Tag Archives: smart tattoos

SkinKit: smart tattoo provides on-skin computing

The SkinKit wearable sensing interface, developed in the Hybrid Body Lab, can be used for health and wellness, personal safety, as assistive technology and for athletic training, among many applications. Hybrid Body Lab/Provided

A November 3, 2022 Cornell University news release on EurekAlert announces a computer you can attach to your skin (Note: Links have been removed),

Researchers at Cornell University have come up with a reliable, skin-tight computing system that’s easy to attach and detach, and can be used for a variety of purposes – from health monitoring to fashion.

On-skin interfaces – sometimes known as “smart tattoos” – have the potential to outperform the sensing capabilities of current wearable technologies but combining comfort and durability has proven challenging.

“We’ve been working on this for years,” said Cindy (Hsin-Liu) Kao, assistant professor of human centered design, and the study’s senior author, “and I think we’ve finally figured out a lot of the technical challenges. We wanted to create a modular approach to smart tattoos, to make them as straightforward as building Legos.”

SkinKit – a plug-and-play system that aims to “lower the floor for entry” to on-skin interfaces for those with little or no technical expertise – is the product of countless hours of development, testing and redevelopment, Kao said. Fabrication is done with temporary tattoo paper, silicone textile stabilizer and water, creating a multi-layer thin film structure they call “skin cloth.” The layered material can be cut into desired shapes and fitted with electronics hardware to perform a range of tasks.

“The wearer can easily attach them together and also detach them,” said Pin-Sung Ku, lead author of the paper and Hybrid Body Lab member. “Let’s say that today you want to use one of the sensors for certain purposes, but tomorrow you want it for something different. You can easily just detach them and reuse some of the modules to make a new device in minutes.”

The paper “SkinKit: Construction Kit for On-Skin Interface Prototyping” was presented at UbiComp ’22, the Association for Computing Machinery’s international joint conference on pervasive and ubiquitous computing.

Here’s a SkinKit video provided by Cornell University’s Hybrid Body Lab,

Tom Fleischman’s November 3, 2022 story for the Cornell Chronicle provides more details about SkinKit (Note: Links have been removed),

SkinKit – a plug-and-play system that aims to “lower the floor for entry” to on-skin interfaces, Kao said, for those with little or no technical expertise – is the product of countless hours of development, testing and redevelopment, she said.

Kao’s lab is also very conscious of cultural differences generally, and she thinks it’s important to bring these devices to diverse populations.

“People from different cultures, backgrounds and ethnicities can have very different perceptions toward these devices,” she said. “We felt it’s actually very important to let more people have a voice in saying what they want these smart tattoos to do.”

To test SkinKit, the researchers first recruited nine participants with both STEM and design backgrounds to build and wear the devices. Their input from the 90-minute workshop helped inform further modifications, which the group performed before conducting a larger, two-day study involving 25 participants with both STEM and design backgrounds.

Devices designed by the 25 study participants addressed: health and wellness, including temperature sensors to detect fever due to COVID-19; personal safety, including a device that would help the wearer maintain social distance during the pandemic; notification, including an arm-worn device that a runner could wear that would vibrate when a vehicle was near; and assistive technology, such as a wrist-worn sensor for the blind that would vibrate when the wearer was about to bump into an object.

Kao said members of her lab, including Ku, took part in the 4-H Career Explorations Conference over the summer, and had approximately 10 middle-schoolers from upstate New York build their own SkinKit devices.

“I think it just shows us a lot of potential for STEM [science, technology, engineering, and mathematics] learning, and especially to be able to engage people who maybe originally wouldn’t have interest in STEM,” Kao said. “But by combining it with body art and fashion, I think there’s a lot of potential for it to engage the next generation and broader populations to explore the future of smart tattoos.”

Here’s a citation for the paper,

SkinKit: Construction Kit for On-Skin Interface Prototyping” by Pin-Sung Ku, Md. Tahmidul Islam Molla, Kunpeng Huang, Priya Kattappurath, Krithik Ranjan, Hsin-Liu Cindy Kao. Proceedings of the ACM [Aossciation for Computing Machinery] on Interactive, Mobile, Wearable and Ubiquitous Technologies Volume 5 Issue 4 Dec 2021 Article No.: 165pp 1–23 DOI: https://doi.org/10.1145/3494989 Published: 30 December 2021

This paper is behind a paywall.

The Hybrid Body Lab can be found here (the pictures are fascinating). Here’s more from their About page,

The Hybrid Body Lab at Cornell University, founded and directed by Prof. Cindy Hsin-Liu Kao, focuses on the invention of culturally-inspired materials, processes, and tools for crafting technology on the body surface. Designing across scales, we explore how body scale interfaces can enhance our relations with everyday products and both natural and man-made environments. We conduct research at the intersection of Human-Computer Interaction, Wearable & Ubiquitous Computing, Digital Fabrication, Interaction Design, and Fashion & Body Art. We synthesize this knowledge to contribute a culturally-sensitive lens to the future of designs that interface the body and the environment. Our current investigations include:

Wearable Technology & On-Skin Interfaces
We develop novel wearable interfaces and fabrication processes, which a focus on skin-conformable or textile-based form factors. By hybridizing miniaturized robotics, machines, and materials with cultural body decoration practices, we investigate how technology can be situated as a culturally meaningful material for crafting our identities.

Designing Skins Across Scales
‘Many different types of machines that were parts of architecture have become parts of our bodies.’ —Bill Mitchell, Me++

We design “skins” that can be adapted across scales, from the architectural to the body scale. We investigate the interactions of a wearer’s body-borne interface with its surrounding ecology. This includes its interaction with other people, objects, to environments. We are also interested in developing skins that can be deployed across scales — from the body to the architectural scale.

Understanding Social Perceptions Towards On-Body Technologies
Wearable devices have evolved towards intrinsic human augmentation, unlocking the human skin as an interface for seamless interaction. However, the non-traditional form factor of these on-skin interfaces may raise concerns for public wear. These perceptions will influence whether a new form of technology will eventually be accepted, or rejected by society.  We investigate the cultural and social concerns that need to be considered when generating on-body technologies for inclusive design.

Needle-free tattoos, smart and otherwise

Before getting to the research news from the University of Twente (Netherlands), there’s this related event which took place on April 18, 2019 (from the Future Under Our Skin webpage (on the University of Twente website) Note: I have made some formatting changes,

Why this event?

Our skin can give information about our health, mood and surroundings. Medical and recreational tattoos have decorated humans for centuries. But we can inject other materials besides ink, such as sensing devices, nano- or bio-responsive materials. With the increased percentage of tattooed population in recent years new health challenges have emerged; but is also a unique possibility to “read from our own skin”, beyond an artistic design. 
 
We have invited scientists, innovators, entrepreneurs, dermatologists, cosmetic permanent make-up technicians, tattoo artists, philosophers, and other experts. They will share with us their vision of the current and future role our skin has for improving the quality of life.

Open Event

This event is open to students, citizens in general as well as societal and governmental organisations around the different uses of our skin. The presence of scientists, medical doctors, tattoo artists and industry representatives is guaranteed. Then, we will all explore together the potential for co-creation with healthy citizens, patients, entreprises and other stakeholders.


If you want to hear from experts and share your own ideas, feel free to come to this Open Event!
 
It is possible to take the dish of the day (‘goed gevulde noedels met kippendij en satésaus en kroepoek’) in restaurant The Gallery (same building as DesignLab) at own costs (€7,85). Of course it is also possible to eat à la carte in Grand Café 

Wanneer: : 18 april 2019
Tijd: :17:30 – 20:00
Organisator: University of Twente
Locatie: Design Lab University of Twente
Hengelosestraat 500
7521 AN Enschede

Just days before, the University of Twente announced this research in an April 16, 2019 news item on Naowerk (Note: A link has been removed),

A tattoo that is warning you for too many hours of sunlight exposure, or is alerting you for taking your medication? Next to their cosmetic role, tattoos could get new functionality using intelligent ink. That would require more precise and less invasive injection technique.

Researchers of the University of Twente now develop a micro-jet injection technology that doesn’t use needles at all. Instead, an ultrafast liquid jet with the thickness of a human hair penetrates the skin. It isn’t painful and there is less waste.

In their new publication in the American Journal of Physics (“High speed imaging of solid needle and liquid micro-jet injections”), the scientists compare both the needle and the fluid jet approach.

Here’s an image provided by the researchers which illustrates the technique they have developed,

Working principle of needle-free injection: laser heating the fluid.The growing bubble pushes out the fluid (medicine or ink) at very high speed. Courtesy: University of Twente

An April 15, 2019 University of Twente press release, which originated the news item, provides more detail about tattoos and the research leading to ‘need-free’ tattoos,

Ötzi the Iceman already had, over 5000 years ago, dozens of simple tattoos on his body, apparently for pain relief. Since the classic ‘anchor’ tattoo that sailors had on their arms, tattoos have become more and more common. About 44 million Europeans wear one or more of them. Despite its wider acceptance in society, the underlying technique didn’t change and still has health risks. One or more moving needles put ink underneath the skin surface. This is painful and can damage the skin. Apart from that, needles have to be disposed of in a responsible way, and quite some ink is wasted. The alternative that David Fernández Rivas and his colleagues are developing, doesn’t use any needles. In their new paper, they compare this new approach with classic needle technology, on an artificial skin material and using high speed images. Remarkably, according to Fernández Rivas, the classic needle technology has never been subject of research in such a thorough way, using high speed images.

Fast fluid jet

The new technique employs a laser for rapidly heating a fluid that is inside a microchannel on a glass chip. Heated above the boiling point, a vapour bubble forms and grows, pushing the liquid out at speeds up to 100 meter per second (360 km/h). The jet, about the diameter of a human hair, is capable of going through human skin. “You don’t feel much of it, no more than a mosquito bite”, say Fernandez Rivas.

The researchers did their experiments with a number of commercially available inks. Compared to a tattoo machine, the micro-jet consumes a small amount of energy. What’s more important, it minimizes skin damage and the injection efficiency is much higher, there is no loss of fluids. And there is no risk of contaminated needles. The current microjet is a single one, while tattooing is often done using multiple needles with different types or colours of ink. Also, the volume that can be ‘delivered’ by the microjet has to be increased. These are next steps in developing the needle-free technology.

Skin treatment

In today’s medical world, tattoo-resembling techniques are used for treatment of skin, masking scars, or treating hair diseases. These are other areas in which the new technique can be used, as well as in vaccination. A challenging idea is using tattoos for cosmetic purposes and as health sensors at the same time. What if ink is light-sensitive or responds to certain substances that are present in the skin or in sweat?

On this new approach, scientists, students, entrepreneurs and tattoo artists join a special event ‘The future under our skin’, organized by David Fernandez Rivas.

Research has been done in the Mesoscale Chemical Systems group, part of UT’s MESA+ Institute.

Here’s a link to an d a citation for the paper,

High speed imaging of solid needle and liquid micro-jet injections by Loreto Oyarte Gálveza, Maria Brió Pérez, and David Fernández Rivas. Journal of Applied Physics 125, 144504 (2019); Volume 125, Issue 14 DOI: 10.1063/1.5074176 https://doi.org/10.1063/1.5074176 Free Published Online: 09 April 2019

This paper appears to be open access.