Tag Archives: SERS

Shining a light on Poland’s nanotechnology effort

Last week I managed to mention Mongolia’s nanotechnology center (my Nov. 29, 2013 posting) and now I get to feature Poland here thanks to a Nov. 29, 2013 news item (also from last week) on Nanowerk,

Strengthening the nanotechnology capabilities of a key institute in Poland will enable the country to upgrade research on biomaterials and alternative energy. It will also help further integrate the country in the European Research Area (ERA).
Nanotechnology has been instrumental in creating many new materials and devices that offer numerous applications from biomaterials to alternative energy, representing an important driver of competitiveness within the ERA. The EU-funded project

‘Nanotechnology, biomaterials and alternative energy source for ERA [European Research Area] integration’ (NOBLESSE) is supporting Poland in strengthening its research capabilities in this pivotal field.

To achieve its aims, NOBLESSE is procuring new equipment for the academy, in addition to strengthening links with other institutes, promoting twinning activities and enhancing knowledge transfer. …

Already, the project team has installed an advanced scanning electron microscope, created a new laboratory in the IPC PAS, the Mazovia Center for Surface Analysis (which is one of the most advanced in Europe), and built an open-access Electronic Laboratory Equipment Database (ELAD) that documents research equipment available in specialised laboratories across Poland.

There is more about the NOBLESSE project from this webpage: http://ec.europa.eu/research/infocentre/article_en.cfm?id=/research/star/index_en.cfm?p=ss-noblesse&calledby=infocentre&item=Energy&artid=28137&caller=SuccessStories (article published Nov. 15, 2012),

The use and control of nano-structured materials is of great importance for the development of new environmentally friendly materials, more efficient energy sources and biosensors for medical analysis. The European Noblesse project is boosting a Polish academy’s capabilities to research these developments.

… Such is the scope for the development and application of nanotechnology that nano-structured materials are in high demand. To meet this demand, nano-science institutes need to rise to the challenges that modern society presents.

This is one of the driving forces behind the Noblesse project which aims to establish the Institute of Physical Chemistry, Polish Academy of Sciences (IPC-PAS) as an integrated partner and respected participant in the European nano-science community.

Through a combination of newly purchased, state-of-the-art equipment – financed by EU FP7 funding – and a programme of recruitment and training, Noblesse promises to position IPC-PAS as a leading research centre in Europe and beyond.

Significant progress

The project has already made great strides towards bringing new nanotechnology applications to the market place and in promoting the career development of a team of young, dedicated researchers in the field.

“In the first year of the project, we filed 49 patent applications, 25 of them abroad – most of which are nanotechnology patents,” says Professor Robert Holyst, the project coordinator. “I am not aware of any institute in Poland filing more patent applications than us at the moment.

“We have also established two spin-off companies, thanks to the valuable influence of our advisory board members from industry,” he adds. Tomasz Tuora, who is on the advisory board of the Noblesse project, is the main investor in Scope Fluidics Ltd and Curiosity Diagnostics Ltd, Prof. Holyst explains. “While the Noblesse grant did not promise to set up spin-off companies in the Institute, we did promise to collaborate and develop ties with industry,” he says.

According to Prof. Holyst, the two companies plan to make products for the medical sector and have each employed between 10 and 20 scientists to develop new nanotechnology applications.

The creation of spin-off companies from IPC-PAS is unlikely to end there if an application for a €1.3 million-grant from the NCBIR, the Polish funding agency for applied research, is successful. “We are currently applying for this grant to develop and later commercialise the SERS (surface enhanced resonance spectroscopy) platform for molecular diagnostics,” Prof. Holyst explains. “If we are successful in our application, we’ll establish a new spin-off company for this purpose.”

,The 2013 news item on Nanowerk does not mention the commercialization project referred to in the 2012 article. Good luck to the NOBLESSE team and I look forward to hearing more about the nanotechnology effort in Poland.

One step diagnosis (nanotechnology-enabled) from University of Georgia (US)

The researchers haven’t tried this out on blood, saliva, or urine yet but this July 21, 2012 news item by Gary Thomas on Azonano hints that will be the next step,

Researchers at the University of Georgia have devised a single-step, quick and accurate technique using nanomaterials to detect pathogens and contaminants. The team demonstrated the capability of the new technique in detecting compounds like protein albumin and lactic acid in extremely diluted mixtures that comprised of dyes and chemicals.

The researchers conclude that the same method can be employed on biological mixtures like blood, saliva, food and urine to detect contaminants and pathogens.

The originating July 19, 2012 news release by Sam Fahmy for the University of Georgia provides more detail,

“The results are unambiguous and quickly give you a high degree of specificity,” said senior author Yiping Zhao, professor of physics in the UGA [University of Georgia] Franklin College of Arts and Sciences and director of the university’s Nanoscale Science and Engineering Center.

Zhao and his co-authors—doctoral students Jing Chen and Justin Abell and professor Yao-wen Huang of the UGA College of Agricultural and Environmental Sciences—used nanotechnology to combine two well-known techniques and create their new diagnostic test. …

The first component of their two-in-one system uses a technique known as surface enhanced Raman spectroscopy, or SERS, which measures the change in frequency of a laser as it scatters off a compound. Every compound displays a series of distinctive changes in frequency, or Raman shifts, that are as unique as a fingerprint. The signal produced by Raman scattering is inherently weak, but Zhao and his colleagues have arrayed silver nanorods 1,000 times finer than the width of a human hair at a precise angle to significantly amplify the signal. In previous studies with Ralph Tripp in the UGA College of Veterinary Medicine and chemist Richard Dluhy in the Franklin College, they demonstrated that the use of SERS with silver nanorods could identify viruses such as HIV and RSV isolated from infected cells.

Here’s why they needed a second technique and how it fits into the picture (from the news release),

“In a clinical setting, the sample that you obtain from patients typically contains bacteria or viruses as well as a lot of fluid—as in blood, urine or saliva—that contains biological agents that interfere with the signal you’re trying to detect,” Zhao said. “To develop a diagnostic that could be used at the point of care, we needed a way to separate those agents.”

Once again, the scientists turned to nanotechnology to create a next-generation diagnostic test. Using traditional thin layer chromatography, or TLC, scientists blot a drop of sample onto a porous surface. They then apply a solvent such as methanol to the sample, and the sample components separate based on how strongly they’re attracted to the solvent and the surface.

Study co-author Justin Abell, a doctoral student in the UGA College of Engineering, explained that TLC typically requires a large sample volume because the compound of interest soaks into the surface in addition to moving along it, like a stain on a rug. The silver nanorod surface that the researchers use, in contrast, allows them to use a miniscule amount of sample in a technique known as ultra-thin layer chromatography.

“In our case, the nanorods are acting as the detection medium but also as the separation medium,” Abell said, “so it’s a two-in-one system.”

To test their method, the researchers used mixtures of dyes, the organic chemical melamine, lactic acid and the protein albumin. In each case, they were able to directly identify the compounds of interest, even in samples diluted to concentrations below 182 nanograms per milliliter-roughly 200 billionths of a gram in a fifth of a teaspoon. And while the detection of viruses using techniques such as polymerase chain reaction can take days or even weeks and requires fluorescent labels, the on-chip method developed by the UGA researchers yields results in less than an hour without the use of molecular labels.

As for future plans to develop this application (from the news release),

The researchers are currently testing their technique with biological samples from Tripp’s lab that contain viruses, and Zhao said preliminary results are promising. He adds that while his team is focused on health and food safety applications, SERS and ultra-thin layer chromatography can be used to detect compounds of all types—everything from forensic materials at a crime scene to environmental pollutants. His team also is working with colleagues across campus to create an online encyclopedia that would allow technicians to identify viruses, bacteria, biomarkers and pharmaceuticals based on their distinctive Raman shifts.

“Every compound has a unique SERS spectrum,” Zhao said, “so this is a very robust technology whose applications are practically endless.”

Winslow Homer, Van Gogh, and nanotechnology

A few years back I wrote up a story about Winslow Homer and his painting, For to Be a Farmer’s Boy, which had a nanotechnology angle. The painting,part f the Art Institute of Chicago’s (AIC) collection, was examined using the Surface Enhanced Raman Spectrometry (SERS) technique and I found the art conservation application so interesting I included the story in my The Nanotech Mysteries wiki on the Scientists get artful page.

The April 5, 2011 article [ETA: Link added Feb. 10, 2013] by Francesca Casadio on physorg.com  has more technical detail about the conservation process and the painting. It also mentions The Bedroom by Van Gogh,

… they are both displayed at the Art Institute of Chicago (AIC). Homer’s painting represents a high point in the career of America’s premiere watercolorist, while Van Gogh’s painting is perhaps one of most recognizable paintings in the world. However, they also share a key physical trait.

“These breathtaking artworks are both painted with colorants that are sensitive to light, or, as we say in museums, they are ‘fugitive,’ meaning they quickly vanish if exposed to too much light,” says Francesca Casadio, A.W. Mellon senior conservation scientist at the AIC. “Fading can dramatically change the color balance of fragile works of art and go so far as to obfuscate, in part, the artist’s intended effect.”

Here’s how it works,

By using a colloidal suspension of silver nanoparticles as a “performance enhancing drug,” researchers, for the first time, can identify natural organic colorants on a single grain of pigment otherwise invisible to the naked eye.

SERS analysis
Indeed, only a handful of pigment particles were available from the Homer watercolor. Compared to reference 19th century watercolor pigments available at AIC, these colorants were identified as Indian purple (cochineal precipitated with copper sulfate) and madder purple, two natural dyestuffs derived from an insect and vegetable-root sources, respectively.
The results indicate that in Homer’s For to Be a Farmer’s Boy, the “empty” sky once depicted a vibrant autumn sunset, with organic purples and reds, in addition to inorganic reds and yellows.

The Art Institute of Chicago has a page about this painting where they have a digital simulation that allows you to see the original before and after the restoration.

I did cover Van Gogh’s The Bedroom in a March 16, 2010 posting (scroll down) about the Amsterdam Museum and its restoration efforts. The museum staff wrote a blog about the painting and the process as they restored it. The last posting on the blog indicates that The Bedroom was going to be in Japan until April 10, 2011 and then it was being returned to the Amsterdam Museum. I wonder if the painting’s current residency at the AIC is a consequence of the earthquake, tsunami, and reactor situations in Japan.