Tag Archives: smartphones

Tech worries: nanotechnology and nickel on Slate

Dr. Andrew Maynard’s May 20, 2014 article (Small Packages; A new case study on the health risks of nanotech doesn’t tell the whole story) for Slate magazine does much to calm any fears there might be in the wake of a recent case study about the consequences of handling nickel nanoparticles in the workplace,

… The report describes a chemist who developed symptoms that included throat irritation, nasal congestion, facial flushing, and skin reactions to jewelry containing nickel, after starting to work with a powder consisting of nanometer-sized nickel particles. According to the report’s lead author, this is “case one in our modern economy” of exposure to a product of nanotechnology leading to an individual becoming ill.

… And this is why the case of the nickel nanoparticles above needs to be approached with some caution. Many people have an allergic skin reaction to nickel, and research has shown that inhaling nickel particles can cause people to become sensitized to the metal. It’s also well known that fine powders will become airborne more easily than coarse ones when they’re handled, and that the finer the powder you inhale, the more potent it is in your lungs. So it shouldn’t come as a surprise that handling nickel nanopowder in an open lab without exposure controls is not a great idea. In other words, the reported incident was more a case of bad exposure management than nanoparticle risk.

That said, the case does highlight the level of respect with which any new or unusual material should be treated. …

Reinforcing Andrew’s comments about nickel sensitivities, there’s a recent report about smartphones and metal sensitivities. From a May 21, 2014 article by Sarah Knapton for The Telegraph (UK), Note: A link has been removed,

If you have ever noticed swelling, redness, itching or blistering near your cheekbones, ears, jaw or hands, you may be allergic to your phone.

A new study suggests the nickel, chromium and cobalt found in common phones made by BlackBerry, Samsung and LG among others, can cause skin irritations.

Danish and US researchers found at least 37 incidents since 2000 where contact dermatitis was caused by mobile phones.

Here are links to and citations for the nickel case study and to the smartphone paper,

Occupational handling of nickel nanoparticles: A case report by W. Shane Journeay, MD, and Rose H. Goldman, MD. American Journal of Industrial Medicine Article first published online: 8 MAY 2014 DOI: 10.1002/ajim.22344

Mobile Phone Dermatitis in Children and Adults: A Review of the Literature by Clare Richardson, Carsten R. Hamann, Dathan Hamann, and Jacob P. Thyssen. Pediatric Allergy, Immunology, and Pulmonology. Online Ahead of Print: March 5, 2014. doi:10.1089/ped.2013.0308.

The nickel paper is behind a paywall and the smartphone paper is open access.

One comment, the smartphone literature search yielded a small sample, on the other hand, if there isn’t category for the problem, it might not get into reports and be studied.

Getting back to Andrew’s article, it is illuminating and frustratingly opaque (perhaps there was an editing issue?),

Over a couple of days in London last summer, I found myself mulling over a very similar question with a small group of colleagues. We were a pretty eclectic group—engineers, designers, toxicologists, business leaders, academics, policy wonks—but we had one thing in common: We wanted get a better handle on how dangerous realistic products of nanotechnology might be, and how these dangers might be avoided.

… Our approach was to imagine products based on engineered nanomaterials that were technologically feasible and would also have a reasonable chance of surviving a cut-throat economy—products like active food packaging labels that indicated the presence of contaminants; helium-filled balloons with solar cell skins; and materials templated from viruses to generate hydrogen and oxygen from water. We then tried to imagine how these plausible products could potentially release dangerous materials into the environment.

To our surprise, we struggled to come up with scenarios that scared us.

It sounds like this session was organized as a think tank. It would have been nice to know who organized it, who were their invitees, and what was their expertise. On that note, there is this about Andrew at the end of the Slate article,

Andrew Maynard is a leading expert on the responsible development and use of emerging technologies and is the director of the U-M [University of Michigan] Risk Science Center.

Having stumbled across Andrew many times over the years within the ‘nano blogosphere’ and having him kindly answer my amateurish questions about reading research, I feel  confidence when reading his opinion pieces that he is well informed and has carefully considered not only questions I might ask but others as well.

While I might like to know more about that 2013 think tank session in London (UK), this section towards the end of the piece suggests that Andrew has not, in an excess of enthusiasm, thrown in his lot with some hype happy group,

… the case [nickel inhalation] does highlight the level of respect with which any new or unusual material should be treated. This was also one of the conclusions from those two days in London. Just because the risks of many nanotechnology products seem relatively small, doesn’t mean that we can afford to be complacent. There’s still the possibility that someone will create a particularly dangerous new material, or will use a material that seems safe in a dangerous way. As a society we need to be vigilant when it comes to advanced materials, whether they are branded with the nano insignia or not.

As for Knapton article and smartphone research, I haven’t come to any particular conclusions but I am going to keep an eye out for evidence, anecdotal or otherwise. A friend of mine, who sometimes suffers from skin sensitivities, just switched over to her first Blackberry.

From Australia: a recipe for baking lenses

Here’s the recipe from an April 24, 2014 Optical Society news release on EurekAlert,

All that’s needed is an oven, a microscope glass slide and a common, gel-like silicone polymer called polydimethylsiloxane (PDMS). First, drop a small amount of PDMS onto the slide. Then bake it at 70 degrees Celsius to harden it, creating a base. Then, drop another dollop of PDMS onto the base and flip the slide over. Gravity pulls the new droplet down into a parabolic shape. Bake the droplet again to solidify the lens. More drops can then be added to hone the shape of the lens that also greatly increases the imaging quality of the lens. “It’s a low cost and easy lens-making recipe,” Lee [ Steve Lee from the Research School of Engineering at Australian National University] says.

I’m still marveling over this image,

Caption: This photo shows a single droplet lens suspended on a fingertip. Credit: Stuart Hay. Courtesy: The Optical Society

Caption: This photo shows a single droplet lens suspended on a fingertip. Credit: Stuart Hay. Courtesy: The Optical Society

For anyone who doesn’t know much about producing lenses and why these baked droplets could improve lives, the Optical Society news release provides some insight,

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost less than a penny apiece.

Because they’re so inexpensive, the lenses can be used in a variety of applications, including tools to detect diseases in the field, scientific research in the lab and optical lenses and microscopes for education in classrooms.

“What I’m really excited about is that it opens up lens fabrication technology,” says Steve Lee from the Research School of Engineering at Australian National University (ANU) …

Many conventional lenses are made the same way lenses have been made since the days of Isaac Newton—by grinding and polishing a flat disk of glass into a particular curved shape. Others are made with more modern methods, such as pouring gel-like materials molds. But both approaches can be expensive and complex, Lee says. With the new method, the researchers harvest solid lenses of varying focal lengths by hanging and curing droplets of a gel-like material—a simple and inexpensive approach that avoids costly or complicated machinery.

“What I did was to systematically fine-tune the curvature that’s formed by a simple droplet with the help of gravity, and without any molds,” he explains.

Although people have long recognized that a droplet can act as a lens, no one tried to see how good a lens it could be. Now, the team has developed a process that pushes this concept to its limits, Lee says.

The researchers made lenses about a few millimeters thick with a magnification power of 160 times and a resolution of about 4 microns (millionths of a meter)—two times lower in optical resolution than many commercial microscopes, but more than three orders of magnitude lower in cost. “We’re quite surprised at the magnification enhancement using such a simple process,” he notes.

An April 24, 2014 Australian National University (ANU) news release on EurekAlert adds more details to the story,

The lenses are made by using the natural shape of liquid droplets.

“We put a droplet of polymer onto a microscope cover slip and then invert it. Then we let gravity do the work, to pull it into the perfect curvature,” Dr Lee said.

“By successively adding small amounts of fluid to the droplet, we discovered that we can reach a magnifying power of up to 160 times with an imaging resolution of four micrometers.”

The polymer, polydimethylsiloxane (PDMS), is the same as that used for contact lenses, and it won’t break or scratch.

“It would be perfect for the third world. All you need is a fine tipped tool, a cover slip, some polymer and an oven,” Dr Lee said.

The first droplet lens was made by accident. [emphasis mine]

I nearly threw them away. [emphasis mine] I happened to mention them to my colleague Tri Phan, and he got very excited,” Dr Lee said.

“So then I decided to try to find the optimum shape, to see how far I could go. When I saw the first images of yeast cells I was like, ‘Wow!'”

Dr Lee and his team worked with Dr Phan to design a lightweight 3D-printable frame to hold the lens, along with a couple of miniature LED lights for illumination, and a coin battery.

The technology taps into the current citizen science revolution [emphasis mine], which is rapidly transforming owners of smart phones into potential scientists. There are also exciting possibilities for remote medical diagnosis.

Dr Phan said the tiny microscope has a wide range of potential uses, particularly if coupled with the right smartphone apps.

“This is a whole new era of miniaturisation and portability – image analysis software could instantly transform most smartphones into sophisticated mobile laboratories,” Dr Phan said.

“I am most able to see the potential for this device in the practice of medicine, although I am sure specialists in other fields will immediately see its value for them.”

Dr Lee said the low-cost lens had already attracted interest from a German group interested in using disposable lenses for tele-dermatology.

“There are also possibilities for farmers,” he said. “They can photograph fungus or insects on their crops, upload the pictures to the internet where a specialist can identify if they are a problem or not.”

That Lee created his first droplet by accident and almost threw it away echoes many, many other science stories. In addition to that age old science story, I love the simplicity of the idea, the reference to Isaac Newton, and the inclusion of citizen science.

Here’s a link to and a citation for the paper,

Fabricating low cost and high performance elastomer lenses using hanging droplets by W. M. Lee, A. Upadhya, P. J. Reece, and Tri Giang Phan. Biomedical Optics Express, Vol. 5, Issue 5, pp. 1626-1635 (2014) http://dx.doi.org/10.1364/BOE.5.001626

This paper is open access.

I wish Lee and his team great success in making this technology available, assuming that it lives up to its promise.

Affordable desktop nanocoating system makes devices water repellent

I like the idea of having a waterproof smartphone, unfortunately, that day has not yet arrived but this Feb. 24, 2014 news item on Azonano hints at an acceptable alternative in the shorter term,

DryWired™ announced today that it is expanding its customized surface modification product portfolio to include the DryWired™ Nebula and the Nebula Junior. These revolutionary patent- pending desktop nanocoating systems are low cost, compact, and ideal for electronic retailers looking to offer invisible water repellent nanocoatings directly to their customers.

There’s more about the Nebula and Nebula Junior (which are being introduced at the World Mobile Congress in Barcelona from Feb. 24 – 27, 2014,) from their product page on the DryWired website,

The DryWired™ Nebula and Nebula Junior are revolutionary patent pending bench top nanocoating systems that are affordable, compact and ideal for electronic retailers looking to offer invisible water repellent nanocoatings directly to their customers.The Nebula systems are a perfect solution for consumer facing mobile phone retailers, repair/service centers, mobile phone accessory providers and other small businesses due to their small footprint and performance reliability.The award-winning Nebula systems are designed and manufactured in California.

Nebula systems can be used to Nanocoat:

•Mobile phones
•iPads and other tablets
•Gaming consoles
•Headsets, headphones and ear buds
•Hearing Aids
•Cameras
•Electronic assemblies

•Other high value items

Nebula Features:

• Two tiered configuration in the chamber allowing flexibility for multiple applications.
• Larger chamber size
• Can accommodate approximately 28 smartphones per cycle at full capacity.

• Process time cycles under 95 minutes at full capacity, including vacuum pump down.

Nebula Jr. Features:

• Single tier configuration.
• Smaller chamber size
• Can accommodate approximately 5 smartphones per cycle at full capacity.
• Process time cycles under 45 minutes including vacuum pump down.

The Nebula and Nebula Jr.Advantage:

• Repeatability: within-batch, and batch-to–batch uniformity.
• Lowest Cost-of-Ownership systems in the industry.
• Efficient and minimal chemical usage featuring single-use or multiple dose cartridges.
• Compact design with no restrictive ancillary requirements.
• Safe and user friendly with programmable settings.
• Ideal for retailers, repair/service centers, mobile ventures, and kiosks.
• Our chemical cartridges are non-hazardous, non-toxic and can be shipped worldwide without restrictions.
• Optional self-contained customized cart for consumer facing operations

Getting back to the news item, which notes some opportunities to see the products,

DryWired™ will present the Nebula systems to the public this week in Barcelona, Spain at the 2014 Mobile World Congress. The systems will be available for viewing and live demonstration by appointment only at the DryWired meeting room from Monday February 24th through Thursday February 27th, and thereafter at DryWired’s Los Angeles & Miami showrooms. DryWired is now taking pre-orders on its Nebula systems for shipment beginning March 1st. To schedule a meeting or place a pre-order on either system, please contact Alex Nesic at alex@drywired.com.

Almost Human (tv series), smartphones, and anxieties about life/nonlife

The US-based Fox Broadcasting Company is set to premiere a new futuristic television series, Almost Human, over two nights, Nov. 17, and 18, 2013 for US and Canadian viewers. Here’s a description of the premise from its Wikipedia essay (Note: Links have been removed),

The series is set thirty-five years in the future when humans in the Los Angeles Police Department are paired up with lifelike androids; a detective who has a dislike for robots partners with an android capable of emotion.

One of the showrunners, Naren Shankar, seems to have also been functioning both as a science consultant and as a crime writing consultant,in addition to his other duties. From a Sept. 4, 2013 article by Lisa Tsering for Indiawest.com,

FOX is the latest television network to utilize the formidable talents of Naren Shankar, an Indian American writer and producer best known to fans for his work on “Star Trek: Deep Space Nine,” “Star Trek: Voyager” and “Star Trek: The Next Generation” as well as “Farscape,” the recently cancelled ABC series “Zero Hour” and “The Outer Limits.”

Set 35 years in the future, “Almost Human” stars Karl Urban and Michael Ealy as a crimefighting duo of a cop who is part-machine and a robot who is part-human. [emphasis mine]

“We are extrapolating the things we see today into the near future,” he explained. For example, the show will comment on the pervasiveness of location software, he said. “There will also be issues of technology such as medical ethics, or privacy; or how technology enables the rich but not the poor, who can’t afford it.”

Speaking at Comic-Con July 20 [2013], Shankar told media there, “Joel [J.H. Wyman] was looking for a collaboration with someone who had come from the crime world, and I had worked on ‘CSI’ for eight years.

“This is like coming back to my first love, since for many years I had done science fiction. It’s a great opportunity to get away from dismembered corpses and autopsy scenes.”

There’s plenty of drama — in the new series, the year is 2048, and police officer John Kennex (Karl Urban, “Dr. Bones” from the new “Star Trek” films) is trying to bounce back from one of the most catastrophic attacks ever made against the police department. Kennex wakes up from a 17-month coma and can’t remember much, except that his partner was killed; his girlfriend left him and one of his legs has been amputated and is now outfitted with a high-tech synthetic appendage. According to police department policy, every cop must partner with a robot, so Kennex is paired with Dorian (Ealy), an android with an unusual glitch that makes it have human emotions.

Shankar took an unusual path into television. He started college at age 16 and attended Cornell University, where he earned a B. Sc., an M.S. and a Ph.D. in engineering physics and electrical engineering, and was a member of the elite Kappa Alpha Society, he decided he didn’t want to work as a scientist and moved to Los Angeles to try to become a writer.

Shankar is eager to move in a new direction with “Almost Human,” which he says comes at the right time. “People are so technologically sophisticated now that maybe the audience is ready for a show like this,” he told India-West.

I am particularly intrigued by the ‘man who’s part machine and the machine that’s part human’ concept (something I’ve called machine/flesh in previous postings such as this May 9, 2012 posting titled ‘Everything becomes part machine’) and was looking forward to seeing how they would be integrating this concept along with some of the more recent scientific work being done on prosthetics and robots, given they had an engineer as part of the team (albeit with lots of crime writing experience), into the stories. Sadly, only days after Tserling’s article was published, Shankar parted ways with Almost Human according to the Sept. 10, 2013 posting on the Almost Human blog,

So this was supposed to be the week that I posted a profile of Naren Shankar, for whom I have developed a full-on crush–I mean, he has a PhD in Electrical Engineering from Cornell, he was hired by Gene Roddenberry to be science consultant on TNG, he was saying all sorts of great things about how he wanted to present the future in AH…aaaand he quit as co-showrunner yesterday, citing “creative differences.” That leaves Wyman as sole showrunner, with no plans to replace Shankar.

I’d like to base some of my comments on the previews, unfortunately, Fox Broadcasting,, in its infinite wisdom, has decided to block Canadians from watching Almost Human previews online. (Could someone please explain why? I mean, Canadians will be tuning in to watch or record for future viewing  the series premiere on the 17th & 18th of November 2013 just like our US neighbours, so, why can’t we watch the previews online?)

Getting back to machine/flesh (human with prosthetic)s and life/nonlife (android with feelings), it seems that Almost Human (as did the latest version of Battlestar Galactica, from 2004-2009) may be giving a popular culture voice to some contemporary anxieties being felt about the boundary or lack thereof between humans and machines and life/nonlife. I’ve touched on this topic many times both within and without the popular culture context. Probably one of my more comprehensive essays on machine/flesh is Eye, arm, & leg prostheses, cyborgs, eyeborgs, Deus Ex, and ableism from August 30, 2011, which includes this quote from a still earlier posting on this topic,

Here’s an excerpt from my Feb. 2, 2010 posting which reinforces what Gregor [Gregor Wolbring, University of Calgary] is saying,

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.” [originally excerpted from Paul Hochman’s Feb. 1, 2010 article, Bionic Legs, i-Limbs, and Other Super Human Prostheses You’ll Envy for Fast Company]

Here’s something else from the Hochman article,

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human. [semphasis mine] It’s a very powerful thing.”

Bailey isn’t  almost human’, he’s ‘above human’. As Hochman points out. repeatedly throughout his article, this sentiment is not confined to Bailey. My guess is that Kennex (Karl Urban’s character) in Almost Human doesn’t echo Bailey’s sentiments and, instead feels he’s not quite human while the android, Dorian, (Michael Ealy’s character) struggles with his feelings in a human way that clashes with Kennex’s perspective on what is human and what is not (or what we might be called the boundary between life and nonlife).

Into this mix, one could add the rising anxiety around ‘intelligent’ machines present in real life, as well as, fiction as per this November 12 (?), 2013 article by Ian Barker for Beta News,

The rise of intelligent machines has long been fertile ground for science fiction writers, but a new report by technology research specialists Gartner suggests that the future is closer than we think.

“Smartphones are becoming smarter, and will be smarter than you by 2017,” says Carolina Milanesi, research vice president at Gartner. “If there is heavy traffic, it will wake you up early for a meeting with your boss, or simply send an apology if it is a meeting with your colleague. The smartphone will gather contextual information from its calendar, its sensors, the user’s location and personal data”.

Your smartphone will be able to predict your next move or your next purchase based on what it knows about you. This will be made possible by gathering data using a technique called “cognizant computing”.

Gartner analysts will be discussing the future of smart devices at the Gartner Symposium/ITxpo 2013 in Barcelona from November 10-14 [2013].

The Gartner Symposium/Txpo in Barcelona is ending today (Nov. 14, 2013) but should you be curious about it, you can go here to learn more.

This notion that machines might (or will) get smarter or more powerful than humans (or wizards) is explored by Will.i.am (of the Black Eyed Peas) and, futurist, Brian David Johnson in their upcoming comic book, Wizards and Robots (mentioned in my Oct. 6, 2013 posting),. This notion of machines or technology overtaking human life is also being discussed at the University of Cambridge where there’s talk of founding a Centre for the Study of Existential Risk (from my Nov. 26, 2012 posting)

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

Could computers become cleverer than humans and take over the world? Or is that just the stuff of science fiction?

Philosophers and scientists at Britain’s Cambridge University think the question deserves serious study. A proposed Center for the Study of Existential Risk will bring together experts to consider the ways in which super intelligent technology, including artificial intelligence, could “threaten our own existence,” the institution said Sunday.

“In the case of artificial intelligence, it seems a reasonable prediction that some time in this or the next century intelligence will escape from the constraints of biology,” Cambridge philosophy professor Huw Price said.

When that happens, “we’re no longer the smartest things around,” he said, and will risk being at the mercy of “machines that are not malicious, but machines whose interests don’t include us.”

Our emerging technologies give rise to questions abut what constitutes life and where human might fit in. For example,

  • are sufficiently advanced machines a new form of life,?
  • what does it mean when human bodies are partially integrated at the neural level with machinery?
  • what happens when machines have feelings?
  • etc.

While this doesn’t exactly fit into my theme of life/nonlife or machine/flesh, this does highlight how some popular culture efforts are attempting to integrate real science into the storytelling. Here’s an excerpt from an interview with Cosima Herter, the science consultant and namesake/model for one of the characters on Orphan Black (from the March 29, 2013 posting on the space.ca blog),

Cosima Herter is Orphan Black’s Science Consultant, and the inspiration for her namesake character in the series. In real-life, Real Cosima is a PhD. student in the History of Science, Technology, and Medicine Program at the University of Minnesota, working on the History and Philosophy of Biology. Hive interns Billi Knight & Peter Rowley spoke with her about her role on the show and the science behind it…

Q: Describe your role in the making of Orphan Black.

A: I’m a resource for the biology, particularly insofar as evolutionary biology is concerned. I study the history and the philosophy of biology, so I do offer some suggestions and some creative ideas, but also help correct some of the misconceptions about science.  I offer different angles and alternatives to look at the way biological science is represented, so (it’s) not reduced to your stereotypical tropes about evolutionary biology and cloning, but also to provide some accuracy for the scripts.

– See more at: http://www.space.ca/article/Orphan-Black-science-consultant#sthash.7P36bbPa.dpuf

For anyone not familiar with the series, from the Wikipedia essay (Note: Links have been removed),

Orphan Black is a Canadian science fiction television series starring Tatiana Maslany as several identical women who are revealed to be clones.

Looking at nanoparticles with your smartphone

Researcher Aydogan Ozcan and his team at the University of California at Los Angeles (UCLA) have developed a device which when attached to a smartphone allows the user to view viruses, bacteria, and/or nanoparticles. (Yikes, I understood nanoparticles were perceptible with haptic devices and that any work on developing optical capabilities was pretty rudimentary). From the UCLA Sept. 16, 2013 news release on EurekAlert,

Aydogan Ozcan, a professor of electrical engineering and bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science, and his team have created a portable smartphone attachment that can be used to perform sophisticated field testing to detect viruses and bacteria without the need for bulky and expensive microscopes and lab equipment. The device weighs less than half a pound.

“This cellphone-based imaging platform could be used for specific and sensitive detection of sub-wavelength objects, including bacteria and viruses and therefore could enable the practice of nanotechnology and biomedical testing in field settings and even in remote and resource-limited environments,” Ozcan said. “These results also constitute the first time that single nanoparticles and viruses have been detected using a cellphone-based, field-portable imaging system.”

In the ACS [American Chemical Society]  Nano paper, Ozcan details a fluorescent microscope device fabricated by a 3-D printer that contains a color filter, an external lens and a laser diode. The diode illuminates fluid or solid samples at a steep angle of roughly 75 degrees. This oblique illumination avoids detection of scattered light that would otherwise interfere with the intended fluorescent image.

Using this device, which attaches directly to the camera module on a smartphone, Ozcan’s team was able to detect single human cytomegalovirus (HCMV) particles. HCMV is a common virus that can cause birth defects such as deafness and brain damage and can hasten the death of adults who have received organ implants, who are infected with the HIV virus or whose immune systems otherwise have been weakened. A single HCMV particle measures about 150–300 nanometers; a human hair is roughly 100,000 nanometers thick.

In a separate experiment, Ozcan’s team also detected nanoparticles — specially marked fluorescent beads made of polystyrene — as small as 90-100 nanometers.

To verify these results, researchers in Ozcan’s lab used other imaging devices, including a scanning electron microscope and a photon-counting confocal microscope. These experiments confirmed the findings made using the new cellphone-based imaging device.

For some reason I’m completely gobsmacked by the notion that I could look at nanoparticles on a smartphone at sometime in the foreseeable future.

Here’s a citation and a link to the paper,

Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone by Qingshan Wei, Hangfei Qi, Wei Luo, Derek Tseng , So Jung Ki, Zhe Wan, Zoltán Göröcs, Laurent A. Bentolila, Ting-Ting Wu, Ren Sun, and Aydogan Ozcan. ACS Nano, Article ASAP DOI: 10.1021/nn4037706 Publication Date (Web): September 9, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall. Ozcan’s work was last mentioned here in a Jan. 21, 2013 posting about self-assembling liquid lenses.

 

Nano Nails and fashion at the 2013 Consumer Electronics Show

The ‘Nano Nails’ from Tech Tips (based in Helena Montana) have more in common with the Tata Nano (a car), i.e., nano in name rather than a nanotechnology-enabled product but they did garner some attention at the 2013 Consumer Electronics Show (CES, Jan. 8 -11, 2013). Here’s more about Nano Nails and Tech Tips from the company’s About page,

Tech Tips, LLC was founded by Cleveland Clinic trained dermatologist, “Sri” Vellanki.  She wanted to be more accurate with her smartphone.  A mobile touchscreen device is not the same as a piece of paper.  Steve Jobs revolutionized the smartphone by creating the iPhone touch interface.  Panning, pinching, and scrolling multi-touch gestures are all needed to work with touchscreens.   Instead of trying to replicate a fingerpad on a writing utensil, Tech Tips brand styluses were developed to work with your hand on a touchscreen.  Multi-touch gestures are unimpeded.  Selections are accurate since the touchscreen display is more fully visualized.  Frustration and errors are reduced for individuals that find touchscreens difficult to use.

There are 2 products that Tech Tips, LLC has developed.  The first is the Tech Tips brand precision stylus, the other is a [sic] an artificial fingernail stylus branded as Nano Nails that replicates the motion of tapping on an object with your fingernails.  As many women are aware, longer fingernails do not work on most currently available touchscreens.  This makes it difficult to be quick and accurate.  Nano Nails solve this problem in an aesthetic and ergonomic way.

Both will be introduced at Eureka Park at the Consumer Electronic Show 2013.

Here’s a video which was taken at the 2013 CES demonstrating how one of Tech Tips’ stylus products can be used for drawing,

Over at the Scientific American website, Larry Greenemeir has posted (Jan. 14, 2013) a CES 2013 slide show of various interesting gadgets including the Nano Nails stylus (slide no. 9 of 10).

Crowdfunding Qii, a foldable, soft keyboard made of a carbon nanotube/fullerene hybrid

Canatu Ltd. is a Finnish company that’s trying to crowdfund its foldable, soft keyboard, Qii, on indiegogo. Here’s more about Canatu’s keyboard project from the Nov. 24, 2012 news item on Nanowerk,

Canatu Ltd., a developer of a new class of versatile carbon nanomaterial based custom films and sensors for flexible and formable touch devices, is launching Qii – the world’s first, truly mobile, rollable touch accessory.

The company appears to be creating a new class of product under the Qii brand name. From the indiegogo campaign description,

With Qii, your smartphone and your imagination, any surface can be effectively turned into a touch surface and any “dumb” object can be turned into a “smart” object. Nanotechnology and organic electronics make it possible. The idea is simple, but the applications are endless.

As our first Qii product, we’re offering a full QWERTY computer keyboard, including a number pad and function keys, wirelessly connected to your smartphone. Because its ultra thin and flexible, Qii is both full sized and pocket sized, so you’ll be able to effortlessly type and surf anywhere you go, be it in a café, the woods, or a car, train, bus or plane. It has an anti fingerprint coating to keep it clean and a textured surface for easy touch typing. It’s dirt and water resistant, so you don’t have to worry about spilling and it’s easily washable with soap and water. And, since Qii’s rollable electronics are printed, it’s tough.

Qii’s case is also a touchpad, allowing you to point, tap and scroll for easy surfing and graphical editing. You can use Qii on most any surface, so you can check your email on your friend’s belly, update your Facebook on your pet, or write your next novel on your pillow.

Some keyboards claim to be rollable, but you can’t roll them up and fit them in your pocket. We use a new kind of flexible transparent electronic film together with a new kind of touch sensing technology that can sense both position and force to create a compact and portable and programmable touch surface.

Qii will work with iPhone, iPod, iPad, Android, iPhone, Blackberry, Windows Phone, and Palm phones according to each platform’s available QWERTY keyboard and pointer standards.

Intriguing, non? You might want to watch this video for a demonstration,

There is a very brief description of the technology in the campaign material,

Our team has been working for years with our partners to bring Qii to life. Together we have developed new carbon based nanomaterials, new dry printing manufacturing techniques and now new, ultra-high transparency, flexible, bendable, stretchable, rollable and foldable touch technologies and unique touch algorithms to make Qii possible. It starts with our flexible, transparent, electrically conductive film made with a new carbon nanomaterial connected to state-of-the art sensing electronics to make a flexible, transparent touch sensing surface that determines both your finger’s position and force.

We’ll introduce the Qii in pliable hard coated plastic, but, in the future, the sensor can be printed on most anything, even paper, rubber or fabric.

I took a look at the Canatu website and found this information about a material they’ve developed and named, NanoBuds® and which I believe forms the basis for the company’s proposed Qii keyboard,

Canatu has developed a new material, the Carbon NanoBud®, which is a hybrid of Carbon Nanotubes and fullerenes. The hybridization is achieved directly in the material synthesis process and the resulting material combines the best features of both fullerenes and nanotubes.

Canatu’s first products focus on taking advantage of the high conductivity, high aspect ratio, low work function, chemical stability and mechanical flexibility of NanoBuds® to make the world’s highest performance carbon based transparent conductive film for transparent conductors in touch, haptics, displays and photovoltaics. These films, consisting of randomly oriented deposits of NanoBuds on polymer or glass substrates, are flexible, bendable, stretchable and have excellent transparency conductivity performance as shown below. [emphasis mine]

David Brown, the company’s Chief Technical Officer (CTO) originally announced the crowdfunding Qii campaign would take place on Kickstarter in Dan Rogers’s Oct. 10, 2012 article for Plastic Electronics,

An accessory using a novel nanomaterial touchscreen will be launched via the Kickstarter project in the coming weeks, according to nanotechnology developer Canatu.

Based in Finland, Canatu supplies carbon NanoBuds that can be used as a conductive layer alternative to indium tin oxide, which is considered too brittle for flexible electronics.

I’m not sure what happened with the ‘Kickstarter’ plans but the indiegogo campaign has 41 days left as Canatu tries to raise $1,850,000 by Jan. 6, 2013. The company must raise the entire amount requested or it receives nothing.

Good luck to the folks at Canatu. Qii looks like a product which would make moving around much easier. Imagine not having to lug your laptop or tablet around while enjoying the benefits of a full size keyboard.

UN’s International Telecommunications Union holds patent summit in Geneva on Oct. 10, 2012

The International Telecommunications Union (ITU) patent summit being held today (Oct. 10, 2012) in Geneva, Switzerland was announced in July 2012 as noted in this July 6, 2012 news item on the BBC News website,

A rash of patent lawsuits has prompted the UN to call smartphone makers and others mobile industry bodies together.

It said the parties needed to address the “innovation-stifling use of intellectual property” which had led to several devices being banned from sale.

It said innovations deemed essential to industry standards, such as 3G or Jpeg photos, would be the meeting’s focus.

It noted that if just one patent holder demanded unreasonable compensation the cost of a device could “skyrocket”.

Microsoft and Apple are among firms that have called on others not to enforce sales bans on the basis of such standards-essential patents.

However, lawyers have noted that doing so would deprive other companies of way to counter-attacking other types of patent lawsuits pursued by the two companies.

Here’s a sample of the activity that has led to convening this summit (excerpted from the BBC news item),

“We are seeing an unwelcome trend in today’s marketplace to use standards-essential patents to block markets,” said the ITU secretary general Dr Hamadoun Toure.

Motorola Mobility – now owned by Google – managed to impose a brief sales ban of iPhone and iPads in Germany last year after Apple refused to pay it a licence fee. The dispute centred on a patent deemed crucial to the GPRS data transmission standard used by GSM cellular networks.

Samsung has also attempted to use its 3G patents to bar Apple from selling products in Europe, Japan and the US.

However, industry watchers note that Apple has used lawsuits to ban Samsung products in both the US and Australia and attempted to restrict sales of other companies’ devices powered by Android.

Mike Masnick commented briefly about the summit in his July 12, 2012 posting on Techdirt,

The UN’s International Telecommunication Union (ITU) — the same unit looking at very questionable plans concerning taxing the internet — has apparently decided that it also needs to step in over the massive patent thicket around smartphones. It’s convening a summit … it looks like they’re only inviting the big companies who make products, and leaving the many trolls out of it. Also, it’s unclear from the description if the ITU really grasps the root causes of the problem: the system itself. …

There’s more information on the ITU summit or patent roundtable webpage,

This Roundtable will assess the effectiveness of RAND (reasonable and non-discriminatory) – based patent policies. The purpose of this initiative is to provide a neutral venue for industry, standards bodies and regulators to exchange innovative ideas that can guide future discussions on whether current patent policies and existing industry practices adequately respond to the needs of the various stakeholders.

I was particularly interested in the speakers from industry (from the Patent Roundtable programme/agenda),

Segment 1 (Part II: Specific perspectives of certain key stakeholders in “360 view” format):

Moderator: Mr. Knut Blind, Rotterdam School of Management [ Biography ]

Perspectives from certain key stakeholders:

  • Standard Development Organizations:
    Mr. Antoine Dore, ITU
    [ Biography ]
    Mr. Dirk Weiler, ETSI
    [ Biography ]
  • Industry players:
    Mr. BJ Watrous, Apple
    [ Biography ]
    Mr. Ray Warren, Motorola Mobility
    [ Biography ]
    Mr. Michael Fröhlich, RIM [emphasis mine]
    [ Biography ]
  • Patent offices:
    Mr. Michel Goudelis, European Patent Office
    [ Biography ]
    Mr. Stuart Graham, United States Patent and Trademark Office
    [ Biography ]
  • Academic Institution:
    Mr. Tim Pohlmann, Technical University of Berlin

I was surprised to note the presence of a Canadian company at the summit.

In general, hopes do not seem high that anything will be resolved putting me in mind of Middle Eastern peace talks, which have stretched on for decades with no immediate end in sight. We’ll see.

Anti-fogging, self-cleaning, and glare-free: glass

They raise my hopes then dash them to the ground; still, this is very exciting news for anyone wanting self-cleaning windows. The April 26, 2012 news item on Nanowerk features some of the latest work from MIT (Massachusetts Institute of Technology) on nanotextures and ‘multifunctional’ glass,

One of the most instantly recognizable features of glass is the way it reflects light. But a new way of creating surface textures on glass, developed by researchers at MIT, virtually eliminates reflections, producing glass that is almost unrecognizable because of its absence of glare — and whose surface causes water droplets to bounce right off, like tiny rubber balls.

The new “multifunctional” glass, based on surface nanotextures that produce an array of conical features, is self-cleaning and resists fogging and glare, the researchers say. Ultimately, they hope it can be made using an inexpensive manufacturing process that could be applied to optical devices, the screens of smartphones and televisions, solar panels, car windshields and even windows in buildings.

Here’s what they mean by ‘conical features’,

Through a process involving thin layers of material deposited on a surface and then selectively etched away, the MIT team produced a surface covered with tiny cones, each five times taller than their width. This pattern prevents reflections, while at the same time repelling water from the surface. Image: Hyungryul Choi and Kyoo-Chul Park

David Chandler in his April 26, 2012 news release for MIT explains,

The surface pattern — consisting of an array of nanoscale cones that are five times as tall as their base width of 200 nanometers — is based on a new fabrication approach the MIT team developed using coating and etching techniques adapted from the semiconductor industry. Fabrication begins by coating a glass surface with several thin layers, including a photoresist layer, which is then illuminated with a grid pattern and etched away; successive etchings produce the conical shapes. The team has already applied for a patent on the process.

Since it is the shape of the nanotextured surface — rather than any particular method of achieving that shape — that provides the unique characteristics, Park and Choi [MIT mechanical engineering graduate students Kyoo-Chul Park and Hyungryul Choi] say that in the future glass or transparent polymer films might be manufactured with such surface features simply by passing them through a pair of textured rollers while still partially molten; such a process would add minimally to the cost of manufacture.

If you’re guessing that nature inspired some of this, read on (from Chandler’s MIT news release),

The researchers say they drew their inspiration from nature, where textured surfaces ranging from lotus leaves to desert-beetle carapaces and moth eyes have developed in ways that often fulfill multiple purposes at once. Although the arrays of pointed nanocones on the surface appear fragile when viewed microscopically, the researchers say their calculations show they should be resistant to a wide range of forces, ranging from impact by raindrops in a strong downpour or wind-driven pollen and grit to direct poking with a finger. Further testing will be needed to demonstrate how well the nanotextured surfaces hold up over time in practical applications.

The chief excitement seems to centre around applications with solar panels (from Chandler’s MIT news release),

Photovoltaic panels, Park explains, can lose as much as 40 percent of their efficiency within six months as dust and dirt accumulate on their surfaces. But a solar panel protected by the new self-cleaning glass, he says, would have much less of a problem. In addition, the panel would be more efficient because more light would be transmitted through its surface, instead of being reflected away — especially when the sun’s rays are inclined at a sharp angle to the panel. At such times, such as early mornings and late afternoons, conventional glass might reflect away more than 50 percent of the light, whereas an anti-reflection surface would reduce the reflection to a negligible level.

While some earlier work has treated solar panels with hydrophobic coatings, the new multifunctional surfaces created by the MIT team are even more effective at repelling water, keeping the panels clean longer, the researchers say. In addition, existing hydrophobic coatings do not prevent reflective losses, giving the new system yet another advantage.

More testing is needed and while they do fantasize about wider applications (car windows, microscopes, cameras, smartphones, building windows, etc. mentioned earlier in this posting)  for this technology there are no immediate plans to fulfill my dream of self-cleaning apartment windows and mirrors.

Bending and twisting at Ceatac

CEATEC (Cutting Edge IT [Information Technology] and Electronics Comprehensive Exhibition) Japan, Oct.4-8, 2011 is a large technology fair being held in Chiba, near Tokyo. Some 800 companies are showcasing their latest and greatest according to the Oct. 4, 2011 news item on physorg.com,

Around 600 firms unveiled their innovations at the Combined Exhibition of Advanced Technologies (Ceatec) exhibition in Chiba, near Tokyo, expected to draw 200,000 visitors during its five-day run, organisers said.

The impact of Japan’s March 11 earthquake, tsunami and nuclear disaster gave added resonance to technologies on display, particularly those aimed at improving urban infrastructure and energy efficiency.

State-of-the-art radiation counters and power-saving technologies are in high demand after Japan’s disasters sparked fears over contamination and led to power shortages, requiring cuts to energy consumption this summer.

Japanese telecom giant NTT [Nippon Telegraph and Telephone] DoCoMo showed off a smartphone with changeable sensor-embedded shells that can detect bad breath, vital body signs and even be used to measure background radiation levels.

One item that particularly interested me is a transparent organic film from Murata Manufacturing. From the news item,

Electronics parts maker Murata Manufacturing unveiled devices using a newly developed transparent organic film that can deliver instructions via twisting motions or pressure.

One of its gadgets, a light-powered plate called the Leaf Grip Remote Controller, has no buttons but is instead operated by the user bending and twisting it.

Another application of the film is as a touch panel which responds to left-right and up-down finger swipes but also senses how strongly it is being pressed, unlike conventional touchscreen glass used on smartphones.

“Currently we give commands two-dimensionally on touch panels in smartphones and tablet computers but this invention would give us another dimension — how hard they are pressed,” Murata spokesman Kazuhisa Mashita said.

“This could enable users to scroll screens slowly by touching the screen lightly and move images faster by pressing it harder,” he told AFP [Agence France-Presse] ahead of the exhibition.

Earlier this year when CHI (computer-human interface) 2011 was taking place in Vancouver, Canada, I wrote about Roel Vertegaal and his team’s work on their PaperPhone and bending and twisting gestures (May 12, 2011 posting).

Bending and twisting a flexible screen doesn’t seem all that complicated but when you think about making those gestures meaningful,  i. e., ‘slowing a screen image by pressing more softly’, you realize just how much effort and thought are required for features, that if successful, will not be noticed.