Tag Archives: smart skin

Ionic skin for ‘smart’ skin

An April 28, 2022 University of British Columbia (UBC) news release (also on EurekAlert) announces a step forward in the attempt to create ‘smart’ skin, Note: Links have been removed,

In the quest to build smart skin that mimics the sensing capabilities of natural skin, ionic skins have shown significant advantages. They’re made of flexible, biocompatible hydrogels that use ions to carry an electrical charge. In contrast to smart skins made of plastics and metals, the hydrogels have the softness of natural skin. This offers a more natural feel to the prosthetic arm or robot hand they are mounted on, and makes them comfortable to wear.

These hydrogels can generate voltages when touched, but scientists did not clearly understand how — until a team of researchers at UBC devised a unique experiment, published today in Science.

“How hydrogel sensors work is they produce voltages and currents in reaction to stimuli, such as pressure or touch – what we are calling a piezoionic effect. But we didn’t know exactly how these voltages are produced,” said the study’s lead author Yuta Dobashi, who started the work as part of his master’s in biomedical engineering at UBC.

Working under the supervision of UBC researcher Dr. John Madden, Dobashi devised hydrogel sensors containing salts with positive and negative ions of different sizes. He and collaborators in UBC’s physics and chemistry departments applied magnetic fields to track precisely how the ions moved when pressure was applied to the sensor.

“When pressure is applied to the gel, that pressure spreads out the ions in the liquid at different speeds, creating an electrical signal. Positive ions, which tend to be smaller, move faster than larger, negative ions. This results in an uneven ion distribution which creates an electric field, which is what makes a piezoionic sensor work.”

The researchers say this new knowledge confirms that hydrogels work in a similar way to how humans detect pressure, which is also through moving ions in response to pressure, inspiring potential new applications for ionic skins.

“The obvious application is creating sensors that interact directly with cells and the nervous system, since the voltages, currents and response times are like those across cell membranes,” says Dr. Madden, an electrical and computer engineering professor in UBC’s faculty of applied science. “When we connect our sensor to a nerve, it produces a signal in the nerve. The nerve, in turn, activates muscle contraction.”

“You can imagine a prosthetic arm covered in an ionic skin. The skin senses an object through touch or pressure, conveys that information through the nerves to the brain, and the brain then activates the motors required to lift or hold the object. With further development of the sensor skin and interfaces with nerves, this bionic interface is conceivable.”

Another application is a soft hydrogel sensor worn on the skin that can monitor a patient’s vital signs while being totally unobtrusive and generating its own power.

Dobashi, who’s currently completing his PhD work at the University of Toronto, is keen to continue working on ionic technologies after he graduates.

“We can imagine a future where jelly-like ‘iontronics’ are used for body implants. Artificial joints can be implanted, without fear of rejection inside the human body. Ionic devices can be used as part of artificial knee cartilage, adding a smart sensing element.  A piezoionic gel implant might release drugs based on how much pressure it senses, for example.”

Dr. Madden added that the market for smart skins is estimated at $4.5 billion in 2019 and it continues to grow. “Smart skins can be integrated into clothing or placed directly on the skin, and ionic skins are one of the technologies that can further that growth.”

The research includes contributions from UBC chemistry PhD graduate Yael Petel and Carl Michal, UBC professor of physics, who used the interaction between strong magnetic fields and the nuclear spins of ions to track ion movements within the hydrogels. Cédric Plesse, Giao Nguyen and Frédéric Vidal at CY Cergy Paris University in France helped develop a new theory on how the charge and voltage are generated in the hydrogels.

Interview language(s): English (Dobashi, Madden), French (Plesse, Madden), Japanese (Dobashi)

Here’s a link to and a citation for the paper,

Piezoionic mechanoreceptors: Force-induced current generation in hydrogels by
Yuta Dobashi, Dickson Yao, Yael Petel, Tan Ngoc Nguyen, Mirza Saquib Sarwar, Yacine Thabet, Cliff L. W. Ng, Ettore Scabeni Glitz, Giao Tran Minh Nguyen, Cédric Plesse, Frédéric Vidal, Carl A. Michal and John D. W. Madden. Science • 28 Apr 2022 • Vol 376, Issue 6592 • pp. 502-507 • DOI: 10.1126/science.aaw1974

This paper is behind a paywall.

Smart suits for US soldiers—an update of sorts from the Lawrence Livermore National Laboratory

The US military has funded a program named: ‘Dynamic Multifunctional Material for a Second Skin Program’ through its Defense Threat Reduction Agency’s (DTRA) Chemical and Biological Technologies Department and Sharon Gaudin’s Feb. 20,  2014 article for Computer World offers a bit of an update on this project,which was first reported in 2012,

A U.S. soldier is on patrol with his squad when he kneels to check something out, unknowingly putting his knee into a puddle of contaminants.

The soldier isn’t harmed, though, because he or she is wearing a smart suit that immediately senses the threat and transforms the material covering his knee into a protective state that repels the potential deadly bacteria.

Scientists at the Lawrence Livermore National Laboratory, a federal government research facility in Livermore, Calif., are using nanotechnology to create clothing designed to protect U.S. soldiers from chemical and biological attacks.

“The threat is nanoscale so we need to work in the nano realm, which helps to keep it light and breathable,” said Francesco Fornasiero, a staff scientist at the lab. “If you have a nano-size threat, you need a nano-sized defense.”

Fornasiero said the task is a difficult one, and the suits may not be ready for the field for another 10 to 20 years. [emphasis mine]

One option is to use carbon nanotubes in a layer of the suit’s fabric. Sweat and air would be able to easily move through the nanotubes. However, the diameter of the nanotubes is smaller than the diameter of bacteria and viruses. That means they would not be able to pass through the tubes and reach the person wearing the suit.

However, chemicals that might be used in a chemical attack are small enough to fit through the nanotubes. To block them, researchers are adding a layer of polymer threads that extend up from the top of the nanotubes, like stalks of grass coming up from the ground.

The threads are designed to recognize the presence of chemical agents. When that happens, they swell and collapse on top of the nanotubes, blocking anything from entering them.

A second option that the Lawrence Livermore scientists are working on involves similar carbon nanotubes but with catalytic components in a polymer mesh that sits on top of the nanotubes. The components would destroy any chemical agents they come in contact with. After the chemicals are destroyed, they are shed off, enabling the suit to handle multiple attacks.

An October 6, 2012 (NR-12-10-06) Lawrence Livermore National Laboratory (LLNL) news release details the -project and the proponents,

Lawrence Livermore National Laboratory scientists and collaborators are developing a new military uniform material that repels chemical and biological agents using a novel carbon nanotube fabric.

The material will be designed to undergo a rapid transition from a breathable state to a protective state. The highly breathable membranes would have pores made of a few-nanometer-wide vertically aligned carbon nanotubes that are surface modified with a chemical warfare agent-responsive functional layer. Response to the threat would be triggered by direct chemical warfare agent attack to the membrane surface, at which time the fabric would switch to a protective state by closing the CNT pore entrance or by shedding the contaminated surface layer.

High breathability is a critical requirement for protective clothing to prevent heat-stress and exhaustion when military personnel are engaged in missions in contaminated environments. Current protective military uniforms are based on heavyweight full-barrier protection or permeable adsorptive protective overgarments that cannot meet the critical demand of simultaneous high comfort and protection, and provide a passive rather than active response to an environmental threat.

To provide high breathability, the new composite material will take advantage of the unique transport properties of carbon nanotube pores, which have two orders of magnitude faster gas transport rates when compared with any other pore of similar size.

“We have demonstrated that our small-size prototype carbon nanotube membranes can provide outstanding breathability in spite of the very small pore sizes and porosity,” said Sangil Kim, another LLNL scientist in the Biosciences and Biotechnology Division. “With our collaborators, we will develop large area functionalized CNT membranes.”

Biological agents, such as bacteria or viruses, are close to 10 nanometers in size. Because the membrane pores on the uniform are only a few nanometers wide, these membranes will easily block biological agents.

However, chemical agents are much smaller in size and require the membrane pores to be able to react to block the threat. To create a multifunctional membrane, the team will surface modify the original prototype carbon nanotube membranes with chemical threat responsive functional groups. The functional groups on the membrane will sense and block the threat like gatekeepers on entrance. A second response scheme also will be developed: Similar to how a living skin peels off when challenged with dangerous external factors, the fabric will exfoliate upon reaction with the chemical agent. In this way, the fabric will be able to block chemical agents such as sulfur mustard (blister agent), GD and VX nerve agents, toxins such as staphylococcal enterotoxin and biological spores such as anthrax.

The project is funded for $13 million over five years with LLNL as the lead institution. The Livermore team is made up of Fornasiero [Francesco Fornasiero], Kim and Kuang Jen Wu. Other collaborators and institutions involved in the project include Timothy Swager at Massachusetts Institute of Technology, Jerry Shan at Rutgers University, Ken Carter, James Watkins, and Jeffrey Morse at the University of Massachusetts-Amherst, Heidi Schreuder-Gibson at Natick Soldier Research Development and Engineering Center, and Robert Praino at Chasm Technologies Inc.

“Development of chemical threat responsive carbon nanotube membranes is a great example of novel material’s potential to provide innovative solutions for the Department of Defense CB needs,” said Tracee Harris, the DTRA science and technology manager for the Dynamic Multifunctional Material for a Second Skin Program. “This futuristic uniform would allow our military forces to operate safely for extended time periods and successfully complete their missions in environments contaminated with chemical and biological warfare agents.”

The Laboratory has a history in developing carbon nanotubes for a wide range of applications including desalination. “We have an advanced carbon nanotube platform to build and expand to make advancements in the protective fabric material for this new project,” Wu said.

The new uniforms could be deployed in the field in less than 10 years. [emphasis mine]

Since Gaudin’s 2014 article quotes one of the LLNL’s scientists, Francesco Fornasiero, with an estimate for the suit’s deployment into the field as 10 – 20 years as opposed to the “less than 10 years” estimated in the news release, I’m guessing the problem has proved more complex than was first anticipated.

For anyone who’s interested in more details about  US soldiers and nanotechnology,

  • May 1, 2013 article by Max Cacas for Signal Online provides more details about the overall Smart Skin programme and its goals.
  • Nov. 15, 2013 article by Kris Walker for Azonano.com describes the Smart Skin project along with others including the intriguingly titled: ‘Warrior Web’.
  • website for MIT’s (Massachusetts Institute of Technology) Institute for Soldier Nanotechnologies Note: The MIT researcher mentioned in the LLNL news release is a faculty member of the Institute for Soldier Nanotechnologies.
  • website for the Defense Threat Reduction Agency

Camouflage for everyone

The Institute of Physics (IOP) journal, Bioinspiration and BIomimetics, has published an open access article on camouflage inspired by zebrafish and squid. From the IOP’s May 2, 2012 news release

Researchers from the University of Bristol have created artificial muscles that can be transformed at the flick of a switch to mimic the remarkable camouflaging abilities of organisms such as squid and zebrafish.

They demonstrate two individual transforming mechanisms that they believe could be used in ‘smart clothing’ to trigger camouflaging tricks similar to those seen in nature.

The soft, stretchy, artificial muscles are based on specialist cells called chromatophores that are found in amphibians, fish, reptiles and cephalopods, and contain pigments of colours that are responsible for the animals’ remarkable colour-changing effects.

Here’s the video mentioned in the IOP’s May 2, 2012 news release,

The lead author Jonathan Rossiter provides a description of the work (which may help you better understand what you’re seeing on the video), from the May 2, 2012 news item,

Two types of artificial chromatophores were created in the study: the first based on a mechanism adopted by a squid and the second based on a rather different mechanism adopted by zebrafish.

A typical colour-changing cell in a squid has a central sac containing granules of pigment. The sac is surrounded by a series of muscles and when the cell is ready to change colour, the brain sends a signal to the muscles and they contract. The contracting muscles make the central sacs expand, generating the optical effect which makes the squid look like it is changing colour.

The fast expansion of these muscles was mimicked using dielectric elastomers (DEs) – smart materials, usually made of a polymer, which are connected to an electric circuit and expand when a voltage is applied. They return to their original shape when they are short circuited.

In contrast, the cells in the zebrafish contain a small reservoir of black pigmented fluid that, when activated, travels to the skin surface and spreads out, much like the spilling of black ink. The natural dark spots on the surface of the zebrafish therefore appear to get bigger and the desired optical effect is achieved. The changes are usually driven by hormones.

The zebrafish cells were mimicked using two glass microscope slides sandwiching a silicone layer. Two pumps, made from flexible DEs, were positioned on both sides of the slide and were connected to the central system with silicone tubes; one pumping opaque white spirit, the other a mixture of black ink and water.

“Our artificial chromatophores are both scalable and adaptable and can be made into an artificial compliant skin which can stretch and deform, yet still operate effectively. This means they can be used in many environments where conventional ‘hard’ technologies would be dangerous, for example at the physical interface with humans, such as smart clothing,” continued Rossiter.

I wonder what these smart clothes/smart skin would feel like against your personal skin given that we are talking about ‘artificial muscles’. For example, how much movement would your clothing/smart skin have independent of you?

By independent, I mean that everything occurs externally. While we’re not ordinarily conscious of all our physical responses they are stimulated internally and part of a whole body response (even though we may notice only localized responses, e.g., a rash). In the research, there’s an external stimulus and an external response via smart clothes/smart skin.

This is just speculation as I imagine we’re several years away from any field testing of these smart clothes/smart skin, assuming that scientists are able to address all the technical hurdles between a laboratory breakthrough and developing applications.

Thanks to Nanowerk where I first came across this information (May 2, 2012 news item).