Tag Archives: smart clothing

Electrode-filled elastic fiber for wearable electronics and robots

This work comes out of Switzerland. A May 25, 2018 École Polytechnique Fédérale de Lausanne (EPFL) press release (also on EurekAlert) announces their fibers,

EPFL scientists have found a fast and simple way to make super-elastic, multi-material, high-performance fibers. Their fibers have already been used as sensors on robotic fingers and in clothing. This breakthrough method opens the door to new kinds of smart textiles and medical implants.

It’s a whole new way of thinking about sensors. The tiny fibers developed at EPFL are made of elastomer and can incorporate materials like electrodes and nanocomposite polymers. The fibers can detect even the slightest pressure and strain and can withstand deformation of close to 500% before recovering their initial shape. All that makes them perfect for applications in smart clothing and prostheses, and for creating artificial nerves for robots.

The fibers were developed at EPFL’s Laboratory of Photonic Materials and Fiber Devices (FIMAP), headed by Fabien Sorin at the School of Engineering. The scientists came up with a fast and easy method for embedding different kinds of microstructures in super-elastic fibers. For instance, by adding electrodes at strategic locations, they turned the fibers into ultra-sensitive sensors. What’s more, their method can be used to produce hundreds of meters of fiber in a short amount of time. Their research has just been published in Advanced Materials.

Heat, then stretch
To make their fibers, the scientists used a thermal drawing process, which is the standard process for optical-fiber manufacturing. They started by creating a macroscopic preform with the various fiber components arranged in a carefully designed 3D pattern. They then heated the preform and stretched it out, like melted plastic, to make fibers of a few hundreds microns in diameter. And while this process stretched out the pattern of components lengthwise, it also contracted it crosswise, meaning the components’ relative positions stayed the same. The end result was a set of fibers with an extremely complicated microarchitecture and advanced properties.

Until now, thermal drawing could be used to make only rigid fibers. But Sorin and his team used it to make elastic fibers. With the help of a new criterion for selecting materials, they were able to identify some thermoplastic elastomers that have a high viscosity when heated. After the fibers are drawn, they can be stretched and deformed but they always return to their original shape.

Rigid materials like nanocomposite polymers, metals and thermoplastics can be introduced into the fibers, as well as liquid metals that can be easily deformed. “For instance, we can add three strings of electrodes at the top of the fibers and one at the bottom. Different electrodes will come into contact depending on how the pressure is applied to the fibers. This will cause the electrodes to transmit a signal, which can then be read to determine exactly what type of stress the fiber is exposed to – such as compression or shear stress, for example,” says Sorin.

Artificial nerves for robots

Working in association with Professor Dr. Oliver Brock (Robotics and Biology Laboratory, Technical University of Berlin), the scientists integrated their fibers into robotic fingers as artificial nerves. Whenever the fingers touch something, electrodes in the fibers transmit information about the robot’s tactile interaction with its environment. The research team also tested adding their fibers to large-mesh clothing to detect compression and stretching. “Our technology could be used to develop a touch keyboard that’s integrated directly into clothing, for instance” says Sorin.

The researchers see many other potential applications. Especially since the thermal drawing process can be easily tweaked for large-scale production. This is a real plus for the manufacturing sector. The textile sector has already expressed interest in the new technology, and patents have been filed.

There’s a video of the lead researcher discussing the work as he offers some visual aids,

Here’s a link to and a citation for the paper,

Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing by Yunpeng Qu, Tung Nguyen‐Dang, Alexis Gérald Page, Wei Yan, Tapajyoti Das Gupta, Gelu Marius Rotaru, René M. Rossi, Valentine Dominique Favrod, Nicola Bartolomei, Fabien Sorin. Advanced Materials First published: 25 May 2018 https://doi.org/10.1002/adma.201707251

This paper is behind a paywall.

Singing posters and talking shirts can communicate with you via car radio or smartphones

Singing posters and talking shirts haven’t gone beyond the prototype stage yet but I imagine University of Washington engineers are hoping this will happen sooner rather than later. In the meantime, they are  presenting their work at a conference according to a March 1, 2017 news item on ScienceDaily,

Imagine you’re waiting in your car and a poster for a concert from a local band catches your eye. What if you could just tune your car to a radio station and actually listen to that band’s music? Or perhaps you see the poster on the side of a bus stop. What if it could send your smartphone a link for discounted tickets or give you directions to the venue?

Going further, imagine you go for a run, and your shirt can sense your perspiration and send data on your vital signs directly to your phone.

A new technique pioneered by University of Washington engineers makes these “smart” posters and clothing a reality by allowing them to communicate directly with your car’s radio or your smartphone. For instance, bus stop billboards could send digital content about local attractions. A street sign could broadcast the name of an intersection or notice that it is safe to cross a street, improving accessibility for the disabled. In addition, clothing with integrated sensors could monitor vital signs and send them to a phone. [emphasis mine]

“What we want to do is enable smart cities and fabrics where everyday objects in outdoor environments — whether it’s posters or street signs or even the shirt you’re wearing — can ‘talk’ to you by sending information to your phone or car,” said lead faculty and UW assistant professor of computer science and engineering Shyam Gollakota.

“The challenge is that radio technologies like WiFi, Bluetooth and conventional FM radios would last less than half a day with a coin cell battery when transmitting,” said co-author and UW electrical engineering doctoral student Vikram Iyer. “So we developed a new way of communication where we send information by reflecting ambient FM radio signals that are already in the air, which consumes close to zero power.”

The UW team has — for the first time — demonstrated how to apply a technique called “backscattering” to outdoor FM radio signals. The new system transmits messages by reflecting and encoding audio and data in these signals that are ubiquitous in urban environments, without affecting the original radio transmissions. Results are published in a paper to be presented in Boston at the 14th USENIX Symposium on Networked Systems Design and Implementation in March [2017].

The team demonstrated that a “singing poster” for the band Simply Three placed at a bus stop could transmit a snippet of the band’s music, as well as an advertisement for the band, to a smartphone at a distance of 12 feet or to a car over 60 feet away. They overlaid the audio and data on top of ambient news signals from a local NPR radio station.

The University of Washington has produced a video demonstration of the technology

A March 1, 2017 University of Washington news release (also on EurekAlert), which originated the news item, explains further (Note: Links have been removed),

“FM radio signals are everywhere. You can listen to music or news in your car and it’s a common way for us to get our information,” said co-author and UW computer science and engineering doctoral student Anran Wang. “So what we do is basically make each of these everyday objects into a mini FM radio station at almost zero power.”

Such ubiquitous low-power connectivity can also enable smart fabric applications such as clothing integrated with sensors to monitor a runner’s gait and vital signs that transmits the information directly to a user’s phone. In a second demonstration, the researchers from the UW Networks & Mobile Systems Lab used conductive thread to sew an antenna into a cotton T-shirt, which was able to use ambient radio signals to transmit data to a smartphone at rates up to 3.2 kilobits per second.

The system works by taking an everyday FM radio signal broadcast from an urban radio tower. The “smart” poster or T-shirt uses a low-power reflector to manipulate the signal in a way that encodes the desired audio or data on top of the FM broadcast to send a “message” to the smartphone receiver on an unoccupied frequency in the FM radio band.

“Our system doesn’t disturb existing FM radio frequencies,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “We send our messages on an adjacent band that no one is using — so we can piggyback on your favorite news or music channel without disturbing the original transmission.”

The team demonstrated three different methods for sending audio signals and data using FM backscatter: one simply overlays the new information on top of the existing signals, another takes advantage of unused portions of a stereo FM broadcast, and the third uses cooperation between two smartphones to decode the message.

“Because of the unique structure of FM radio signals, multiplying the original signal with the backscattered signal actually produces an additive frequency change,” said co-author Vamsi Talla, a UW postdoctoral researcher in computer science and engineering. “These frequency changes can be decoded as audio on the normal FM receivers built into cars and smartphones.”

In the team’s demonstrations, the total power consumption of the backscatter system was 11 microwatts, which could be easily supplied by a tiny coin-cell battery for a couple of years, or powered using tiny solar cells.

I cannot help but notice the interest in using this technology is for monitoring purposes, which could be benign or otherwise.

For anyone curious about the 14th USENIX Symposium on Networked Systems Design and Implementation being held March 27 – 29, 2017 in Boston, Massachusetts, you can find out more here.