Tag Archives: single-walled carbon nanotubes (SWCNTs)

New capacitor for better wearable electronics?

Supercapacitors are a predictable source of scientific interest and excitement. The latest entry in the ‘supercapacitor stakes’ is from a Russian/Finnish/US team according to a June 11, 2020 Skoltech (Skolkovo Institute of Science and Technology) press release (also on EurekAlert),

Researchers from Skoltech [Russia], Aalto University [Finland] and Massachusetts Institute of Technology [MIT; US] have designed a high-performance, low-cost, environmentally friendly, and stretchable supercapacitor that can potentially be used in wearable electronics. The paper was published in the Journal of Energy Storage.

Supercapacitors, with their high power density, fast charge-discharge rates, long cycle life, and cost-effectiveness, are a promising power source for everything from mobile and wearable electronics to electric vehicles. However, combining high energy density, safety, and eco-friendliness in one supercapacitor suitable for small devices has been rather challenging.

“Usually, organic solvents are used to increase the energy density. These are hazardous, not environmentally friendly, and they reduce the power density compared to aqueous electrolytes with higher conductivity,” says Professor Tanja Kallio from Aalto University, a co-author of the paper.

The researchers proposed a new design for a “green” and simple-to-fabricate supercapacitor. It consists of a solid-state material based on nitrogen-doped graphene flake electrodes distributed in the NaCl-containing hydrogel electrolyte. This structure is sandwiched between two single-walled carbon nanotube film current collectors, which provides stretchability. Hydrogel in the supercapacitor design enables compact packing and high energy density and allows them to use the environmentally friendly electrolyte.

The scientists managed to improve the volumetric capacitive performance, high energy density and power density for the prototype over analogous supercapacitors described in previous research. “We fabricated a prototype with unchanged performance under the 50% strain after a thousand stretching cycles. To ensure lower cost and better environmental performance, we used a NaCl-based electrolyte. Still the fabrication cost can be lowered down by implementation of 3D printing or other advanced fabrication techniques,” concluded Skoltech professor Albert Nasibulin.

Here’s a link to and a citation for the paper,

Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes by Evgeniia Gilshtein, Cristina Flox, Farhan S.M. Ali, Bahareh Mehrabimatin, Fedor S.Fedorov, Shaoting Lin, Xuanhe Zhao, Albert G. Nasibulin, Tanja Kallio. Journal of Energy Storage Volume 30, August 2020, 101505 DOI: https://doi.org/10.1016/j.est.2020.101505

This paper is behind a paywall.

I’m trying to remember if I’ve ever before seen a material that combines graphene and single-walled carbon nanotubes (SWCNTs). Anyway, here’s an image the researchers are using illustrate their work,

Caption: This is an outline of the new supercapacitor. Credit: Pavel Odinev / Skoltech

OCSiAl becomes largest European supplier of single-walled carbon nanotubes (SWCNTs)

It’s time I posted news about OCSiAl as it’s been about five years since they were last mentioned here. An April 24, 2020 news item on AzoNano proclaims a new status for the company,

As from [sic] April 2020, OCSiAl is able to commercialize up to 100 tonnes annually of its TUBALL™ single wall carbon nanotubes [single-walled carbon nanotubes or SWCNTs] in Europe thanks to the company’s upgraded dossier under the EU’s [European Union’s] “Registration, Evaluation, Authorization and Restriction of Chemicals” (REACH) legislation, being additionally compliant with the new Annexes on nanoforms. OCSiAl will continue to expand markets for nanotubes and widen industrial applications by scaling-up its permitted volume in Australia and Canada in 2020, pending approval by the authorities.

An April 23, 2020 OCSiAl press release, which originated the news item, provides more details about the company and its customers in ‘marketingese’ (marketing language),

OCSiAl is now the only company in Europe able to commercialize up to 100 tonnes of single wall carbon nanotubes, also known as graphene nanotubes. This step allows the company to boost its presence in the region and to meet the growing market demand for industrial volumes of graphene nanotubes. The company’s current portfolio includes over 1,600 customers worldwide, with China and Europe as the two most rapidly expanding markets for nanotube applications in transportation, electronics, construction, infrastructure, renewable energy, power sources, sports equipment, 3D-printing, textiles, sensors and many more.

OCSiAl plays a leading role in improving the accessibility of information on the nature of graphene nanotubes and in forming the principles of their safe handling – the company has so far initiated 16 studies in these fields, including those required by the revised REACH annex. TUBALL nanotubes demonstrate no skin irritation, corrosion or sensitization, no mutagenic effect, and no adverse effect on reproductive toxicity. In addition, ecotoxicity studies have shown no toxic effect on Daphnia or algae. The typical exposure values of respirable fraction of TUBALL in the workplace is much less than 5% of the Recommended Exposure Limits (REL) as per NIOSH in the USA, which is of practical importance for manufacturers working with nanotubes. And end users can also be reassured that these studies have shown that no TUBALL nanotubes are released during utilization of products made with nanoaugmented materials. All these findings reflect the unique nature and morphology of TUBALL graphene nanotubes.

OCSiAl continues to accelerate the acceptance of this unique material in various markets by supplying high-quality nanotubes at an economically feasible price and in industrial volumes. TUBALL is regulated by the Environmental Protection Agency (EPA) in the US, where it is also allowed to be commercialized in industrial volumes. The company’s near-term plans include scaling-up the permitted volume of industrial commercialization of graphene nanotubes in Australia and Canada.

The company appears to be trying to rebrand carbon nanotubes as graphene nanotubes. It can be done (e.g., facial tissue instead of Kleenex or photocopy instead of Xerox) but it can take a long time and, after a brief search (May 13, 2020), I was not able to find any other reference to ‘graphene nanotubes’ online.

Between the two of them, OCSiAl’s Wikipedia entry and the company’s Team webpage (scroll down past the smiling faces), you can find some company history.

Purifying carbon nanotubes with dietary fiber

This work comes out of Japan according to a November 2, 2019 news item on Nanowerk,

A new, cheaper method easily and effectively separates two types of carbon nanotubes. The process, developed by Nagoya University researchers in Japan, could be up-scaled for manufacturing purified batches of single-wall carbon nanotubes that can be used in high-performance electronic devices.

Single-wall carbon nanotubes (SWCNTs) have excellent electronic and mechanical properties, making them ideal candidates for use in a wide range of electronic devices, including the thin-film transistors found in LCD displays. A problem is that only two-thirds of manufactured SWCNTs are suitable for use in electronic devices. The useful semiconducting SWCNTs must be separated from the unwanted metallic ones. But the most powerful purification process, known as aqueous two-phase extraction, currently involves the use of a costly polysaccharide, called dextran.

Caption: The unwanted metallic SWCNTs deposited at the bottom of the solution, while the wanted semiconducting ones floated to the top. Credit: Haruka Omachi

An October 29, 2019 Nagoya University press release (also on EurekAlert but dated Nov. 2, 2019), which originated the news item, describes how dextran could be replaced with something much cheaper in the SWCNT purification process,

Organic chemist Haruka Omachi and colleagues at Nagoya University hypothesized that dextran’s effectiveness in separating semiconducting from metallic SWCNTs lies in the linkages connecting its glucose units. Instead of using dextran to separate the two types of SWCNTs, the team tried the significantly cheaper isomaltodextran, which has many more of these linkages.

A batch of SWCNTs was left for 15 minutes in a solution containing polyethylene glycol and isomaltodextrin and then centrifuged for five minutes. Three different types of isomaltodextrin were tried, each with a different number of linkages and a different molecular weight. The team found that metallic SWCNTs separated to the bottom isomaltodextrin part of the solution, while the semiconducting SWCNTs floated to the top polyethylene glycol part.

The type of isomaltodextrin with high molecular weight and the most linkages was the most (99%) effective in separating the two types of SWCNTs. The team also found that another polysaccharide, called pullulan, whose glucose units are connected with different kinds of linkages, was ineffective in separating the two types of SWCNTs. The researchers suggest that the number and type of linkages present in isomaltodextrin play an important role in their ability to effectively separate the carbon nanotubes.

The team also found that a thin-film transistor made with their purified semiconducting SWCNTs performed very well.

Isomaltodextrin is a cheap and widely available polysaccharide produced from starch that is used as a dietary fibre. This makes it a cost-effective alternative for the SWCNT extraction process. Omachi and his colleagues are currently in discussions with companies to commercialize their approach. They are also working on improving the performance of thin-film transistors using semiconducting SWCNTs in flexible displays and sensor devices.

Here’s a link to and a citation for the paper,

Aqueous two-phase extraction of semiconducting single-wall carbon nanotubes with isomaltodextrin and thin-film transistor applications by Haruka Omachi, Tomohiko Komuro, Kaisei Matsumoto, Minako Nakajima, Hikaru Watanabe, Jun Hirotani, Yutaka Ohno, and Hisanori Shinohara. Applied Physics Express, Volume 12, Number 9 DOI: https://doi.org/10.7567/1882-0786/ab369 Published 14 August 2019 • © 2019 The Japan Society of Applied Physics

This paper is open access.

Double-walled carbon nanotubes have superior electrical properties?

A March 27, 2020 news item on Nanowerk suggests that double-walled carbon nanotubes (DWCNTs) may offer some advantages over single-walled carbon nanotubes (SWCNTs), NOTE: A link has been removed,

One nanotube could be great for electronics applications, but there’s new evidence that two could be tops.

Rice University engineers already knew that size matters when using single-walled carbon nanotubes for their electrical properties. But until now, nobody had studied how electrons act when confronted with the Russian doll-like structure of multiwalled tubes.

There’s a diagram representing the work,

Caption: Rice University theorists have calculated flexoelectric effects in double-walled carbon nanotubes. The electrical potential (P) of atoms on either side of a graphene sheet (top) are identical, but not when the sheet is curved into a nanotube. Double-walled nanotubes (bottom) show unique effects as band gaps in inner and outer tubes are staggered. Credit: Yakobson Research Group/Rice University

A March 27, 2020 Rice University news release (also on EurekAlert), which originated the news item, delves further (NOTE: Links have been removed),

The Rice lab of materials theorist Boris Yakobson has now calculated the impact of curvature of semiconducting double-wall carbon nanotubes on their flexoelectric voltage, a measure of electrical imbalance between the nanotube’s inner and outer walls.

This affects how suitable nested nanotube pairs may be for nanoelectronics applications, especially photovoltaics.

The theoretical research by Yakobson’s Brown School of Engineering group appears in the American Chemical Society journal Nano Letters.

In an 2002 study, Yakobson and his Rice colleagues had revealed how charge transfer, the difference between positive and negative poles that allows voltage to exist between one and the other, scales linearly to the curvature of the nanotube wall. The width of the tube dictates curvature, and the lab found that the thinner the nanotube (and thus larger the curvature), the greater the potential voltage.

When carbon atoms form flat graphene, the charge density of the atoms on either side of the plane are identical, Yakobson said. Curving the graphene sheet into a tube breaks that symmetry, changing the balance.

That creates a flexoelectric local dipole in the direction of, and proportional to, the curvature, according to the researchers, who noted that the flexoelectricity of 2D carbon “is a remarkable but also fairly subtle effect.”

But more than one wall greatly complicates the balance, altering the distribution of electrons. In double-walled nanotubes, the curvature of the inner and outer tubes differ, giving each a distinct band gap. Additionally, the models showed the flexoelectric voltage of the outer wall shifts the band gap of the inner wall, creating a staggered band alignment in the nested system.

“The novelty is that the inserted tube, the ‘baby’ (inside) matryoshka has all of its quantum energy levels shifted because of the voltage created by exterior nanotube,” Yakobson said. The interplay of different curvatures, he said, causes a straddling-to-staggered band gap transition that takes place at an estimated critical diameter of about 2.4 nanometers.

“This is a huge advantage for solar cells, essentially a prerequisite for separating positive and negative charges to create a current,” Yakobson said. “When light is absorbed, an electron always jumps from the top of an occupied valence band (leaving a ‘plus’ hole behind) to the lowest state of empty conductance band.

“But in a staggered configuration they happen to be in different tubes, or layers,” he said. “The ‘plus’ and ‘minus’ get separated between the tubes and can flow away by generating current in a circuit.”

The team’s calculations also showed that modifying the nanotubes’ surfaces with either positive or negative atoms could create “substantial voltages of either sign” up to three volts. “Although functionalization could strongly perturb the electronic properties of nanotubes, it may be a very powerful way of inducing voltage for certain applications,” the researchers wrote.

The team suggested its findings may apply to other types of nanotubes, including boron nitride and molybdenum disulfide, on their own or as hybrids with carbon nanotubes.

Here’s a link to and a citation for the paper,

Flexoelectricity and charge separation in carbon nanotubes by Vasilii I. Artyukhov, Sunny Gupta, Alex Kutana, Boris I. Yakobson. Nano Lett. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acs.nanolett.9b05345 [Online] Publication Date:March 10, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Wearable electronic textiles from the UK, India, and Canada: two different carbon materials

It seems wearable electronic textiles may be getting nearer to the marketplace. I have three research items (two teams working with graphene and one working with carbon nanotubes) that appeared on my various feeds within two days of each other.


This research study is the result of a collaboration between UK and Chinese scientists. From a May 15, 2019 news item on phys.org (Note: Links have been removed),

Wearable electronic components incorporated directly into fabrics have been developed by researchers at the University of Cambridge. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The Cambridge researchers, working in collaboration with colleagues at Jiangnan University in China, have shown how graphene – a two-dimensional form of carbon – and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The research, published in the journal Nanoscale, demonstrates that graphene inks can be used in textiles able to store electrical charge and release it when required. The new textile electronic devices are based on low-cost, sustainable and scalable dyeing of polyester fabric. The inks are produced by standard solution processing techniques.

Building on previous work by the same team, the researchers designed inks which can be directly coated onto a polyester fabric in a simple dyeing process. The versatility of the process allows various types of electronic components to be incorporated into the fabric.

Schematic of the textile-based capacitor integrating GNP/polyesters as electrodes and h-BN/polyesters as dielectrics. Credit: Felice Torrisi

A May 16, 2019 University of Cambridge press release, which originated the news item, probes further,

Most other wearable electronics rely on rigid electronic components mounted on plastic or textiles. These offer limited compatibility with the skin in many circumstances, are damaged when washed and are uncomfortable to wear because they are not breathable.

“Other techniques to incorporate electronic components directly into textiles are expensive to produce and usually require toxic solvents, which makes them unsuitable to be worn,” said Dr Felice Torrisi from the Cambridge Graphene Centre, and the paper’s corresponding author. “Our inks are cheap, safe and environmentally-friendly, and can be combined to create electronic circuits by simply overlaying different fabrics made of two-dimensional materials on the fabric.”

The researchers suspended individual graphene sheets in a low boiling point solvent, which is easily removed after deposition on the fabric, resulting in a thin and uniform conducting network made up of multiple graphene sheets. The subsequent overlay of several graphene and hexagonal boron nitride (h-BN) fabrics creates an active region, which enables charge storage. This sort of ‘battery’ on fabric is bendable and can withstand washing cycles in a normal washing machine.

“Textile dyeing has been around for centuries using simple pigments, but our result demonstrates for the first time that inks based on graphene and related materials can be used to produce textiles that could store and release energy,” said co-author Professor Chaoxia Wang from Jiangnan University in China. “Our process is scalable and there are no fundamental obstacles to the technological development of wearable electronic devices both in terms of their complexity and performance.”

The work done by the Cambridge researchers opens a number of commercial opportunities for ink based on two-dimensional materials, ranging from personal health and well-being technology, to wearable energy and data storage, military garments, wearable computing and fashion.

“Turning textiles into functional energy storage elements can open up an entirely new set of applications, from body-energy harvesting and storage to the Internet of Things,” said Torrisi “In the future our clothes could incorporate these textile-based charge storage elements and power wearable textile devices.”

Here’s a link to and a citation for the paper,

Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures by Siyu Qiang, Tian Carey, Adrees Arbab, Weihua Song, Chaoxia Wang and Felice Torris. Nanoscale, 2019, Advance Article DOI: 10.1039/C9NR00463G First published on 18 Apr 2019

This paper is behind a paywall.


Prior to graphene’s reign as the ‘it’ carbon material, carbon nanotubes (CNTs) ruled. It’s been quieter on the CNT front since graphene took over but a May 15, 2019 Nanowerk Spotlight article by Michael Berger highlights some of the latest CNT research coming out of India,

The most important technical challenge is to blend the chemical nature of raw materials with fabrication techniques and processability, all of which are diametrically conflicting for textiles and conventional energy storage devices. A team from Indian Institute of Technology Bombay has come out with a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device. Several scientific and technological challenges were overcome during this process.

First, to achieve user-comfort and computability with clothing, the scaffold employed was the the same as what a regular fabric is made up of – cellulose fibers. However, cotton yarns are electrical insulators and therefore practically useless for any electronics. Therefore, the yarns are coated with single-wall carbon nanotubes (SWNTs).

SWNTs are hollow, cylindrical allotropes of carbon and combine excellent mechanical strength with electrical conductivity and surface area. Such a coating converts the electrical insulating cotton yarn to a metallic conductor with high specific surface area. At the same time, using carbon-based materials ensures that the final material remains light-weight and does not cause user discomfort that can arise from metallic wires such as copper and gold. This CNT-coated cotton yarn (CNT-wires) forms the electrode for the energy storage device.

Next, the electrolyte is composed of solid-state electrolyte sheets since no liquid-state electrolytes can be used for this purpose. However, solid state electrolytes suffer from poor ionic conductivity – a major disadvantage for energy storage applications. Therefore, a steam-based infiltration approach that enhances the ionic conductivity of the electrolyte is adopted. Such enhancement of humidity significantly increases the energy storage capacity of the device.

The integration of the CNT-wire electrode with the electrolyte sheet was carried out by a simple and elegant approach of interweaving the CNT-wire through the electrolyte (see Figure 1). This resulted in cross-intersections which are actually junctions where the electrical energy can be stored. Each such junction is now an energy storage unit, referred to as sewcap.

The advantage of this process is that several 100s and 1000s of sewcaps can be made in a small area and integrated to increase the total amount of energy stored in the system. This scalability is unique and critical aspect of this work and stems from the approach of interweaving.

Further, this process is completely adaptable with current processes used in textile industries. Hence, a proportionately large energy-storage is achieved by creating sewcap-junctions in various combinations.

All components of the final sewcap device are flexible. However, they need to be protected from environmental effects such as temperature, humidity and sweat while retaining the mechanical flexibility. This is achieved by laminating the entire device between polymer sheets. The process is exactly similar to the one used for protecting documents and ID cards.

The laminated sewcap can be integrated easily on clothing and fabrics while retaining the flexibility and sturdiness. This is demonstrated by the unchanged performance of the device during extreme and harsh mechanical testing such as striking repeatedly with a hammer, complete flexing, bending and rolling and washing in a laundry machine.

In fact, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.

CNTs have high surface area and electrical conductivity. The CNT-wire combines these properties of CNTs with stability and porosity of cellulose yarns. The junction created by interweaving is essentially comprised of two such CNT-wires that are sandwiching an electrolyte. Application of potential difference leads to polarization of the electrolyte thus enabling energy storage similar to the way in which a conventional capacitor acts.

“We use the advantage of the interweaving process and create several such junctions. So, with each junction being able to store a certain amount of electrical energy, all the junctions synchronized are able to store a large amount of energy. This provides high energy density to the device,” Prof. C. Subramaniam, Department of Chemistry, IIT Bombay and corresponding author of the paper points out.

The device has also been employed for lighting up an LED [light-emitting diode]. This can be potentially scaled to provide electrical energy demanded by the application.

This image accompanies the paper written by Prof. C. Subramaniam and his team,

Courtesy: IACS Applied Materials Interfaces

Here’s a link to and a citation for the paper,

Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors by Mihir Kumar Jha, Kenji Hata, and Chandramouli Subramaniam. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b22233 Publication Date (Web): April 29, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.


A research team from the University of British Columbia (UBC at the Okanagan Campus) joined the pack with a May 16, 2019 news item on ScienceDaily,

Forget the smart watch. Bring on the smart shirt.

Researchers at UBC Okanagan’s School of Engineering have developed a low-cost sensor that can be interlaced into textiles and composite materials. While the research is still new, the sensor may pave the way for smart clothing that can monitor human movement.

A May 16, 2019 UBC news release (also on EurekAlert), which originated the news item, describes the work in more detail,

“Microscopic sensors are changing the way we monitor machines and humans,” says Hoorfar, lead researcher at the Advanced Thermo-Fluidic Lab at UBC’s Okanagan campus. “Combining the shrinking of technology along with improved accuracy, the future is very bright in this area.”

This ‘shrinking technology’ uses a phenomenon called piezo-resistivity—an electromechanical response of a material when it is under strain. These tiny sensors have shown a great promise in detecting human movements and can be used for heart rate monitoring or temperature control, explains Hoorfar.

Her research, conducted in partnership with UBC Okanagan’s Materials and Manufacturing Research Institute, shows the potential of a low-cost, sensitive and stretchable yarn sensor. The sensor can be woven into spandex material and then wrapped into a stretchable silicone sheath. This sheath protects the conductive layer against harsh conditions and allows for the creation of washable wearable sensors.

While the idea of smart clothing—fabrics that can tell the user when to hydrate, or when to rest—may change the athletics industry, UBC Professor Abbas Milani says the sensor has other uses. It can monitor deformations in fibre-reinforced composite fabrics currently used in advanced industries such as automotive, aerospace and marine manufacturing.

The low-cost stretchable composite sensor has also shown a high sensitivity and can detect small deformations such as yarn stretching as well as out-of-plane deformations at inaccessible places within composite laminates, says Milani, director of the UBC Materials and Manufacturing Research Institute.

The testing indicates that further improvements in its accuracy could be achieved by fine-tuning the sensor’s material blend and improving its electrical conductivity and sensitivity This can eventually make it able to capture major flaws like “fibre wrinkling” during the manufacturing of advanced composite structures such as those currently used in airplanes or car bodies.

“Advanced textile composite materials make the most of combining the strengths of different reinforcement materials and patterns with different resin options,” he says. “Integrating sensor technologies like piezo-resistive sensors made of flexible materials compatible with the host textile reinforcement is becoming a real game-changer in the emerging era of smart manufacturing and current automated industry trends.”

Here’s a link to and a citation for the paper,

Graphene‐Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications by Hossein Montazerian, Armin Rashidi, Arash Dalili, Homayoun Najjaran, Abbas S. Milani, Mina Hoorfar. Small Volume15, Issue17 April 26, 2019 1804991 DOI: https://doi.org/10.1002/smll.201804991 First published: 28 March 2019

This paper is behind a paywall.

Will there be one winner or will they find CNTs better for one type of wearable tech textile while graphene excels for another type of wearable tech textile?

Carbon nanotube optics and the quantum

A US-France-Germany collaboration has led to some intriguing work with carbon nanotubes. From a June 18, 2018 news item on ScienceDaily,

Researchers at Los Alamos and partners in France and Germany are exploring the enhanced potential of carbon nanotubes as single-photon emitters for quantum information processing. Their analysis of progress in the field is published in this week’s edition of the journal Nature Materials.

“We are particularly interested in advances in nanotube integration into photonic cavities for manipulating and optimizing light-emission properties,” said Stephen Doorn, one of the authors, and a scientist with the Los Alamos National Laboratory site of the Center for Integrated Nanotechnologies (CINT). “In addition, nanotubes integrated into electroluminescent devices can provide greater control over timing of light emission and they can be feasibly integrated into photonic structures. We are highlighting the development and photophysical probing of carbon nanotube defect states as routes to room-temperature single photon emitters at telecom wavelengths.”

A June 18, 2018 Los Alamos National Laboratory (LANL) news release (also on EurekAlert), which originated the news item, expands on the theme,

The team’s overview was produced in collaboration with colleagues in Paris (Christophe Voisin [Ecole Normale Supérieure de Paris (ENS)]) who are advancing the integration of nanotubes into photonic cavities for modifying their emission rates, and at Karlsruhe (Ralph Krupke [Karlsruhe Institute of Technology (KIT]) where they are integrating nanotube-based electroluminescent devices with photonic waveguide structures. The Los Alamos focus is the analysis of nanotube defects for pushing quantum emission to room temperature and telecom wavelengths, he said.

As the paper notes, “With the advent of high-speed information networks, light has become the main worldwide information carrier. . . . Single-photon sources are a key building block for a variety of technologies, in secure quantum communications metrology or quantum computing schemes.”

The use of single-walled carbon nanotubes in this area has been a focus for the Los Alamos CINT team, where they developed the ability to chemically modify the nanotube structure to create deliberate defects, localizing excitons and controlling their release. Next steps, Doorn notes, involve integration of the nanotubes into photonic resonators, to provide increased source brightness and to generate indistinguishable photons. “We need to create single photons that are indistinguishable from one another, and that relies on our ability to functionalize tubes that are well-suited for device integration and to minimize environmental interactions with the defect sites,” he said.

“In addition to defining the state of the art, we wanted to highlight where the challenges are for future progress and lay out some of what may be the most promising future directions for moving forward in this area. Ultimately, we hope to draw more researchers into this field,” Doorn said.

Here’s a link to and a citation for the paper,

Carbon nanotubes as emerging quantum-light sources by X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux & C. Voisin. Nature Materials (2018) DOI: https://doi.org/10.1038/s41563-018-0109-2 Published online June 18, 2018

This paper is behind a paywall.

Canadian research into nanomaterial workplace exposure in the air and on surfaces

An August 30, 2018 news item on Nanowerk announces the report,

The monitoring of air contamination by engineered nanomaterials (ENM) is a complex process with many uncertainties and limitations owing to the presence of particles of nanometric size that are not ENMs, the lack of validated instruments for breathing zone measurements and the many indicators to be considered.

In addition, some organizations, France’s Institut national de recherche et de sécurité (INRS) and Québec’s Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) among them, stress the need to also sample surfaces for ENM deposits.

In other words, to get a better picture of the risks of worker exposure, we need to fine-tune the existing methods of sampling and characterizing ENMs and develop new one. Accordingly, the main goal of this project was to develop innovative methodological approaches for detailed qualitative as well as quantitative characterization of workplace exposure to ENMs.

A PDF of the 88-page report is available in English or in French.

An August 30, 2018 (?) abstract of the IRSST report titled An Assessment of Methods of Sampling and Characterizing Engineered Nanomaterials in the Air and on Surfaces in the Workplace (2nd edition) by Maximilien Debia, Gilles L’Espérance, Cyril Catto, Philippe Plamondon, André Dufresne, Claude Ostiguy, which originated the news item, outlines what you can expect from the report,

This research project has two complementary parts: a laboratory investigation and a fieldwork component. The laboratory investigation involved generating titanium dioxide (TiO2) nanoparticles under controlled laboratory conditions and studying different sampling and analysis devices. The fieldwork comprised a series of nine interventions adapted to different workplaces and designed to test a variety of sampling devices and analytical procedures and to measure ENM exposure levels among Québec workers.

The methods for characterizing aerosols and surface deposits that were investigated include: i) measurement by direct-reading instruments (DRI), such as condensation particle counters (CPC), optical particle counters (OPC), laser photometers, aerodynamic diameter spectrometers and electric mobility spectrometer; ii) transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM) with a variety of sampling devices, including the Mini Particle Sampler® (MPS); iii) measurement of elemental carbon (EC); iv) inductively coupled plasma mass spectrometry (ICP-MS) and (v) Raman spectroscopy.

The workplace investigations covered a variety of industries (e.g., electronics, manufacturing, printing, construction, energy, research and development) and included producers as well as users or integrators of ENMs. In the workplaces investigated, we found nanometals or metal oxides (TiO2, SiO2, zinc oxides, lithium iron phosphate, titanate, copper oxides), nanoclays, nanocellulose and carbonaceous materials, including carbon nanofibers (CNF) and carbon nanotubes (CNT)—single-walled (SWCNT) as well as multiwalled (MWCNT).

The project helped to advance our knowledge of workplace assessments of ENMs by documenting specific tasks and industrial processes (e.g., printing and varnishing) as well as certain as yet little investigated ENMs (nanocellulose, for example).

Based on our investigations, we propose a strategy for more accurate assessment of ENM exposure using methods that require a minimum of preanalytical handling. The recommended strategy is a systematic two-step assessment of workplaces that produce and use ENMs. The first step involves testing with different DRIs (such as a CPC and a laser photometer) as well as sample collection and subsequent microscopic analysis (MPS + TEM/STEM) to clearly identify the work tasks that generate ENMs. The second step, once work exposure is confirmed, is specific quantification of the ENMs detected. The following findings are particularly helpful for detailed characterization of ENM exposure:

  1. The first conclusive tests of a technique using ICP-MS to quantify the metal oxide content of samples collected in the workplace
  2. The possibility of combining different sampling methods recommended by the National Institute for Occupational Safety and Health (NIOSH) to measure elemental carbon as an indicator of NTC/NFC, as well as demonstration of the limitation of this method stemming from observed interference with the black carbon particles required to synthesis carbon materials (for example, Raman spectroscopy showed that less than 6% of the particles deposited on the electron microscopy grid at one site were SWCNTs)
  3. The clear advantages of using an MPS (instead of the standard 37-mm cassettes used as sampling media for electron microscopy), which allows quantification of materials
  4. The major impact of sampling time: a long sampling time overloads electron microscopy grids and can lead to overestimation of average particle agglomerate size and underestimation of particle concentrations
  5. The feasibility and utility of surface sampling, either with sampling pumps or passively by diffusion onto the electron microscopy grids, to assess ENM dispersion in the workplace

These original findings suggest promising avenues for assessing ENM exposure, while also showing their limitations. Improvements to our sampling and analysis methods give us a better understanding of ENM exposure and help in adapting and implementing control measures that can minimize occupational exposure.

You can download the full report in either or both English and French from the ‘Nanomaterials – A Guide to Good Practices Facilitating Risk Management in the Workplace, 2nd Edition‘ webpage.

Feed your silkworms graphene or carbon nanotubes for stronger silk

This Oct. 11, 2016 news item on Nanowerk may make you wonder about a silkworm’s standard diet,

Researchers at Tsinghua University in Beijing, China, have demonstrated that mechanically enhanced silk fibers could be naturally produced by feeding silkworms with diets containing single-walled carbon nanotubes (SW[C]NTs) or graphene.

The as-spun silk fibers containing nanofillers showed evidently increased fracture strength and elongation-at-break, demonstrating the validity of SWNT or graphene incorporation into silkworm silk as reinforcement through an in situ functionalization approach.

The researchers conclude that “by analyzing the silk fibers and the excrement of silkworms, … parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, while others went into excrement.

Bob Yirka in an Oct. 11, 2016 article for phys.org provides a little information about silkworms and their eating habits,

In this new effort, the researchers sought to add new properties to silk by adding carbon nanotubes and graphene to their diet.

To add the materials, the researchers sprayed a water solution containing .2 percent carbon nanotubes or graphene onto mulberry leaves and then fed the leaves to the silkworms. They then allowed the silkworms to make their silk in the normal way. Testing of the silks that were produced showed they could withstand approximately 50 percent more stress than traditional silk. A closer look showed that the new silk was made of a more orderly crystal structure than normal silk. And taking their experiments one step further, the researchers cooked the new silk at 1,050 °C causing it to be carbonized—that caused the silk to conduct electricity.

Here’s a link to and a citation for the paper,

Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers by Qi Wang, Chunya Wang, Mingchao Zhang, Muqiang Jian, and Yingying Zhang. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.6b03597 Publication Date (Web): September 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.