Tag Archives: skyrmions

Brain-inspired (neuromrophic) computing with twisted magnets and a patent for manufacturing permanent magnets without rare earths

I have two news bits both of them concerned with magnets.

Patent for magnets that can be made without rare earths

I’m starting with the patent news first since this is (as the company notes in its news release) a “Landmark Patent Issued for Technology Critically Needed to Combat Chinese Monopoly.”

For those who don’t know, China supplies most of the rare earths used in computers, smart phones, and other devices. On general principles, having a single supplier dominate production of and access to a necessary material for devices that most of us rely on can raise tensions. Plus, you can’t mine for resources forever.

This December 19, 2023 Nanocrystal Technology LP news release heralds an exciting development (for the impatient, further down the page I have highlighted the salient sections),

Nanotechnology Discovery by 2023 Nobel Prize Winner Became Launch Pad to Create Permanent Magnets without Rare Earths from China

NEW YORK, NY, UNITED STATES, December 19, 2023 /EINPresswire.com/ — Integrated Nano-Magnetics Corp, a wholly owned subsidiary of Nanocrystal Technology LP, was awarded a patent for technology built upon a fundamental nanoscience discovery made by Aleksey Yekimov, its former Chief Scientific Officer.

This patent will enable the creation of strong permanent magnets which are critically needed for both industrial and military applications but cannot be manufactured without certain “rare earth” elements available mostly from China.

At a glittering awards ceremony held in Stockholm on December10, 2023, three scientists, Aleksey Yekimov, Louis Brus (Professor at Columbia University) and Moungi Bawendi (Professor at MIT) were honored with the Nobel Prize in Chemistry for their discovery of the “quantum dot” which is now fueling practical applications in tuning the colors of LEDs, increasing the resolution of TV screens, and improving MRI imaging.

As stated by the Royal Swedish Academy of Sciences, “Quantum dots are … bringing the greatest benefits to humankind. Researchers believe that in the future they could contribute to flexible electronics, tiny sensors, thinner solar cells, and encrypted quantum communications – so we have just started exploring the potential of these tiny particles.”

Aleksey Yekimov worked for over 19 years until his retirement as Chief Scientific Officer of Nanocrystals Technology LP, an R & D company in New York founded by two Indian-American entrepreneurs, Rameshwar Bhargava and Rajan Pillai.

Yekimov, who was born in Russia, had already received the highest scientific honors for his work before he immigrated to USA in 1999. Yekimov was greatly intrigued by Nanocrystal Technology’s research project and chose to join the company as its Chief Scientific Officer.

During its early years, the company worked on efficient light generation by doping host nanoparticles about the same size as a quantum dot with an additional impurity atom. Bhargava came up with the novel idea of incorporating a single impurity atom, a dopant, into a quantum dot sized host, and thus achieve an extraordinary change in the host material’s properties such as inducing strong permanent magnetism in weak, readily available paramagnetic materials. To get a sense of the scale at which nanotechnology works, and as vividly illustrated by the Nobel Foundation, the difference in size between a quantum dot and a soccer ball is about the same as the difference between a soccer ball and planet Earth.

Currently, strong permanent magnets are manufactured from “rare earths” available mostly in China which has established a near monopoly on the supply of rare-earth based strong permanent magnets. Permanent magnets are a fundamental building block for electro-mechanical devices such as motors found in all automobiles including electric vehicles, trucks and tractors, military tanks, wind turbines, aircraft engines, missiles, etc. They are also required for the efficient functioning of audio equipment such as speakers and cell phones as well as certain magnetic storage media.

The existing market for permanent magnets is $28 billion and is projected to reach $50 billion by 2030 in view of the huge increase in usage of electric vehicles. China’s overwhelming dominance in this field has become a matter of great concern to governments of all Western and other industrialized nations. As the Wall St. Journal put it, China’s now has a “stranglehold” on the economies and security of other countries.

The possibility of making permanent magnets without the use of any rare earths mined in China has intrigued leading physicists and chemists for nearly 30 years. On December 19, 2023, a U.S. patent with the title ‘’Strong Non Rare Earth Permanent Magnets from Double Doped Magnetic Nanoparticles” was granted to Integrated Nano-Magnetics Corp. [emphasis mine] Referring to this major accomplishment Bhargava said, “The pioneering work done by Yekimov, Brus and Bawendi has provided the foundation for us to make other discoveries in nanotechnology which will be of great benefit to the world.”

I was not able to find any company websites. The best I could find is a Nanocrystals Technology LinkedIn webpage and some limited corporate data for Integrated Nano-Magnetics on opencorporates.com.

Twisted magnets and brain-inspired computing

This research offers a pathway to neuromorphic (brainlike) computing with chiral (or twisted) magnets, which, as best as I understand it, do not require rare earths. From a November13, 2023 news item on ScienceDaily,

A form of brain-inspired computing that exploits the intrinsic physical properties of a material to dramatically reduce energy use is now a step closer to reality, thanks to a new study led by UCL [University College London] and Imperial College London [ICL] researchers.

In the new study, published in the journal Nature Materials, an international team of researchers used chiral (twisted) magnets as their computational medium and found that, by applying an external magnetic field and changing temperature, the physical properties of these materials could be adapted to suit different machine-learning tasks.

A November 9, 2023 UCL press release (also on EurekAlert but published November 13, 2023), which originated the news item, fill s in a few more details about the research,

Dr Oscar Lee (London Centre for Nanotechnology at UCL and UCL Department of Electronic & Electrical Engineering), the lead author of the paper, said: “This work brings us a step closer to realising the full potential of physical reservoirs to create computers that not only require significantly less energy, but also adapt their computational properties to perform optimally across various tasks, just like our brains.

“The next step is to identify materials and device architectures that are commercially viable and scalable.”

Traditional computing consumes large amounts of electricity. This is partly because it has separate units for data storage and processing, meaning information has to be shuffled constantly between the two, wasting energy and producing heat. This is particularly a problem for machine learning, which requires vast datasets for processing. Training one large AI model can generate hundreds of tonnes of carbon dioxide.

Physical reservoir computing is one of several neuromorphic (or brain inspired) approaches that aims to remove the need for distinct memory and processing units, facilitating more efficient ways to process data. In addition to being a more sustainable alternative to conventional computing, physical reservoir computing could be integrated into existing circuitry to provide additional capabilities that are also energy efficient.

In the study, involving researchers in Japan and Germany, the team used a vector network analyser to determine the energy absorption of chiral magnets at different magnetic field strengths and temperatures ranging from -269 °C to room temperature.

They found that different magnetic phases of chiral magnets excelled at different types of computing task. The skyrmion phase, where magnetised particles are swirling in a vortex-like pattern, had a potent memory capacity apt for forecasting tasks. The conical phase, meanwhile, had little memory, but its non-linearity was ideal for transformation tasks and classification – for instance, identifying if an animal is a cat or dog.

Co-author Dr Jack Gartside, of Imperial College London, said: “Our collaborators at UCL in the group of Professor Hidekazu Kurebayashi recently identified a promising set of materials for powering unconventional computing. These materials are special as they can support an especially rich and varied range of magnetic textures. Working with the lead author Dr Oscar Lee, the Imperial College London group [led by Dr Gartside, Kilian Stenning and Professor Will Branford] designed a neuromorphic computing architecture to leverage the complex material properties to match the demands of a diverse set of challenging tasks. This gave great results, and showed how reconfiguring physical phases can directly tailor neuromorphic computing performance.”

The work also involved researchers at the University of Tokyo and Technische Universität München and was supported by the Leverhulme Trust, Engineering and Physical Sciences Research Council (EPSRC), Imperial College London President’s Excellence Fund for Frontier Research, Royal Academy of Engineering, the Japan Science and Technology Agency, Katsu Research Encouragement Award, Asahi Glass Foundation, and the DFG (German Research Foundation).

Here’s a link to and a citation for the paper,

Task-adaptive physical reservoir computing by Oscar Lee, Tianyi Wei, Kilian D. Stenning, Jack C. Gartside, Dan Prestwood, Shinichiro Seki, Aisha Aqeel, Kosuke Karube, Naoya Kanazawa, Yasujiro Taguchi, Christian Back, Yoshinori Tokura, Will R. Branford & Hidekazu Kurebayashi. Nature Materials volume 23, pages 79–87 (2024) DOI: https://doi.org/10.1038/s41563-023-01698-8 Published online: 13 November 2023 Issue Date: January 2024

This paper is open access.

Dynamic magnetic fractal networks for neuromorphic (brainlike) computing

Credit: Advanced Materials (2023). DOI: 10.1002/adma.202300416 [cover image]

This is a different approach to neuromorphic (brainlike) computing being described in an August 28, 2023 news item on phys.org, Note: A link has been removed,

The word “fractals” might inspire images of psychedelic colors spiraling into infinity in a computer animation. An invisible, but powerful and useful, version of this phenomenon exists in the realm of dynamic magnetic fractal networks.

Dustin Gilbert, assistant professor in the Department of Materials Science and Engineering [University of Tennessee, US], and colleagues have published new findings in the behavior of these networks—observations that could advance neuromorphic computing capabilities.

Their research is detailed in their article “Skyrmion-Excited Spin-Wave Fractal Networks,” cover story for the August 17, 2023, issue of Advanced Materials.

An August 18, 2023 University of Tennessee news release, which originated the news item, provides more details,

“Most magnetic materials—like in refrigerator magnets—are just comprised of domains where the magnetic spins all orient parallel,” said Gilbert. “Almost 15 years ago, a German research group discovered these special magnets where the spins make loops—like a nanoscale magnetic lasso. These are called skyrmions.”

Named for legendary particle physicist Tony Skyrme, a skyrmion’s magnetic swirl gives it a non-trivial topology. As a result of this topology, the skyrmion has particle-like properties—they are hard to create or destroy, they can move and even bounce off of each other. The skyrmion also has dynamic modes—they can wiggle, shake, stretch, whirl, and breath[e].

As the skyrmions “jump and jive,” they are creating magnetic spin waves with a very narrow wavelength. The interactions of these waves form an unexpected fractal structure.

“Just like a person dancing in a pool of water, they generate waves which ripple outward,” said Gilbert. “Many people dancing make many waves, which normally would seem like a turbulent, chaotic sea. We measured these waves and showed that they have a well-defined structure and collectively form a fractal which changes trillions of times per second.”

Fractals are important and interesting because they are inherently tied to a “chaos effect”—small changes in initial conditions lead to big changes in the fractal network.

“Where we want to go with this is that if you have a skyrmion lattice and you illuminate it with spin waves, the way the waves make its way through this fractal-generating structure is going to depend very intimately on its construction,” said Gilbert. “So, if you could write individual skyrmions, it can effectively process incoming spin waves into something on the backside—and it’s programmable. It’s a neuromorphic architecture.”

The Advanced Materials cover illustration [image at top of this posting] depicts a visual representation of this process, with the skyrmions floating on top of a turbulent blue sea illustrative of the chaotic structure generated by the spin wave fractal.

“Those waves interfere just like if you throw a handful of pebbles into a pond,” said Gilbert. “You get a choppy, turbulent mess. But it’s not just any simple mess, it’s actually a fractal. We have an experiment now showing that the spin waves generated by skyrmions aren’t just a mess of waves, they have inherent structure of their very own. By, essentially, controlling those stones that we ‘throw in,’ you get very different patterns, and that’s what we’re driving towards.”

The discovery was made in part by neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor and at the National Institute of Standards and Technology (NIST) Center for Neutron Research. Neutrons are magnetic and pass through materials easily, making them ideal probes for studying materials with complex magnetic behavior such as skyrmions and other quantum phenomena.

Gilbert’s co-authors for the new article are Nan Tang, Namila Liyanage, and Liz Quigley, students in his research group; Alex Grutter and Julie Borchers from National Institute of Standards and Technology (NIST), Lisa DeBeer-Schmidt and Mike Fitzsimmons from Oak Ridge National Laboratory; and Eric Fullerton, Sheena Patel, and Sergio Montoya from the University of California, San Diego.

The team’s next step is to build a working model using the skyrmion behavior.

“If we can develop thinking computers, that, of course, is extraordinarily important,” said Gilbert. “So, we will propose to make a miniaturized, spin wave neuromorphic architecture.” He also hopes that the ripples from this UT Knoxville discovery inspire researchers to explore uses for a spiraling range of future applications.

Here’s a link to and a citation for the paper,

Skyrmion-Excited Spin-Wave Fractal Networks by Nan Tang, W. L. N. C. Liyanage, Sergio A. Montoya, Sheena Patel, Lizabeth J. Quigley, Alexander J. Grutter, Michael R. Fitzsimmons, Sunil Sinha, Julie A. Borchers, Eric E. Fullerton, Lisa DeBeer-Schmitt, Dustin A. Gilbert. Advanced Materials Volume 35, Issue 33 August 17, 2023 2300416 DOI: https://doi.org/10.1002/adma.202300416 First published: 04 May 2023

This paper is behind a paywall.

Skyrmions (nanoscale vortices) with a unique property

A Sept. 23, 2020 news item on Nanowerk describes both skyrmions and the latest in potentially practical ‘skyrmion research’ ,

Nanoscale vortices known as skyrmions can be created in many magnetic materials. For the first time, researchers at PSI [Paul Scherrer Institute] have managed to create and identify antiferromagnetic skyrmions with a unique property: critical elements inside them are arranged in opposing directions. Scientists have succeeded in visualising this phenomenon using neutron scattering. Their discovery is a major step towards developing potential new applications, such as more efficient computers.

Caption: Skyrmions are nanoscale vortices in the magnetic alignment of atoms. For the first time, PSI researchers have now created antiferromagnetic skyrmions in which critical spins are arranged in opposing directions. This state is shown in the artist’s impression above. Credit: Paul Scherrer Institute/Diego Rosales

That image makes me think of ‘op art’. For anyone unfamiliar with the art movement, there’s Bob Lansroth’s October 29, 2015 article (10 Op Art Artists Whose Work You Have to Follow) for widwalls.ch,

The nature of perception, optical effects, illusions and visual stimuli have been fascinating artists for many centuries. Optical Art, or Op Art, is relying on optical illusions and is sometimes even referred to as retinal art. Some critics would even call it a mathematically-themed form of Abstract Art, considering the use of repetitive forms and colors in order to create vibrating effects, foreground-background confusion and an exaggerated sense of depth.

Lansroth’s October 29, 2015 article is liberally illustrated with examples.

Getting back to the skyrmions at hand, a Sept. 23, 2020 Paul Scherrer Institute (PSI) press release (also on EurekAlert) by Laura Hennemann, which originated the news item, describes the research in more detail,

Whether a material is magnetic depends on the spins of its atoms. The best way to think of spins is as minute bar magnets. In a crystal structure where the atoms have fixed positions in a lattice, these spins can be arranged in criss-cross fashion or aligned all in parallel like the spears of a Roman legion, depending on the individual material and its state.

Under certain conditions it is possible to generate tiny vortices within the corps of spins. These are known as skyrmions. Scientists are particularly interested in skyrmions as a key component in future technologies, such as more efficient data storage and transfer. For example, they could be used as memory bits: a skyrmion could represent the digital one, and its absence a digital zero. As skyrmions are significantly smaller than the bits used in conventional storage media, data density is much higher and potentially also more energy efficient, while read and write operations would be faster as well. Skyrmions could therefore be useful both in classical data processing and in cutting-edge quantum computing.

Another interesting aspect for the application is that skyrmions can be created and controlled in many materials by applying an electrical current. “With existing skyrmions, however, it is tricky to move them systematically from A to B, as they tend to deviate from a straight path due to their inherent properties,” explains Oksana Zaharko, research group leader at PSI.

Working with researchers from other institutions, Dr Zaharko and her team have now created a new type of skyrmion and demonstrated a unique characteristic: in their interior, critical spins are arranged in opposite directions to one another. The researchers therefore describe their skyrmions as antiferromagnetic.

In a straight line from A to B

“One of the key advantages of antiferromagnetic skyrmions is that they are much simpler to control: if an electrical current is applied, they move in a simple straight line,” Zaharko comments. This is a major advantage: for skyrmions to be suitable for practical applications, it must be possible to selectively manipulate and position them.

The scientists created their new type of skyrmion by fabricating them in a customised antiferromagnetic crystal. Zaharko explains: “Antiferromagnetic means that adjacent spins are in an antiparallel arrangement, in other words one pointing upwards and the next pointing downwards. So what was initially observed as a property of the material we subsequently identified within the individual skyrmions as well.”

Several steps are still needed before antiferromagnetic skyrmions are mature enough for a technological application: PSI researchers had to cool the crystal down to around minus 272 degrees Celsius and apply an extremely strong magnetic field of three tesla – roughly 100,000 times the strength of the Earth’s magnetic field.

Neutron scattering to visualise the skyrmions

And the researchers have yet to create individual antiferromagnetic skyrmions. To verify the tiny vortices, the scientists are using the Swiss Spallation Neutron Source SINQ at PSI. “Here we can visualise skyrmions using neutron scattering if we have a lot of them in a regular pattern in a particular material”, Zaharko explains.

But the scientist is optimistic: “In my experience, if we manage to create skyrmions in a regular alignment, someone will soon manage to create such skyrmions individually.”

The general consensus in the research community is that once individual antiferromagnetic skyrmions can be created at room temperature, a practical application will not be far off.

Here’s a link to and a citation for the paper,

Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings by Shang Gao, H. Diego Rosales, Flavia A. Gómez Albarracín, Vladimir Tsurkan, Guratinder Kaur, Tom Fennell, Paul Steffens, Martin Boehm, Petr Čermák, Astrid Schneidewind, Eric Ressouche, Daniel C. Cabra, Christian Rüegg & Oksana Zaharko. Nature (2020) DOI: https://doi.org/10.1038/s41586-020-2716-8 Published: 23 September 2020

This paper is behind a paywall.

Skyrmions and ultra-thin multilayer film

The National University of Singapore (NUS) and skyrmions are featured in an April 10, 2017 news item on phys.org,

A team of scientists led by Associate Professor Yang Hyunsoo from the Department of Electrical and Computer Engineering at the National University of Singapore’s (NUS) Faculty of Engineering has invented a novel ultra-thin multilayer film which could harness the properties of tiny magnetic whirls, known as skyrmions, as information carriers for storing and processing data on magnetic media.

The nano-sized thin film, which was developed in collaboration with researchers from Brookhaven National Laboratory, Stony Brook University, and Louisiana State University, is a critical step towards the design of data storage devices that use less power and work faster than existing memory technologies. The invention was reported in prestigious scientific journal Nature Communications on 10 March 2017.

An April 10, 2017 NUS press release on EurekAlert, which originated the news item, describes the work in more detail,

Tiny magnetic whirls with huge potential as information carriers

The digital transformation has resulted in ever-increasing demands for better processing and storing of large amounts of data, as well as improvements in hard drive technology. Since their discovery in magnetic materials in 2009, skyrmions, which are tiny swirling magnetic textures only a few nanometres in size, have been extensively studied as possible information carriers in next-generation data storage and logic devices.

Skyrmions have been shown to exist in layered systems, with a heavy metal placed beneath a ferromagnetic material. Due to the interaction between the different materials, an interfacial symmetry breaking interaction, known as the Dzyaloshinskii-Moriya interaction (DMI), is formed, and this helps to stabilise a skyrmion. However, without an out-of-plane magnetic field present, the stability of the skyrmion is compromised. In addition, due to its tiny size, it is difficult to image the nano-sized materials.

To address these limitations, the researchers worked towards creating stable magnetic skyrmions at room temperature without the need for a biasing magnetic field.

Unique material for data storage

The NUS team, which also comprises Dr Shawn Pollard and Ms Yu Jiawei from the NUS Department of Electrical and Computer Engineering, found that a large DMI could be maintained in multilayer films composed of cobalt and palladium, and this is large enough to stabilise skyrmion spin textures.

In order to image the magnetic structure of these films, the NUS researchers, in collaboration with Brookhaven National Laboratory in the United States, employed Lorentz transmission electron microscopy (L-TEM). L-TEM has the ability to image magnetic structures below 10 nanometres, but it has not been used to observe skyrmions in multilayer geometries previously as it was predicted to exhibit zero signal. However, when conducting the experiments, the researchers found that by tilting the films with respect to the electron beam, they found that they could obtain clear contrast consistent with that expected for skyrmions, with sizes below 100 nanometres.

Dr Pollard explained, “It has long been assumed that there is no DMI in a symmetric structure like the one present in our work, hence, there will be no skyrmion. It is really unexpected for us to find both large DMI and skyrmions in the multilayer film we engineered. What’s more, these nanoscale skyrmions persisted even after the removal of an external biasing magnetic field, which are the first of their kind.”

Assoc Prof Yang added, “This experiment not only demonstrates the usefulness of L-TEM in studying these systems, but also opens up a completely new material in which skyrmions can be created. Without the need for a biasing field, the design and implementation of skyrmion based devices are significantly simplified. The small size of the skyrmions, combined with the incredible stability generated here, could be potentially useful for the design of next-generation spintronic devices that are energy efficient and can outperform current memory technologies.”

Next step

Assoc Prof Yang and his team are currently looking at how nanoscale skyrmions interact with each other and with electrical currents, to further the development of skyrmion based electronics.

Here’s a link to and a citation for the paper,

Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy by Shawn D. Pollard, Joseph A. Garlow, Jiawei Yu, Zhen Wang, Yimei Zhu & Hyunsoo Yang. Nature Communications 8, Article number: 14761 (2017) doi:10.1038/ncomms14761 Published online: 10 March 2017

This is an open access paper.