Tag Archives: smartphone

Finding killer bacteria with quantum dots and a smartphone

An August 5, 2019 news item on Nanowerk announces a new technology for detecting killer bacteria (Note: A link has been removed),

A combination of off-the-shelf quantum dots and a smartphone camera soon could allow doctors to identify antibiotic-resistant bacteria in just 40 minutes, potentially saving patient lives.

Staphylococcus aureus (golden staph), is a common form of bacterium that causes serious and sometimes fatal conditions such as pneumonia and heart valve infections. Of particular concern is a strain that does not respond to methicillin, the antibiotic of first resort, and is known as methicillin-resistant S. aureus, or MRSA.

Recent reports estimate that 700 000 deaths globally could be attributed to antimicrobial resistance, such as methicillin-resistance. Rapid identification of MRSA is essential for effective treatment, but current methods make it a challenging process, even within well-equipped hospitals.

Soon, however, that may change, using nothing except existing technology.

Researchers from Macquarie University and the University of New South Wales, both in Australia, have demonstrated a proof-of-concept device that uses bacterial DNA to identify the presence of Staphylococcus aureus positively in a patient sample – and to determine if it will respond to frontline antibiotics.

An August 12,2019 Macquarie University press release (also on EurekAlert but published August 4, 2019), which originated the news item, delves into the work,

In a paper published in the international peer-reviewed journal Sensors and Actuators B: Chemical the Macquarie University team of Dr Vinoth Kumar Rajendran, Professor Peter Bergquist and Associate Professor Anwar Sunna with Dr Padmavathy Bakthavathsalam (UNSW) reveal a new way to confirm the presence of the bacterium, using a mobile phone and some ultra-tiny semiconductor particles known as quantum dots.

“Our team is using Synthetic Biology and NanoBiotechnology to address biomedical challenges. Rapid and simple ways of identifying the cause of infections and starting appropriate treatments are critical for treating patients effectively,” says Associate Professor Anwar Sunna, head of the Sunna Lab at Macquarie University.

“This is true in routine clinical situations, but also in the emerging field of personalised medicine.”

The researchers’ approach identifies the specific strain of golden staph by using a method called convective polymerase chain reaction (or cPCR). This is a derivative of a widely -employed technique in which a small segment of DNA is copied thousands of times, creating multiple samples suitable for testing.

Vinoth Kumar and colleagues then subject the DNA copies to a process known as lateral flow immunoassay – a paper-based diagnostic tool used to confirm the presence or absence of a target biomarker. The researchers use probes fitted with quantum dots to detect two unique genes, that confirms the presence of methicillin resistance in golden staph

A chemical added at the PCR stage to the DNA tested makes the sample fluoresce when the genes are detected by the quantum dots – a reaction that can be captured easily using the camera on a mobile phone.

The result is a simple and rapid method of detecting the presence of the bacterium, while simultaneously ruling first-line treatment in or out.

Although currently at proof-of-concept stage, the researchers say their system which is powered by a simple battery is suitable for rapid detection in different settings.

“We can see this being used easily not only in hospitals, but also in GP clinics and at patient bedsides,” says lead author, Macquarie’s Vinoth Kumar Rajendran.

Here’s a link to and a citation for the paper,

Smartphone detection of antibiotic resistance using convective PCR and a lateral flow assay by Vinoth Kumar Rajendran, Padmavathy Bakthavathsalam, Peter L.Bergquist, Anwar Sunna. Sensors and Actuators B: Chemical Volume 298, 1 November 2019,126849 DOI: https://doi.org/10.1016/j.snb.2019.126849 Available online 23 July 2019

This paper is behind a paywall.

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawei*, a China-based international telecommunications* company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

*’Huawe’ changed to ‘Huawei’ and ‘telecommunicatons’ changed to ‘telecommunications’ on Nov. 13, 2020.

In-home (one day in the future) eyesight correction

It’s easy to become blasé about ‘futuristic’ developments but every once in a while something comes along that shocks you out of your complacency as this March 8, 2018 news item did for me,

A revolutionary, cutting-edge technology, developed by researchers at Bar-Ilan University’s Institute of Nanotechnology and Advanced Materials (BINA), has the potential to provide a new alternative to eyeglasses, contact lenses, and laser correction for refractive errors.

The technology, known as Nano-Drops, was developed by opthamologist Dr. David Smadja from Shaare Zedek Medical Center, Prof. Zeev Zalevsky from Bar-Ilan’s Kofkin Faculty of Engineering, and Prof. Jean-Paul Moshe Lellouche, head of the Department of Chemistry at Bar-Ilan.

It seems like it would be eye drops, eh? This March 8, 2018 Bar-Ilan University press release, which originated the news item, proceeds to redefine eyedrops,

Nano-Drops achieve their optical effect and correction by locally modifying the corneal refractive index. The magnitude and nature of the optical correction is adjusted by an optical pattern that is stamped onto the superficial layer of the corneal epithelium with a laser source. The shape of the optical pattern can be adjusted for correction of myopia (nearsightedness), hyperopia (farsightedness) or presbyopia (loss of accommodation ability). The laser stamping onto the cornea [emphasis mine] takes a few milliseconds and enables the nanoparticles to enhance and ‘activate’ this optical pattern by locally changing the refractive index and ultimately modifying the trajectory of light passing through the cornea.

The laser stamping source does not relate to the commonly known ‘laser treatment for visual correction’ that ablates corneal tissue. It is rather a small laser device that can connect to a smartphone [emphasis mine] and stamp the optical pattern onto the corneal epithelium by placing numerous adjacent pulses in a very speedy and painless fashion.  Tiny corneal spots created by the laser allow synthetic and biocompatible nanoparticles to enter and locally modify the optical power of the eye [emphasis mine] at the desired correction.

In the future this technology may enable patients to have their vision corrected in the comfort of their own home. [emphasis mine] To accomplish this, they would open an application on their smartphone to measure their vision, connect the laser source device for stamping the optical pattern at the desired correction, and then apply the Nano-Drops to activate the pattern and provide the desired correction.

Upcoming in-vivo experiments in rabbits will allow the researchers to determine how long the effect of the Nano-Drops will last after the initial application. Meanwhile, this promising technology has been shown, through ex-vivo experiments, to efficiently correct nearly 3 diopters of both myopia and presbyopia in pig eyes.

The researchers do not seem to have published a paper about this work. However, there is a March 19, 2018 article by Shoshanna Solomon for the Times of Israel, which provides greater  detail about how you or I would use this technology,

The Israeli researchers came up with a way to reshape the cornea, which accounts for 60 percent of the eye’s optical power. They tried out their system on the eyes of dead pigs, which have an optical system that is very similar to that of humans.

There are three steps to the technology that is now in development.

The first step requires patients to measure their eyesight via their smartphones. There are already a number of apps that do this, said Smadja. The second step requires the patients to use a second app — being developed by the researchers — which would have a laser device clipped onto the smartphone. This device will deliver laser pulses to the eye in less than a second that etch a shallow shape onto the cornea to help correct its refractive error. During the last stage, the Nano-Drops — made up of nontoxic nanoparticles of proteins — are put into the eye and they activate the shape, thus correcting the patients’ vision.

“It’s like when you write something with fuel on the ground and the fuel dries up, and then you throw a flame onto the fuel and the fire takes the shape of the writing,” Smadja explained. “The drops activate the pattern.”

The technology, unlike current laser operations that correct eyesight, does not remove tissue and is thus noninvasive, and it suits most eyes, expanding the scope of patients who can correct their vision, he said.

It’s a good article and, if you have the time, it’s worth reading in its entirety. Of course, it’s a long from ‘being in development’ to ‘available at the store’.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Shades of the Nokia Morph: a smartphone than conforms to your wrist

A March 16, 2017 news item on Nanowerk brought back some memories for me,

Some day, your smartphone might completely conform to your wrist, and when it does, it might be covered in pure gold, thanks to researchers at Missouri University of Science and Technology.

Nokia, a Finnish telecommunications company, was promoting its idea for a smartphone ‘and more’ that could be worn around your wrist in a concept called the Morph. It was introduced in 2008 at the Museum of Modern Art in New York City (see my March 20, 2010 posting for one of my last updates on this moribund project). Here’s Nokia’s Morph video (almost 6 mins.),

Getting back to the present day, here’s what the Missouri researchers are working on,

An example of a gold foil peeled from single crystal silicon. Reprinted with permission from Naveen Mahenderkar et al., Science [355]:[1203] (2017)

A March 16, 2017 Missouri University of Science and Technology news release, by Greg Katski, which originated the news item, provides more details about this Missouri version (Note: A link has been removed),

Writing in the March 17 [2017] issue of the journal Science, the S&T researchers say they have developed a way to “grow” thin layers of gold on single crystal wafers of silicon, remove the gold foils, and use them as substrates on which to grow other electronic materials. The research team’s discovery could revolutionize wearable or “flexible” technology research, greatly improving the versatility of such electronics in the future.

According to lead researcher Jay A. Switzer, the majority of research into wearable technology has been done using polymer substrates, or substrates made up of multiple crystals. “And then they put some typically organic semiconductor on there that ends up being flexible, but you lose the order that (silicon) has,” says Switzer, Donald L. Castleman/FCR Endowed Professor of Discovery in Chemistry at S&T.

Because the polymer substrates are made up of multiple crystals, they have what are called grain boundaries, says Switzer. These grain boundaries can greatly limit the performance of an electronic device.

“Say you’re making a solar cell or an LED,” he says. “In a semiconductor, you have electrons and you have holes, which are the opposite of electrons. They can combine at grain boundaries and give off heat. And then you end up losing the light that you get out of an LED, or the current or voltage that you might get out of a solar cell.”

Most electronics on the market are made of silicon because it’s “relatively cheap, but also highly ordered,” Switzer says.

“99.99 percent of electronics are made out of silicon, and there’s a reason – it works great,” he says. “It’s a single crystal, and the atoms are perfectly aligned. But, when you have a single crystal like that, typically, it’s not flexible.”

By starting with single crystal silicon and growing gold foils on it, Switzer is able to keep the high order of silicon on the foil. But because the foil is gold, it’s also highly durable and flexible.

“We bent it 4,000 times, and basically the resistance didn’t change,” he says.

The gold foils are also essentially transparent because they are so thin. According to Switzer, his team has peeled foils as thin as seven nanometers.

Switzer says the challenge his research team faced was not in growing gold on the single crystal silicon, but getting it to peel off as such a thin layer of foil. Gold typically bonds very well to silicon.

“So we came up with this trick where we could photo-electrochemically oxidize the silicon,” Switzer says. “And the gold just slides off.”

Photoelectrochemical oxidation is the process by which light enables a semiconductor material, in this case silicon, to promote a catalytic oxidation reaction.

Switzer says thousands of gold foils—or foils of any number of other metals—can be made from a single crystal wafer of silicon.

The research team’s discovery can be considered a “happy accident.” Switzer says they were looking for a cheap way to make single crystals when they discovered this process.

“This is something that I think a lot of people who are interested in working with highly ordered materials like single crystals would appreciate making really easily,” he says. “Besides making flexible devices, it’s just going to open up a field for anybody who wants to work with single crystals.”

Here’s a link to and a citation for the paper,

Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics by Naveen K. Mahenderkar, Qingzhi Chen, Ying-Chau Liu, Alexander R. Duchild, Seth Hofheins, Eric Chason, Jay A. Switzer. Science  17 Mar 2017: Vol. 355, Issue 6330, pp. 1203-1206 DOI: 10.1126/science.aam5830

This paper is behind a paywall.

Singing posters and talking shirts can communicate with you via car radio or smartphones

Singing posters and talking shirts haven’t gone beyond the prototype stage yet but I imagine University of Washington engineers are hoping this will happen sooner rather than later. In the meantime, they are  presenting their work at a conference according to a March 1, 2017 news item on ScienceDaily,

Imagine you’re waiting in your car and a poster for a concert from a local band catches your eye. What if you could just tune your car to a radio station and actually listen to that band’s music? Or perhaps you see the poster on the side of a bus stop. What if it could send your smartphone a link for discounted tickets or give you directions to the venue?

Going further, imagine you go for a run, and your shirt can sense your perspiration and send data on your vital signs directly to your phone.

A new technique pioneered by University of Washington engineers makes these “smart” posters and clothing a reality by allowing them to communicate directly with your car’s radio or your smartphone. For instance, bus stop billboards could send digital content about local attractions. A street sign could broadcast the name of an intersection or notice that it is safe to cross a street, improving accessibility for the disabled. In addition, clothing with integrated sensors could monitor vital signs and send them to a phone. [emphasis mine]

“What we want to do is enable smart cities and fabrics where everyday objects in outdoor environments — whether it’s posters or street signs or even the shirt you’re wearing — can ‘talk’ to you by sending information to your phone or car,” said lead faculty and UW assistant professor of computer science and engineering Shyam Gollakota.

“The challenge is that radio technologies like WiFi, Bluetooth and conventional FM radios would last less than half a day with a coin cell battery when transmitting,” said co-author and UW electrical engineering doctoral student Vikram Iyer. “So we developed a new way of communication where we send information by reflecting ambient FM radio signals that are already in the air, which consumes close to zero power.”

The UW team has — for the first time — demonstrated how to apply a technique called “backscattering” to outdoor FM radio signals. The new system transmits messages by reflecting and encoding audio and data in these signals that are ubiquitous in urban environments, without affecting the original radio transmissions. Results are published in a paper to be presented in Boston at the 14th USENIX Symposium on Networked Systems Design and Implementation in March [2017].

The team demonstrated that a “singing poster” for the band Simply Three placed at a bus stop could transmit a snippet of the band’s music, as well as an advertisement for the band, to a smartphone at a distance of 12 feet or to a car over 60 feet away. They overlaid the audio and data on top of ambient news signals from a local NPR radio station.

The University of Washington has produced a video demonstration of the technology

A March 1, 2017 University of Washington news release (also on EurekAlert), which originated the news item, explains further (Note: Links have been removed),

“FM radio signals are everywhere. You can listen to music or news in your car and it’s a common way for us to get our information,” said co-author and UW computer science and engineering doctoral student Anran Wang. “So what we do is basically make each of these everyday objects into a mini FM radio station at almost zero power.”

Such ubiquitous low-power connectivity can also enable smart fabric applications such as clothing integrated with sensors to monitor a runner’s gait and vital signs that transmits the information directly to a user’s phone. In a second demonstration, the researchers from the UW Networks & Mobile Systems Lab used conductive thread to sew an antenna into a cotton T-shirt, which was able to use ambient radio signals to transmit data to a smartphone at rates up to 3.2 kilobits per second.

The system works by taking an everyday FM radio signal broadcast from an urban radio tower. The “smart” poster or T-shirt uses a low-power reflector to manipulate the signal in a way that encodes the desired audio or data on top of the FM broadcast to send a “message” to the smartphone receiver on an unoccupied frequency in the FM radio band.

“Our system doesn’t disturb existing FM radio frequencies,” said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. “We send our messages on an adjacent band that no one is using — so we can piggyback on your favorite news or music channel without disturbing the original transmission.”

The team demonstrated three different methods for sending audio signals and data using FM backscatter: one simply overlays the new information on top of the existing signals, another takes advantage of unused portions of a stereo FM broadcast, and the third uses cooperation between two smartphones to decode the message.

“Because of the unique structure of FM radio signals, multiplying the original signal with the backscattered signal actually produces an additive frequency change,” said co-author Vamsi Talla, a UW postdoctoral researcher in computer science and engineering. “These frequency changes can be decoded as audio on the normal FM receivers built into cars and smartphones.”

In the team’s demonstrations, the total power consumption of the backscatter system was 11 microwatts, which could be easily supplied by a tiny coin-cell battery for a couple of years, or powered using tiny solar cells.

I cannot help but notice the interest in using this technology is for monitoring purposes, which could be benign or otherwise.

For anyone curious about the 14th USENIX Symposium on Networked Systems Design and Implementation being held March 27 – 29, 2017 in Boston, Massachusetts, you can find out more here.

Warren Chan and a distinguished career in nanobioengineering

I’m always happy to find out more about Canada’s nanotechnology scene and this Nov. 1, 2016 University of Toronto (UofT) news release by Carolyn Farrell provides an informative overview with its description of Warren Chan’s current achievements and recent career acknowledgement,

Institute of Biomaterials and Biomedical Engineering (IBBME) Professor Warren Chan has been named the University of Toronto Distinguished Professor of Nanobioengineering. The Distinguished Professor Award recognizes individuals with highly distinguished accomplishments and those who display exceptional promise. Chan will hold the professorship for a five-year term starting November 1, 2016. He is one of nine Distinguished Professors in the Faculty.

Chan leads a world-renowned research program in biomedical nanotechnology that has garnered international recognition for its exceptional innovation, breadth, and impact. His group has created a rapid, point-of-care nanotechnology-based diagnostic system that can detect multiple diseases from a single drop of blood.  The device is based on a combination of quantum dot barcoding technology — which picks out genetic markers for diseases — and techniques that allow the signals to be imaged and identified by a smartphone. The device costs less than $100 and can detect sequences from viruses like HIV or hepatitis B in less than one hour at 90 per cent accuracy.

Another focus of Chan’s research has been the development of technology for delivering chemotherapy drugs directly into tumours, avoiding the side-effects of traditional chemotherapy treatments. Chan and his research group have designed a targeted molecular delivery system that uses modular nanoparticles whose shape, size and chemistry can be altered by the presence of specific DNA sequences. This work has been published in the Proceedings of the National Academy of Sciences and the journal Science.

Chan’s most recent work, featured on the cover of ACS Nano, has provided unique insights into the fate and distribution of nanoparticles injected into the body. Chan’s lab developed techniques to visualize interactions between nanoparticles and the body’s various organs using 3D optical microscopy, revealing for the first time the distribution of these structures within tumour tissue. They have also set up an open online database that will enable the collection and analysis of data on nanoparticle delivery efficiency from any published study.

Professor Chan has received several Canadian and international awards for his research, including a NSERC Steacie Fellowship, the BF Goodrich Young Inventors Award, the Lord Rank Prize Fund Award in Optoelectronics, and the Dennis Gabor Award. He was recently the inaugural winner of the Kabiller Young Investigator Award from Northwestern University’s International Institute for Nanotechnology.

“I am profoundly grateful that UofT has recognized Warren Chan’s groundbreaking research applying nano-engineered materials to the diagnosis and treatment of disease,” said Dean Cristina Amon. “His research, which has the potential to revolutionize healthcare, has contributed tremendously to U of T’s growing reputation as a leading centre for biomedical engineering.”

Warren Chan has been mentioned here before with regard to his groundbreaking work, most recently in a Sept. 9, 2016 post about how the liver prevents nanoparticles from reaching cancer cells and in an April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination.

Congratulations Professor Chan!

Interactive chat with Amy Krouse Rosenthal’s memoir

It’s nice to see writers using technology in their literary work to create new forms although I do admit to a pang at the thought that this might have a deleterious effect on book clubs as the headline (Ditch Your Book Club: This AI-Powered Memoir Wants To Chat With You) for Claire Zulkey’s Sept. 1, 2016 article for Fast Company suggests,

Instead of attempting to write a book that would defeat the distractions of a smartphone, author Amy Krouse Rosenthal decided to make the two kiss and make up with her new memoir.

“I have this habit of doing interactive stuff,” says the Chicago writer and filmmaker, whose previous projects have enticed readers to communicate via email, website, or in person, and before all that, a P.O. box. As she pondered a logical follow-up to her 2005 memoir Encyclopedia of an Ordinary Life (which, among other prompts, offered readers a sample of her favorite perfume if they got in touch via her website), Rosenthal hit upon the concept of a textbook. The idea appealed to her, for its bibliographical elements and as a new way of conversing with her readers. And also, of course, because of the double meaning of the title. Textbook, which went on sale August 9 [2016], is a book readers can send texts to, and the book will text them back. “When I realized the wordplay opportunity, and that nobody had done that before, I loved it,” Rosenthal says. “Most people would probably be reading with a phone in their hands anyway.”

Rosenthal may be best known for the dozens of children’s books she’s published, but Encyclopedia was listed in Amazon’s top 10 memoirs of the decade for its alphabetized musings gathered together under the premise, “I have not survived against all odds. I have not lived to tell. I have not witnessed the extraordinary. This is my story.” Her writing often celebrates the serendipitous moment, the smallness of our world, the misheard sentence that was better than the real one—always in praise of the flashes of magic in our mundane lives. Textbook, Rosenthal says, is not a prequel or a sequel but “an equal” to Encyclopedia. It is organized by subject, and Rosenthal shares her favorite anagrams, admits a bias against people who sign emails with just their initials, and exhorts readers, next time they are at a party, to attempt to write a “group biography.” …

… when she sent the book out to publishers, Rosenthal explains, “Pretty much everybody got it. Nobody said, ‘We want to do this book but we don’t want to do that texting thing.’”

Zulkey also covers some of the nitty gritty elements of getting this book published and developed,

After she signed with Dutton, Rosenthal’s editors got in touch with OneReach, a Denver company that specializes in providing multichannel, conversational bot experiences, “This book is a great illustration of what we’re going to see a lot more of in the future,” says OneReach cofounder Robb Wilson. “It’s conversational and has some basic AI components in it.”

Textbook has nearly 20 interactive elements to it, some of which involve email or going to the book’s website, but many are purely text-message-based. One example is a prompt to send in good thoughts, which Rosenthal will then print and send out in a bottle to sea. Another asks readers to text photos of a rainbow they are witnessing in real time. The rainbow and its location are then posted on the book’s website in a live rainbow feed. And yet another puts out a call for suggestions for matching tattoos that at least one reader and Rosenthal will eventually get. Three weeks after its publication date, the book has received texts from over 600 readers.

Nearly anyone who has received a text from Walgreens saying a prescription is ready, gotten an appointment confirmation from a dentist, or even voted on American Idol has interacted with the type of technology OneReach handles. But behind the scenes of that technology were artistic quandaries that Rosenthal and the team had to solve or work around.

For instance, the reader has the option to pick and choose which prompts to engage with and in what order, which is not typically how text chains work. “Normally, with an automated text message you’re in kind of a lineal format,” says Justin Biel, who built Textbook’s system and made sure that if you skipped the best-wishes text, for instance, and go right to the rainbow, you wouldn’t get an error message. At one point Rosenthal and her assistant manually tried every possible permutation of text to confirm that there were no hitches jumping from one prompt to another.

Engineers also made lots of revisions so that the system felt like readers were having a realistic text conversation with a person, rather than a bot or someone who had obviously written out the messages ahead of time. “It’s a fine line between robotic and poetic,” Rosenthal says.

Unlike your Instacart shopper whom you hope doesn’t need to text to ask you about substitutions, Textbook readers will never receive a message alerting them to a new Rosenthal signing or a discount at Amazon. No promo or marketing messages, ever. “In a way, that’s a betrayal,” Wilson says. Texting, to him, is “a personal channel, and to try to use that channel for blatant reasons, I think, hurts you more than it helps you.

Zulkey’s piece is a good read and includes images and an embedded video.

Wireless, wearable carbon nanotube-based gas sensors for soldiers

Researchers at MIT (Massachusetts Institute of Technology) are hoping to make wireless, toxic gas detectors the size of badges. From a June 30, 2016 news item on Nanowerk,

MIT researchers have developed low-cost chemical sensors, made from chemically altered carbon nanotubes, that enable smartphones or other wireless devices to detect trace amounts of toxic gases.

Using the sensors, the researchers hope to design lightweight, inexpensive radio-frequency identification (RFID) badges to be used for personal safety and security. Such badges could be worn by soldiers on the battlefield to rapidly detect the presence of chemical weapons — such as nerve gas or choking agents — and by people who work around hazardous chemicals prone to leakage.

A June 30, 2016 MIT news release (also on EurekAlert), which originated the news item, describes the technology further,

“Soldiers have all this extra equipment that ends up weighing way too much and they can’t sustain it,” says Timothy Swager, the John D. MacArthur Professor of Chemistry and lead author on a paper describing the sensors that was published in the Journal of the American Chemical Society. “We have something that would weigh less than a credit card. And [soldiers] already have wireless technologies with them, so it’s something that can be readily integrated into a soldier’s uniform that can give them a protective capacity.”

The sensor is a circuit loaded with carbon nanotubes, which are normally highly conductive but have been wrapped in an insulating material that keeps them in a highly resistive state. When exposed to certain toxic gases, the insulating material breaks apart, and the nanotubes become significantly more conductive. This sends a signal that’s readable by a smartphone with near-field communication (NFC) technology, which allows devices to transmit data over short distances.

The sensors are sensitive enough to detect less than 10 parts per million of target toxic gases in about five seconds. “We are matching what you could do with benchtop laboratory equipment, such as gas chromatographs and spectrometers, that is far more expensive and requires skilled operators to use,” Swager says.

Moreover, the sensors each cost about a nickel to make; roughly 4 million can be made from about 1 gram of the carbon nanotube materials. “You really can’t make anything cheaper,” Swager says. “That’s a way of getting distributed sensing into many people’s hands.”

The paper’s other co-authors are from Swager’s lab: Shinsuke Ishihara, a postdoc who is also a member of the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science, in Japan; and PhD students Joseph Azzarelli and Markrete Krikorian.

Wrapping nanotubes

In recent years, Swager’s lab has developed other inexpensive, wireless sensors, called chemiresistors, that have detected spoiled meat and the ripeness of fruit, among other things [go to the end of this post for links to previous posts about Swager’s work]. All are designed similarly, with carbon nanotubes that are chemically modified, so their ability to carry an electric current changes when exposed to a target chemical.

This time, the researchers designed sensors highly sensitive to “electrophilic,” or electron-loving, chemical substances, which are often toxic and used for chemical weapons.

To do so, they created a new type of metallo-supramolecular polymer, a material made of metals binding to polymer chains. The polymer acts as an insulation, wrapping around each of the sensor’s tens of thousands of single-walled carbon nanotubes, separating them and keeping them highly resistant to electricity. But electrophilic substances trigger the polymer to disassemble, allowing the carbon nanotubes to once again come together, which leads to an increase in conductivity.

In their study, the researchers drop-cast the nanotube/polymer material onto gold electrodes, and exposed the electrodes to diethyl chlorophosphate, a skin irritant and reactive simulant of nerve gas. Using a device that measures electric current, they observed a 2,000 percent increase in electrical conductivity after five seconds of exposure. Similar conductivity increases were observed for trace amounts of numerous other electrophilic substances, such as thionyl chloride (SOCl2), a reactive simulant in choking agents. Conductivity was significantly lower in response to common volatile organic compounds, and exposure to most nontarget chemicals actually increased resistivity.

Creating the polymer was a delicate balancing act but critical to the design, Swager says. As a polymer, the material needs to hold the carbon nanotubes apart. But as it disassembles, its individual monomers need to interact more weakly, letting the nanotubes regroup. “We hit this sweet spot where it only works when it’s all hooked together,” Swager says.

Resistance is readable

To build their wireless system, the researchers created an NFC tag that turns on when its electrical resistance dips below a certain threshold.

Smartphones send out short pulses of electromagnetic fields that resonate with an NFC tag at radio frequency, inducing an electric current, which relays information to the phone. But smartphones can’t resonate with tags that have a resistance higher than 1 ohm.

The researchers applied their nanotube/polymer material to the NFC tag’s antenna. When exposed to 10 parts per million of SOCl2 for five seconds, the material’s resistance dropped to the point that the smartphone could ping the tag. Basically, it’s an “on/off indicator” to determine if toxic gas is present, Swager says.

According to the researchers, such a wireless system could be used to detect leaks in Li-SOCl2 (lithium thionyl chloride) batteries, which are used in medical instruments, fire alarms, and military systems.

The next step, Swager says, is to test the sensors on live chemical agents, outside of the lab, which are more dispersed and harder to detect, especially at trace levels. In the future, there’s also hope for developing a mobile app that could make more sophisticated measurements of the signal strength of an NFC tag: Differences in the signal will mean higher or lower concentrations of a toxic gas. “But creating new cell phone apps is a little beyond us right now,” Swager says. “We’re chemists.”

Here’s a link to and a citation for the paper,

Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers by Shinsuke Ishihara, Joseph M. Azzarelli, Markrete Krikorian, and Timothy M. Swager. J. Am. Chem. Soc., Article ASAP DOI: 10.1021/jacs.6b03869 Publication Date (Web): June 23, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Here are links to other posts about Swager’s work featured here previously:

Carbon nanotubes sense spoiled food (April 23, 2015 post)

Smart suits for US soldiers—an update of sorts from the Lawrence Livermore National Laboratory (Feb. 25, 2014 post)

Come, see my etchings … they detect poison gases (Oct. 9, 2012 post)

Soldiers sniff overripe fruit (May 1, 2012 post)

University of Waterloo (Canada) and an anti-counterfeiting startup

Students from the University of Waterloo are working to commercialize an ink they say can be used in anti-counterfeiting measures in products ranging from money to medications to pesticides and more. From an Aug. 7, 2015 article by Matthew Braga for Motherboard.com (Note: A link has been removed),

The ink is pretty much invisible to the naked eye, which isn’t new, but blast it with a pulse from a smartphone camera’s flash, run the resulting image through some fancy processing algorithms, and the result is a unique numerical sequence that can verify the authenticity of whatever product it’s been applied to.

Their company is named Arylla (formerly Black Box Technologies), and was founded by Ben Rasera, Graham Thomas, and Perry Everett—all final year students in Waterloo’s nanotechnology engineering program. …

“In a nutshell, we are making inks that have unique optical signatures that can be verified using a smartphone,” Everett said in a phone interview. The ink can be printed on pretty much anything, from a computer chip to something organic, like an apple (although who counterfeits an apple?). They’re focusing on electronics for now.

Braga notes in his article that there are few details about the ‘nano ink’ mentioned,

“It’s a fairly new material as far as nanotechnology goes,” Everett said, but declined to name what, specifically, they were working with—only that it was a modified version of a material that is relatively new. “The most interesting aspect of the material is you can basically tune the properties in order to act like a barcode. So when I say optical signature what I’m talking about is a numerical sequence, and that sequence is embedded in the nanomaterial,” he explained.

The barcode is based on both the physical pattern of the application of the ink itself, and the colours that are reflected when the flash hits the nanomaterial.

There’s more information in the article about the company and some rather interesting speculation on Braga’s part as to how counterfeiters might respond to this new measure should it prove successful.

An Aug. 10, 2015 University of Waterloo news release provides information about the students’ work and their startup, Arylla (Note: Links have been removed),

Last year, more than 60,000 counterfeit Canadian bank notes passed into circulation. But a new ink from the Velocity Science startup Arylla could change that.

The nano inks can be applied to just about anything from money to tiny microprocessors to handbags. Since the inks are also biocompatible and non-toxic they can be applied to pills and even liquids, such as pesticides.

Last month, the company (formerly known as Black Box Technologies) won $25,000 at the Spring Velocity Fund Final competition.

Good luck to the students! You can find Arylla here.