moving onto the interview, here’s some information about the interviewer, Henry Jenkins, (Note: Links have been removed),
Henry Jenkins is the Provost Professor of Communication, Journalism, Cinematic Arts and Education at the University of Southern California. He arrived at USC in Fall 2009 after spending more than a decade as the Director of the MIT Comparative Media Studies Program and the Peter de Florez Professor of Humanities. He is the author and/or editor of seventeen books on various aspects of media and popular culture, including Textual Poachers: Television Fans and Participatory Culture, Hop on Pop: The Politics and Pleasures of Popular Culture, From Barbie to Mortal Kombat: Gender and Computer Games, Convergence Culture: Where Old and New Media Collide, Spreadable Media: Creating Meaning and Value in a Networked Culture, and By Any Media Necessary: The New Youth Activism. He is currently editing a handbook on the civic imagination and writing a book on “comics and stuff”. He has written for Technology Review, Computer Games, Salon, and The Huffington Post.
Jenkins is the principal investigator for The Civic Imagination Project, funded by the MacArthur Foundation, to explore ways to inspire creative collaborations within communities as they work together to identify shared values and visions for the future. This project grew out of the Media, Activism, and Participatory Politics research group, also funded by MacArthur, which did case studies of innovative organizations that have been effective at getting young people involved in the political process. He is also the Chief Advisor to the Annenberg Innovation Lab. Jenkins also serves on the jury that selects the Peabody Awards, which recognizes “stories that matter” from radio, television, and the web.
He has previously worked as the principal investigator for Project New Media Literacies (NML), a group which originated as part of the MacArthur Digital Media and Learning Initiative. Jenkins wrote a white paper on learning in a participatory culture that has become the springboard for the group’s efforts to develop and test educational materials focused on preparing students for engagement with the new media landscape. He also was the founder for the Convergence Culture Consortium, a faculty network which seeks to build bridges between academic researchers and the media industry in order to help inform the rethinking of consumer relations in an age of participatory culture. The Consortium lives on today via the Transforming Hollywood conference, run jointly between USC and UCLA, which recently hosted its 8th event.
While at MIT, he was one of the principal investigators for The Education Arcade, a consortium of educators and business leaders working to promote the educational use of computer and video games. Jenkins also plays a significant role as a public advocate for fans, gamers and bloggers: testifying before the U.S. Senate Commerce Committee investigation into “Marketing Violence to Youth” following the Columbine shootings; advocating for media literacy education before the Federal Communications Commission; calling for a more consumer-oriented approach to intellectual property at a closed door meeting of the governing body of the World Economic Forum; signing amicus briefs in opposition to games censorship; regularly speaking to the press and other media about aspects of media change and popular culture; and most recently, serving as an expert witness in the legal struggle over the fan-made film, Prelude to Axanar. He also has served as a consultant on the Amazon children’s series Lost in Oz, where he provided insights on world-building and transmedia strategies as well as new media literacy issues.
Jenkins has a B.A. in Political Science and Journalism from Georgia State University, a M.A. in Communication Studies from the University of Iowa and a PhD in Communication Arts from the University of Wisconsin-Madison.
Well, that didn’t seem so simple after all. For a somewhat more personal account of who I am, read on.
About Me
The first thing you are going to discover about me, oh reader of this blog, is that I am prolific as hell. The second is that I am also long-winded as all get out. As someone famous once said, “I would have written it shorter, but I didn’t have enough time.”
My earliest work centered on television fans – particularly science fiction fans. Part of what drew me into graduate school in media studies was a fascination with popular culture. I grew up reading Mad magazine and Famous Monsters of Filmland – and, much as my parents feared, it warped me for life. Early on, I discovered the joys of comic books and science fiction, spent time playing around with monster makeup, started writing scripts for my own Super 8 movies (The big problem was that I didn’t have access to a camera until much later), and collecting television-themed toys. By the time I went to college, I was regularly attending science fiction conventions. Through the woman who would become my wife, I discovered fan fiction. And we spent a great deal of time debating our very different ways of reading our favorite television series.
When I got to graduate school, I was struck by how impoverished the academic framework for thinking about media spectatorship was – basically, though everyone framed it differently, consumers were assumed to be passive, brainless, inarticulate, and brainwashed. None of this jelled well with my own robust experience of being a fan of popular culture. I was lucky enough to get to study under John Fiske, first at Iowa and then at the University of Wisconsin-Madison, who introduced me to the cultural studies perspective. Fiske was a key advocate of ethnographic audience research, arguing that media consumers had more tricks up their sleeves than most academic theory acknowledged.
Out of this tension between academic theory and fan experience emerged first an essay, “Star Trek Reread, Rerun, Rewritten” and then a book, Textual Poachers: Television Fans and Participatory Culture. Textual Poachers emerged at a moment when fans were still largely marginal to the way mass media was produced and consumed, and still hidden from the view of most “average consumers.” As such, the book represented a radically different way of thinking about how one might live in relation to media texts. In the book, I describe fans as “rogue readers.” What most people took from that book was my concept of “poaching,” the idea that fans construct their own culture – fan fiction, artwork, costumes, music and videos – from content appropriated from mass media, reshaping it to serve their own needs and interests. There are two other key concepts in this early work which takes on greater significance in my work today – the idea of participatory culture (which runs throughout Convergence Culture) and the idea of a moral economy (that is, the presumed ethical norms which govern the relations between media producers and consumers).
Clifford V. Johnson is the first theoretical physicist who I have ever interviewed for my blog. Given the sharp divide that our society constructs between the sciences and the humanities, he may well be the last, but he would be the first to see this gap as tragic, a consequence of the current configuration of disciplines. Johnson, as I have discovered, is deeply committed to helping us recognize the role that science plays in everyday life, a project he pursues actively through his involvement as one of the leaders of the Los Angeles Institute for the Humanities (of which I am also a member), as a consultant on various film and television projects, and now, as the author of a graphic novel, The Dialogues, which is being released this week. We were both on a panel about contemporary graphic storytelling Tara McPherson organized for the USC Sydney Harmon Institute for Polymathic Study and we’ve continued to bat around ideas about the pedagogical potential of comics ever since.
Here’s what I wrote when I was asked to provide a blurb for his new book:
“Two superheroes walk into a natural history museum — what happens after that will have you thinking and talking for a long time to come. Clifford V. Johnson’s The Dialogues joins a select few examples of recent texts, such as Scott McCloud’s Understanding Comics, Larry Gonick’s Cartoon History of the Universe, Nick Sousanis’s Unflattening, Bryan Talbot’s Alice in Sunderland, or Joe Sacco’s Palestine, which use the affordances of graphic storytelling as pedagogical tools for changing the ways we think about the world around us. Johnson displays a solid grasp of the craft of comics, demonstrating how this medium can be used to represent different understandings of the relationship between time and space, questions central to his native field of physics. He takes advantage of the observational qualities of contemporary graphic novels to explore the place of scientific thinking in our everyday lives.”
To my many readers who care about sequential art, this is a book which should be added to your collection — Johnson makes good comics, smart comics, beautiful comics, and comics which are doing important work, all at the same time. What more do you want!
In the interviews that follows, we explore more fully what motivated this particular comics and how approaching comics as a theoretical physicist has helped him to discover some interesting formal aspects of this medium.
…
What do you want your readers to learn about science over the course of these exchanges? I am struck by the ways you seek to demystify aspects of the scientific process, including the role of theory, equations, and experimentation.
That participatory aspect is core, for sure. Conversations about science by random people out there in the world really do happen – I hear them a lot on the subway, or in cafes, and so I wanted to highlight those and celebrate them. So the book becomes a bit of an invitation to everyone to join in. But then I can show so many other things that typically just get left out of books about science: The ordinariness of the settings in which such conversations can take place, the variety of types of people involved, and indeed the main tools, like equations and technical diagrams, that editors usually tell you to leave out for fear of scaring away the audience. …
I looked for book reviews and found two. This first one is from Starburst Magazine, which strangely does not have the date or author listed (from the review),
… The Dialogues is a series of nine conversations about science told in graphic novel format; the conversationalists are men, women, children, and amateur science buffs who all have something to say about the nature of the universe. Their discussions range from multiverse and string theory to immortality, black holes, and how it’s possible to put just a cup of rice in the pan but end up with a ton more after Mom cooks it. Johnson (who also illustrated the book) believes the graphic form is especially suited for physics because “one drawing can show what it would take many words to explain” and it’s hard to argue with his noble intentions, but despite some undoubtedly thoughtful content The Dialogues doesn’t really work. Why not? Because, even with its plethora of brightly-coloured pictures, it’s still 200+ pages of talking heads. The individual conversations might give us plenty to think about, but the absence of any genuine action (or even a sense of humour) still makes The Dialogues read like very pretty homework.
Adelmar Bultheel’s December 8, 2017 review for the European Mathematical Society acknowledges issues with the book while noting its strong points,
…
So what is the point of producing such a graphic novel if the reader is not properly instructed about anything? In my opinion, the true message can be found in the one or two pages of notes that follow each of the eleven conversations. If you are not into the subject that you were eavesdropping, you probably have heard words, concepts, theories, etc. that you did not understand, or you might just be curious about what exactly the two were discussing. Then you should look that up on the web, or if you want to do it properly, you should consult some literature. This is what these notes are providing: they are pointing to the proper books to consult. …
…
This is a most unusual book for this subject and the way this is approached is most surprising. Not only the contents is heavy stuff, it is also physically heavy to read. Some 250 pages on thick glossy paper makes it a quite heavy book to hold. You probably do not want to read this in bed or take it on a train, unless you have a table in front of you to put it on. Many subjects are mentioned, but not all are explained in detail. The reader should definitely be prepared to do some extra reading to understand things better. Since most references concern other popularising books on the subject, it may require quite a lot of extra reading. But all this hard science is happening in conversations by young enthusiastic people in casual locations and it is all wrapped up in beautiful graphics showing marvellous realistic decors.
I am fascinated by this book which I have yet to read but I did find a trailer for it (from thedialoguesbook.com),