Tag Archives: self-powered batteries

Batteryfree cardiac pacemaker

This particular energy-havesting pacemaker has been tested ‘in vivo’ or, as some like to say, ‘on animal models’. From an Aug. 31, 2014 European Society of Cardiology news release (also on EurekAlert),

A new batteryless cardiac pacemaker based on an automatic wristwatch and powered by heart motion was presented at ESC Congress 2014 today by Adrian Zurbuchen from Switzerland. The prototype device does not require battery replacement.

Mr Zurbuchen, a PhD candidate in the Cardiovascular Engineering Group at ARTORG, University of Bern, Switzerland, said: “Batteries are a limiting factor in today’s medical implants. Once they reach a critically low energy level, physicians see themselves forced to replace a correctly functioning medical device in a surgical intervention. This is an unpleasant scenario which increases costs and the risk of complications for patients.”

Four years ago Professor Rolf Vogel, a cardiologist and engineer at the University of Bern, had the idea of using an automatic wristwatch mechanism to harvest the energy of heart motion. Mr Zurbuchen said: “The heart seems to be a very promising energy source because its contractions are repetitive and present for 24 hours a day, 7 days a week. Furthermore the automatic clockwork, invented in the year 1777, has a good reputation as a reliable technology to scavenge energy from motion.”

The researchers’ first prototype is based on a commercially available automatic wristwatch. All unnecessary parts were removed to reduce weight and size. In addition, they developed a custom-made housing with eyelets that allows suturing the device directly onto the myocardium (photo 1).

The prototype works the same way it would on a person’s wrist. When it is exposed to an external acceleration, the eccentric mass of the clockwork starts rotating. This rotation progressively winds a mechanical spring. After the spring is fully charged it unwinds and thereby spins an electrical micro-generator.

To test the prototype, the researchers developed an electronic circuit to transform and store the signal into a small buffer capacity. They then connected the system to a custom-made cardiac pacemaker (photo 2). The system worked in three steps. First, the harvesting prototype acquired energy from the heart. Second, the energy was temporarily stored in the buffer capacity. And finally, the buffered energy was used by the pacemaker to apply minute stimuli to the heart.

The researchers successfully tested the system in in vivo experiments with domestic pigs. The newly developed system allowed them for the first time to perform batteryless overdrive-pacing at 130 beats per minute.

Mr Zurbuchen said: “We have shown that it is possible to pace the heart using the power of its own motion. The next step in our prototype is to integrate both the electronic circuit for energy storage and the custom-made pacemaker directly into the harvesting device. This will eliminate the need for leads.”

He concluded: “Our new pacemaker tackles the two major disadvantages of today’s pacemakers. First, pacemaker leads are prone to fracture and can pose an imminent threat to the patient. And second, the lifetime of a pacemaker battery is limited. Our energy harvesting system is located directly on the heart and has the potential to avoid both disadvantages by providing the world with a batteryless and leadless pacemaker.”

This project seems the furthest along with regard to its prospects for replacing batteries in pacemakers (with leadlessness being a definite plus) but there are other projects such as Korea’s Professor Keon Jae Lee of KAIST and Professor Boyoung Joung, M.D. at Severance Hospital of Yonsei University who are working on a piezoelectric nanogenerator according to a June 26, 2014 article by Colin Jeffrey for Gizmodo.com,

… Unfortunately, the battery technology used to power these devices [cardiac pacemakers] has not kept pace and the batteries need to be replaced on average every seven years, which requires further surgery. To address this problem, a group of researchers from Korea Advanced Institute of Science and Technology (KAIST) has developed a cardiac pacemaker that is powered semi-permanently by harnessing energy from the body’s own muscles.

The research team, headed by Professor Keon Jae Lee of KAIST and Professor Boyoung Joung, M.D. at Severance Hospital of Yonsei University, has created a flexible piezoelectric nanogenerator that has been used to directly stimulate the heart of a live rat using electrical energy produced from small body movements of the animal.

… the team created their new high-performance flexible nanogenerator from a thin film semiconductor material. In this case, lead magnesium niobate-lead titanate (PMN-PT) was used rather than the graphene oxide and carbon nanotubes of previous versions. As a result, the new device was able to harvest up to 8.2 V and 0.22 mA of electrical energy as a result of small flexing motions of the nanogenerator. The resultant voltage and current generated in this way were of sufficient levels to stimulate the rat’s heart directly.

I gather this project too was tested on animal models, in this case, rats.

Gaining some attention at roughly the same time as the Korean researchers, a French team’s work with a ‘living battery’ is mentioned in a June 17, 2014 news item on the Open Knowledge website,

Philippe Cinquin, Serge Cosnier and their team at Joseph Fourier University in France have invented a ‘living battery.’ The device – a fuel cell and conductive wires modified with reactive enzymes – has the power to tap into the body’s endless supply of glucose and convert simple sugar, which constitutes the energy source of living cells, into electricity.

Visions of implantable biofuel cells that use the body’s natural energy sources to power pacemakers or artificial hearts have been around since the 1960s, but the French team’s innovations represents the closest anyone has ever come to harnessing this energy.

The French team was a finalist for the 2014 European Inventor Award. Here’s a description of how their invention works, from their 2014 European Inventor Award’s webpage,

Biofuel cells that harvest energy from glucose in the body function much like every-day batteries that conduct electricity through positive and negative terminals called anodes and cathodes and a medium conducive to electric charge known as the electrolyte. Electricity is produced via a series of electrochemical reactions between these three components. These reactions are catalysed using enzymes that react with glucose stored in the blood.

Bodily fluids, which contain glucose and oxygen, serve as the electrolyte. To create an anode, two enzymes are used. The first enzyme breaks down the sugar glucose, which is produced every time the animal or person consumes food. The second enzyme oxidises the simpler sugars to release electrons. A current then flows as the electrons are drawn to the cathode. A capacitor that is hooked up to the biofuel cell stores the electric charge produced.

I wish all the researchers good luck as they race towards a new means of powering pacemakers, deep brain stimulators, and other implantable devices that now rely on batteries which need to be changed thus forcing the patient to undergo major surgery.

Self-powered batteries for pacemakers, etc. have been mentioned here before:

April 3, 2009 posting

July 12, 2010 posting

March 8, 2013 posting

A tattoo that’s a biobattery and a sensor?

It’s going to be an American Chemical Society (ACS) 248th meeting kind of week as yet another interesting piece of scientific research is bruited (spread) about the internet. This time it’s all about sweat, exercise, and biobatteries. From an Aug. 13, 2014 news item on Nanowerk,

In the future, working up a sweat by exercising may not only be good for your health, but it could also power your small electronic devices. Researchers will report today that they have designed a sensor in the form of a temporary tattoo that can both monitor a person’s progress during exercise and produce power from their perspiration.

An Aug. 13, 2014 ACS news release on EurekAlert, which originated the news item, describes the inspiration (as opposed to perspiration) for this technology,

The device works by detecting and responding to lactate, which is naturally present in sweat. “Lactate is a very important indicator of how you are doing during exercise,” says Wenzhao Jia, Ph.D.

In general, the more intense the exercise, the more lactate the body produces. During strenuous physical activity, the body needs to generate more energy, so it activates a process called glycolysis. Glycolysis produces energy and lactate, the latter of which scientists can detect in the blood.

Professional athletes monitor their lactate levels during performance testing as a way to evaluate their fitness and training program. In addition, doctors measure lactate during exercise testing of patients for conditions marked by abnormally high lactate levels, such as heart or lung disease. Currently, lactate testing is inconvenient and intrusive because blood samples must be collected from the person at different times during the exercise regime and then analyzed.

The news release goes on to describe the research process which resulted in a temporary tattoo that could be used to power small scale electronics,

Jia, a postdoctoral student in the lab of Joseph Wang, D.Sc., at the University of California San Diego, and her colleagues developed a faster, easier and more comfortable way to measure lactate during exercise. They imprinted a flexible lactate sensor onto temporary tattoo paper. The sensor contained an enzyme that strips electrons from lactate, generating a weak electrical current. The researchers applied the tattoo to the upper arms of 10 healthy volunteers. Then the team measured the electrical current produced as the volunteers exercised at increasing resistance levels on a stationary bicycle for 30 minutes. In this way, they could continuously monitor sweat lactate levels over time and with changes in exercise intensity.

The team then went a step further, building on these findings to make a sweat-powered biobattery. Batteries produce energy by passing current, in the form of electrons, from an anode to a cathode. In this case, the anode contained the enzyme that removes electrons from lactate, and the cathode contained a molecule that accepts the electrons.

When 15 volunteers wore the tattoo biobatteries while exercising on a stationary bike, they produced different amounts of power. Interestingly, people who were less fit (exercising fewer than once a week) produced more power than those who were moderately fit (exercising one to three times per week). Enthusiasts who worked out more than three times per week produced the least amount of power. The researchers say that this is probably because the less-fit people became fatigued sooner, causing glycolysis to kick in earlier, forming more lactate. The maximum amount of energy produced by a person in the low-fitness group was 70 microWatts per cm2 of skin.

“The current produced is not that high, but we are working on enhancing it so that eventually we could power some small electronic devices,” Jia says. “Right now, we can get a maximum of 70 microWatts per cm2, but our electrodes are only 2 by 3 millimeters in size and generate about 4 microWatts — a bit small to generate enough power to run a watch, for example, which requires at least 10 microWatts. So besides working to get higher power, we also need to leverage electronics to store the generated current and make it sufficient for these requirements.”

Biobatteries offer certain advantages over conventional batteries: They recharge more quickly, use renewable energy sources (in this case, sweat), and are safer because they do not explode or leak toxic chemicals.

“These represent the first examples of epidermal electrochemical biosensing and biofuel cells that could potentially be used for a wide range of future applications,” Wang says.

The ACS has made a video about this work available,

It seems to me this tattoo battery could be used as a self-powered monitoring device in a medical application for heart or lung disease.

Finger pinches today, heartbeats tomorrow and electricity forever

Devices powered by energy generated and harvested from one’s own body have been of tremendous interest to me. Last year I mentioned some research in this area by Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology) in a July 12, 2010 posting. Well, Wang and his team recently announced that they have developed the first commercially viable nanogenerator. From the March 29, 2011 news item on Physorg.com,

After six years of intensive effort, scientists are reporting development of the first commercially viable nanogenerator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity. Speaking here today at the 241st National Meeting & Exposition of the American Chemical Society, they described boosting the device’s power output by thousands times and its voltage by 150 times to finally move it out of the lab and toward everyday life.

“This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets,” said lead scientist Zhong Lin Wang, Ph.D. “Our nanogenerators are poised to change lives in the future. Their potential is only limited by one’s imagination.”

Here’s how it works  (from Kit Eaton’s article on Fast Company),

The trick used by Dr. Zhong Lin Wang’s team has been to utilize nanowires made of zinc oxide (ZnO). ZnO is a piezoelectric material–meaning it changes shape slightly when an electrical field is applied across it, or a current is generated when it’s flexed by an external force. By combining nanoscopic wires (each 500 times narrower than a human hair) of ZnO into a flexible bundle, the team found it could generate truly workable amounts of energy. The bundle is actually bonded to a flexible polymer slice, and in the experimental setup five pinky-nail-size nanogenerators were stacked up to create a power supply that can push out 1 micro Amp at about 3 volts. That doesn’t sound like a lot, but it was enough to power an LED and an LCD screen in a demonstration of the technology’s effectiveness.

Dexter Johnson at Nanoclast on the IEEE (Institute of Electrical Engineering and Electronics) website notes in his March 30, 2010 posting (http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/powering-our-electronic-devices-with-nanogenerators-looks-more-feasible) that the nanogenerator’s commercial viability is dependent on work being done at the University of Illinois,

I would have happily chalked this story [about the nanogenerator] up to one more excellent job of getting nanomaterial research into the mainstream press, but because of recent work by Eric Pop and his colleagues at the University of Illinois’s Beckman Institute in reducing the energy consumed by electronic devices it seems a bit more intriguing now.

So low is the energy consumption of the electronics proposed by the University of Illinois research it is to the point where a mobile device may not need a battery but could possibly operate on the energy generated from piezoelectric-enabled nanogenerators contained within such devices like those proposed by Wang.

I have a suspicion it’s going to be a while before I will be wearing nanogenerators to harvest the electricity my body produces. Meanwhile, I have some questions about the possible uses for nanogenerators (from the Kit Eaton article),

The search for tiny power generator technology has slowly inched forward for years for good reason–there are a trillion medical and surveillance uses–not to mention countless consumer electronics applications– for a system that could grab electrical power from something nearby that’s moving even just a tiny bit. Imagine an implanted insulin pump, or a pacemaker that’s powered by the throbbing of the heart or blood vessels nearby (and then imagine the pacemaker powering the heart, which is powered by the pacemaker, and so on and so on….) and you see how useful such a system could be.

It’s the reference to surveillance that makes me a little uneasy.

Harvesting biomechanical energy

Even before noting the vampire battery work being done at the University of British Columbia (April 3, 2009) , I’ve been quite interested in self-powered batteries. (As for why it’s a ‘vampire’, researchers are working on a battery fueled by by a patient’s own blood so that theoretically someone with a pacemaker or a deep brain stimulator would require fewer battery changes, i.e., fewer operations.)

Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology in the US) is taking another approach to self-powered batteries by harvesting irregular mechanical motion (such as heart beats, finger tapping, breathing, vocal cord vibrations, etc.) in a field that’s been termed nanopiezotronics. Michael Berger at Nanowerk has written an article spotlighting Professor Wang’s work and its progress. From the article,

“Our experiments clearly show that the in vivo application of our single-wire nanogenerator for harvesting biomechanical energy inside a live animal works,” says Wang. “The nanogenerator has successfully converted the mechanical vibration energy from normal breathing and a heartbeat into electricity.”

He concludes that his team’s research shows a feasible approach to scavenge the biomechanical energy inside the body, such as heart beat, blood flow, muscle stretching, or even irregular vibration. “This work presents a crucial step towards implantable self-powered nanosystems.”

There’s still a lot of work to be done before human clinical trials (let alone thinking about products in the marketplace),

…  Wang tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

If you’re interested in the details about what the researchers are doing, please do read Berger’s fascinating investigation into the area of research.