Tag Archives: social sciences

Regulating nanomaterials according to the US GAO and EPA

It’s been a banner week for information about nanomaterials regulation. As I noted yesterday, the US General Accountability Office has just released its  report titled Nanotechnology: Nanomaterials Are Widely Used in Commerce, but EPA Faces Challenges in Regulating Risk. Hats off to the authors: Anu Mittal, lead author, and Elizabeth Erdmann, David Bennett, Antoinette Capaccio, Nancy Crothers, Cindy Gilbert, Gary Guggolz, Nicole Harkin, Kim Raheb, and Hai Tran.

In discussing some of the oversight and regulatory issues associated with nanotechnology and other emerging technologies they had this to say (from the report),

Nanotechnology is an example of a fast-paced technology that poses challenges to agencies’ policy development and foresight efforts. We have conducted past work looking at the challenges of exercising foresight when addressing potentially significant but somewhat uncertain trends,5 including technology-based trends that proceed at a high “clockspeed,” that is, a (1) faster pace than trends an agency has dealt with previously or (2) quantitative rate of change that is either exponential or exhibits a pattern of doubling or tripling within 3 or 4 years, possibly on a repeated basis.6 As our prior work has noted, when an agency responsible for ensuring safety faces a set of potentially significant high-clockspeed technology-based trends, it may successfully exercise foresight by carrying out activities such as

• considering what is known about the safety impact of the trend and deciding how to respond to it;

• reducing uncertainty as needed by developing additional evidence about the safety of the trend; and

• communicating with Congress and others about the trends, agency responses, and policy implications.

Similarly, our 21st Century Challenges report raised concern about whether federal agencies are poised to address fast-paced technology-based challenges. [GAO, 21st Century Challenges: Reexamining the Base of the Federal Government, GAO-05-325SP (Washington, D.C.: February 2005)] Other foresight literature illustrates the potential future consequences of falling behind a damaging trend that could be countered by early action. These analyses suggest that unless agencies and Congress can stay abreast of technological changes, such as nanotechnology, they may find themselves “in a constant catch-up position and lose the capacity to shape outcomes.” (p.7/8 print version, p. 11/2 PDF)

(Seems to me the Canadian government could also do with some thoughtful consideration of fast-changing technologies and the challenges they pose to the institutional oversight mechanisms currently in place.)

The report goes on to describe various nano-enabled product categories in various industry sectors. It’s an overview that includes products (e.g. nano-enabled cell phones) currently or soon-to-be on the market. I was particularly taken with an image of a cell phone  that tagged parts  already nano-enabled (on some models) along with parts that may, in the future, become nano-enabled (p. 14 print version or p. 18 PDF).

The toxicity roundup is one of the best presentations I’ve seen. For example,

  • Size. Research assessing the role of particle size on toxicity has generally found that some nanoscale (<100 nanometers) particles are more toxic and can cause more inflammation than conventionally scaled particles of the same composition. Specifically, some research indicates that the toxicity of certain nanomaterials, such as some forms of carbon nanotubes and nanoscale titanium dioxide, may pose a risk to human health because these materials, as a result of their small size, may be able to penetrate cell walls, causing cell inflammation and potentially leading to certain diseases. For example, the small size of these nanomaterials may allow them to penetrate deeper into lung tissue, potentially causing more damage, according to some of the studies we reviewed. In addition, some nanomaterials may disperse differently into the environment than conventionally scaled materials of the same composition because of their size. However, according to EPA, the small particle size may also cause the nanomaterials to agglomerate, which may make it more difficult for them to penetrate deep lung tissue. (pp. 23/4 print version, pp. 27/8 PDF)

This a much more measured but still cautious approach to the toxicology issues as they relate to size and this approach is maintained throughout.

There’s more than one way to be exposed,

In addition to toxicity, the risk that nanomaterials pose to humans and the environment is also affected by the route and extent of exposure to such materials. Nanomaterials can enter the human body through three primary routes: inhalation, ingestion, and dermal penetration. (p. 25 print version, p. 29 PDF)

They also make the distinction between exposure as a consequence of consuming products and exposure due to occupation.

Moving on from toxicity, their section on the international scene wowed me because this is the only report I’ve seen which notes that Canada’s nanomaterials inventory has yet to occur.

One thing I hadn’t realized was how similar Environment Canada’s and the US Environmental Protection Agency’s approach to nanomaterials has been. From my April 2, 2010 posting,

Here’s what Environment Canada has to say about nanomaterials (the information on this page is dated from 2007 …) NOTE: The page originally cited is no longer available, go to this page,

The Domestic Substances List (DSL) is the sole basis for determining whether a substance is new. Any chemical or polymer not listed on the DSL is considered to be new to Canada and is subject to the notification requirements under the Regulations. Substances listed on the DSL do not require notification1 in advance of manufacture in or import into Canada.

The Act and the Regulations apply to new nanomaterials just as any other substance, whether a chemical or a polymer.

Substances listed on the DSL whose nanoscale forms do not have unique structures or molecular arrangements are considered existing. Existing nanomaterials are not subject to the Regulations and do not require notification. For example, titanium dioxide [emphasis mine] (CAS No. 13463-67-7) is listed on the DSL and since its nanoscale form does not have unique structures or molecular arrangements, it is not subject to the Regulations.

Compare,

In its 2008 document, EPA stated that a nanomaterial is a new chemical for purposes of regulation under TSCA only if it does not have the same “molecular identity” as a chemical already on the inventory. Under TSCA, a chemical is defined in terms of its particular molecular identity.

Thus, because titanium dioxide is already listed on the TSCA inventory, nanoscale versions of titanium dioxide, which have the same molecular formula, would not be considered a new chemical under TSCA, despite having a different size or shape, different physical and chemical properties, and potentially different risks. [emphasis mine] (p. 34 print version, p. 38 PDF)

I gather the EPA adopted the strategy one year after Environment Canada. Given how often the various jurisdictions copy each other’s approaches, I wonder which country (or possibly a jurisdiction such as the European Commission) actually set this strategy.

The report offers an excellent summary of Canada’s current regulatory approach and plans. I’ve reproduced the passage in full here,

Canadian officials have proposed but have not implemented a one-time requirement for companies to provide information on nanomaterials produced in or imported into Canada. Canadian importers and manufacturers would be required to report their use of nanomaterials produced or imported in excess of 1 kilogram. In 2009, Canadian officials reported to the OECD that information required would include chemical and trade name; molecular formula; and any available information on the shape, size range, structure, quantity imported or manufactured, and known or predicted uses. Also required would be any available information on the nanomaterial’s physical and chemical properties—such as solubility in water and toxicological data, among others. Under the proposal, companies could claim information as confidential, but regulators would publish a summary of information provided. Canada plans to use this information to help develop a regulatory framework for nanomaterials and to determine which information requirements would be useful for subsequent risk assessments. Canadian officials stated they originally hoped to issue this requirement in the spring of 2009 but could not predict when it would be implemented.

With regard to current law, a report prepared for the government of Canada in 2008 stated that Canada has no specific requirements for nanomaterials and is considering whether they are needed. However, Health Canada and Environment Canada—two agencies responsible for health and the environment—have taken the first steps in recognizing the potentially unique aspects of nanomaterials. These regulatory agencies are currently relying on existing authority delegated to them through legislation, such as the Canadian Environmental Protection Act, to address nanomaterials. Specifically, in June 2007, Environment Canada released a new substances program advisory announcing that nanomaterials will be regulated under the act’s new substances notification regulations. Per this advisory, any nanomaterial not listed on Canada’s chemical inventory—the Domestic Substances List—or with “unique structures or molecular arrangements” compared to their non-nano counterparts, requires a risk assessment. A review panel of the Canadian Academies found that, while it is not necessary to create new regulatory mechanisms to address the unique challenges presented by nanomaterials, the existing regulatory mechanisms could and should be strengthened in a variety of ways, such as by creating a specific classification for nanomaterials and by reviewing the regulatory triggers that prompt review of the health and environmental effects. (pp. 45/6 print version, pp. 49/50 PDF)

As far as I’m aware, there are no comparable summaries available in Canadian reports available to the public. No doubt there are nits to be picked but all I can say is thank you for giving me the most comprehensive and succinct overview I’ve seen yet of the emerging Canadian regulatory framework for nanomaterials.

For interested parties, there is some additional information about Health Canada’s public consultation on their interim definition of nanomaterials in my April 28, 2010 posting.

Poetry, molecular biophysics and innovation in Canada

There’s an interesting story by Karen Hopkin (Carpe Datum)  in the latest The Scientist newsletter about Gregory Petsko, a would-be student of epic poetry who changed his field of studies to molecular biophysics as he made his way to a Rhodes scholarship at Oxford. From Carpe Datum,

With his heart set on the study of epic poetry, Petsko arranged to work with Maurice Bowra, a preeminent classicist, and set sail for England. “Back then, all the Rhodes scholars traveled over on the Queen Elizabeth, which took 8 days,” he says. “And sometime while I was out over the Atlantic, Maurice Bowra died.” Not sure how to proceed, Petsko phoned Princeton and spoke to the head of the lab where he’d worked part-time to earn a few bucks. “He told me to go over to David Phillips’s lab and get a degree in molecular biophysics,” says Petsko. “And it was the best thing that ever happened to me.”

“For me, structure is just a means to an end. That end is function. I care about function,” he says. “I want to know how things work.”

“Greg never loses sight of the big picture. For him, it’s ultimately about the biology,” says former postdoc Ann Stock, an HHMI investigator at the University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School. “In the field of structural biology, that hasn’t always been true. In the early years, many structural biologists focused mostly on the nuts-and-bolts technical aspects of solving three-dimensional structures.” Petsko is proficient when it comes to nuts and bolts, she says, “but he sees them as tools that allow him to explore the biology of proteins.”

I find it interesting that Petsko is well grounded in the humanities as there is a longstanding argument that an education in the humanities and/or liberal arts is a “big picture” education. Petsko’s discoveries include the TIM barrel,

“It’s like an alpha helix or a beta-pleated sheet: the TIM barrel is a protein fold that basically implies function,” says [Jan] Westpheling [geneticist at University of Georgia]. “And Greg discovered it. This was a profound contribution in the days when people were just beginning to understand the three-dimensional structure of proteins.”

If you’re interested in more about how scientists think and work, please do read Hopkin’s story as I’m now switching gears to Rob Annan’s (Don’t leave Canada behind blog) latest post, Innovation isn’t just about science funding.

Rob raises a number of points about innovation in Canada, along with this one (from the post),

Expecting researchers to produce innovative research and to translate it into the broader world is unrealistic. And giving more money to researchers isn’t going to change that.

Much of the discussion about Canada’s lack of innovation is focused on how money can be made from research. Scientists are quite innovative in their research; the problem, from the government’s perspective, lies in bringing the research to market. Back to Rob,

… Unlike scientific research, social and commercial innovation isn’t a relatively linear process you can lay out in five year funding applications. It doesn’t require a highly-specialized skill set. It requires a broad skill set that involves creative thinking, communication skills, problem-solving, critical thinking, and cultural and civic understanding – all of which need to be applied to the varied stages of innovation development.

These are the attributes of successful entrepreneurs. These are also the attributes of a liberal arts and science education.

You might say that Petsko embodies “the attributes of a liberal arts and science education,” although as far as I know he’s not an entrepreneur.  Rob expands on the notion of “big picture” education,

Even a who’s-who of Canadian high-tech CEOs have made an explicit case for the importance of liberal arts and science graduates in their industries.

Yes, we need to fund scientific research to ensure that we have a deep pool of innovation from which to draw. But translating this research into world-leading social or commercial innovation won’t happen if we leave it strictly to the scientists. Individuals trained in the social sciences and humanities bring an essential skill set to the process, and we neglect funding these areas at our competitive peril.

Thank you, Rob. It’s always good when someone who’s a scientist makes these kinds of comments as someone with a liberal arts/social science/humanities background could be accused of being self-serving.

While the  Petsko story doesn’t perfectly illustrate Rob’s points, it does hint at the importance of broad-based thinking for breakthroughs and, ultimately, innovation. I’d add one item to Rob’s list of skills, risktaking.

I do have a few questions but I’m going to take those to Rob’s comments section.

Is science superior?

In yesterday’s posting (Oct. 29, 2009), I started to dissect a comment from Bruce Alberts’ (keynote speaker) speech at the Canadian Science Policy Conference that’s taking place this week in Toronto (find link to conference in yesterday’s posting). He suggested that more scientists should be double-trained, e.g. as scientist-journalists; scientist-lawyers; etc. He also pointed to China as a shining example of how scientists and engineers can be integrated into the government bureaucracy and their use of scientific methods to run their departments.

Speaking as someone who is fascinated by science, I am taken aback.  Science and scientists have done some wonderful things but they’ve also created some awful problems. The scientific method in and of itself is not perfect and it cannot be applied to all of life’s problems. Let’s take for example, economics. That’s considered a science and given the current state of the world economy, it would seem that this science has failed. The former head of the US Federal Reserve, Alan Greenspan, admitted that in all his figurings he failed to take into account human nature. That’s a problem in economics–all those beautiful algorithms don’t include behaviour as a factor.

Even sciences that study behaviour, social sciences, have a far from perfect understanding of human behaviour. Marketers who draw heavily from the social sciences have yet to find the perfect formula for selling products.

As for China appointing a world-renown molecular biologist (Chen Zhu) as their Minister of Health, I hope he does well but it won’t be because he has applied the techniques and managements skills he’s used successfully in laboratories. In medicine, any clinician will tell you that there’s a big difference between the results from research done in a laboratory (and in controlled human clinical trials) and the outcome when that research is applied to a general population. As for management skills, directing people who have similar training is a lot easier than directing people who have wildly dissimilar educational backgrounds and perspectives. (Professional vocabularies can provide some distinct challenges.)

I guess it’s the lack of humility in the parts of the speech Rob Annan (Don’t leave Canada behind blog) has posted that troubles me. (I’ve been to these types of conferences and have observed this lack on previous occasions and with different speakers.)

As for scientists becoming double-trained, that’s not unreasonable but I think it should go the other way as well. I think science and scientists have something to learn from society. What Alberts is describing is an unequal relationship, where one form of knowledge and thought process is privileged over another.

I’ll get started on Day 2 of this conference (Preston Manning was one of the keynote speakers) on Monday, Nov. 2, 2009.

Social science and nanotechnology (Canadian or otherwise)

They sure don’t make it easy to find but there is a way to search Canada’s Social Science and Humanities Research Council awards for research. I ran a search for nanotechnology projects spanning the 2005-6 and 2006-7 fiscal years and found four projects. Two at the University of Alberta and two at Simon Fraser University in British Columbia. Hmmm….here are the titles (and researchers and universitites):

  • Giorgio Agamben’s political ontologies: a study of biopower, biopolitics, and nanotechnology. (Charles A Barbour at the U of A)
  • A field perspective on nanotechnology path creation: an examination of carbon nanotubes. (Michael Lounsbury at the U of A)
  • Opportunity creation from the confluence of technologies. (Eliicia Maine, SFU)
  • Bionanotechnology in British Columbia: conceptualizations of social implications. (Karen M Woods, SFU)

Those were all awarded in 2006. For fun, I went back to the 2001-2 fiscal year and found one other researcher (she got two grants for the same project) in 2003-4

  • Weaving new technologies: social theory and ubiquitous computing. (Anne Galloway, Carleton University, Ontario)

It doesn’t seem like a lot especially when I see some of the work being done in the UK and in the US.

On other fronts, I stumbled across an old (2004?) Neal Stephenson interview with Slashdot (I think the writer is Adam Shand). They make no mention of Diamond Age, which is more or less Stephenson’s nano novel. Still, he provides an interesting take on being a science fiction writer and making money as a writer. In fact, if you’re interested in Neal Stephenson interviews, etc., you can go here for a listing.