Tag Archives: South Africa

Global gathering in Rwanda for 5th International Conference on Governmental Science Advice (INGSA2024): “The Transformation Imperative”

The 4th gathering was in Montréal, Québec, Canada (as per my August 31, 2021 posting). Unfortunately,this is one of those times where I’m late to the party. The 5th International Conference on Governmental Science Advice (INGSA2024) ran from May 1 – 2, 2024 bu there are some satellite events taking place over the next few days.

I’m featuring this somewhat stale news because it offers a more global perspective on science policy and government advisors, from the May 1, 2024 International Network for Government Science Advice (INGSA) news release (PDF and on EurekAlert),

What? 5th International Conference on Governmental Science Advice, INGSA2024, marking the 10th Anniversary of the creation of the International Network for Governmental Science Advice (INGSA) & first meeting held in the global south.

Where?   Kigali Convention Center, Rwanda: https://ingsa2024.squarespace.com/

When?    1 – 2 May, 2024.

Context: One of the largest independent gatherings of thought- and practice-leaders in governmental science advice, research funding, multi-lateral institutions, academia, science communication and diplomacy is taking place in Kigali, Rwanda. Organised by Prof Rémi Quirion, Chief Scientist of Québec and President of the International Network for Governmental Science Advice (INGSA), speakers from 39 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 300 delegates from 65 countries, will spotlight what is really at stake in the relationship between science, societies and policy-making, during times of crisis and routine.

From the air we breathe, the cars we drive, and the Artificial Intelligence we use, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely. In our post-Covid, climate-shifted, and digitally-evolving world, the importance of robust knowledge in policy-making is more pronounced than ever. This imperative is accompanied by growing complexities that demand attention. INGSA’s two-day gathering strives to both examine and empower inclusion and diversity as keystones in how we approach all-things Science Advice and Science Diplomacy to meet these local-to-global challenges.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and Montréal 2021, Kigali 2024 organisers have made it a priority to involve more diverse speakers from developing countries and to broaden the thematic scope. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching theme is: “The Transformation Imperative”.

The main conference programme (see link below)will scrutinise everything from case-studies outlining STI funding tips, successes and failures in our advisory systems, plus regional to global initiatives to better connect them, to how digital technologies and A.I. are reshaping the profession itself.

INGSA2024 is also initiating and hosting a range of independent side-events that, in themselves, act as major meeting and rallying points that partners and attending delegates are encouraged to maximise. These include, amongst others, events organised by the Foreign Ministries Science & Technology Advice Network (FMSTAN); the International Public Policy Observatory Roundtable (IPPO); the High-Level Dialogue on the Future of Science Diplomacy (co-organised by the American Association for the Advancement of Science (AAAS), the European Commission, the Geneva Science & Diplomacy Anticipator (GESDA), and The Royal Society); the Organisation of Southern Cooperation (OSC)meeting on ‘Bridging Worlds of Knowledge – Promoting Endogenous Knowledge Development;the Science for Africa Foundation, University of Oxford Pandemic Sciences Institute’s meeting on ‘Translating Research Into Policy and Practice’; and the African Institute of Mathematical Sciences (AIMS) ‘World Build Simulation Training on Quantum Technology’ with INGSA and GESDA. INGSA will also host its own internal strategy Global Chapter & Division Meetings.   

Prof Rémi Quirion, Conference Co-Chair, Chief Scientist of Québec and President of INGSA, has said that:

“For those of us who believe wholeheartedly in evidence and the integrity of science, recent years have been challenging. Mis- and disinformation can spread like a virus. So positive developments like our gathering here in Rwanda are even more critical. The importance of open science and access to data to better inform scientific integration and the collective action we now need, has never been more pressing. Our shared UN sustainable development goals play out at national and local levels. Cities and municipalities bear the brunt of climate change, but also can drive the solutions. I am excited to see and hear first-hand how the global south is increasingly at the forefront of these efforts, and to help catalyse new ways to support this. I have no doubt that INGSA’s efforts and the Kigali conference, which is co-led with the Rwandan Ministry of Education and the University of Rwanda, will act as a carrier-wave for greater engagement. I hope we will see new global collaborations and actions that will be remembered as having first taken root at INGSA2024”.

Hon. Gaspard Twagirayezu, Minister of Education of Rwanda has lent his support to the INGSA conference, saying:

“We are proud to see the INSGA conference come to Rwanda, as we are at a turning point in our management of longer-term challenges that affect us all. Issues that were considered marginal even five or ten years ago are today rightly seen as central to our social, environmental, and economic wellbeing. We are aware of how rapid scientific advances are generating enormous public interest, but we also must build the capabilities to absorb, generate and critically consider new knowledge and technologies. Overcoming current crisis and future challenges requires global coordination in science advice, and INGSA is well positioned to carry out this important work. It makes me particularly proud that INGSA’s Africa Chapter has chosen our capital Kigali as it’s pan-African base. Rwanda and Africa can benefit greatly from this collaboration.”

Ass. Prof.  Didas Kayihura Muganga, Vice-Chancellor, University of Rwanda, stated:

“What this conference shows is that grass-roots citizens in Rwanda, across Africa and Worldwide can no longer be treated as simple statistics or passive bystanders. Citizens and communities are rightfully demanding greater transparency and accountability especially about science and technology. Ensuring, and demonstrating, that decisions are informed by robust evidence is an important step.  But we must also ensure that the evidence is meaningful to our context and our population. Complex problems arise from a multiplicity of factors, so we need greater diversity of perspectives to help address them.   This is what is changing before our very eyes. For some it is climate, biodiversity or energy supply that matters most, for others it remains access to basic education and public health. Regardless, all exemplify humanity’s interdependence.”

Daan du Toit, acting Director-General of the Department of Science & Innovation of the Government of South Africa and Programme Committee Member commented:

INGSA has long helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making. But now, the conversation is deepening to critically consider the scope and breadth of evidence, what evidence, whose evidence and who has access to the evidence? Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics working at the interfaces between science, societies and public policy. We were involved in its creation in Auckland in 2014, and have stayed close and applaud the decision to bring this 5th International Biennial Meeting to Africa. Learning from each other, we can help bring a wider variety of robust knowledge more centrally into policy-making. That is why in 2022 we supported a start-up initiative based in Pretoria called the Science Diplomacy Capital for Africa (SDCfA). The energy shown in the set-up of this meeting demonstrates our potential as Africans to do so much more together”.

INGSA-Africa’s Regional Chapter

INGSA2024 is very much ‘coming home’ and represents the first time that this biennial event is being co-hosted by a Regional Chapter. In February 2016, INGSA announced the creation of the INGSA-Africa Regional Chapter, which held its first workshop in Hermanus, South Africa. The Chapter has since made great strides in engaging francophone Africa, organising INGSA’s first French-language workshop in Dakar, Senegal in 2017 and a bi-lingual meeting as a side-event of the World Science Forum 2022, Cape Town.  The Chapter’s decentralised virtual governance structure means that it embraces the continent, but new initiatives, like the Kigali Training Hub are set to become a pivotal player in the development of evidence-to-policy ecosystems across Africa.

Dr M. Oladoyin Odubanjo, Conference Co-Chair and Chair of INGSA-Africa, outlined that:

“As a public health physician and current Executive Secretary of the Nigerian Academy of Sciences (NAS), responsible for providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but they approach problems differently. Scientists question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology. Our INGSA-Africa Chapter is working at the nexus of both communities and we encourage everybody to get involved. Hosting this conference in Kigali is like a shot in the arm that can only lead us on to even bigger and brighter things.”

Sir Peter Gluckman, President of the International Science Council, and founding chair of INGSA mentioned: “Good science advice is critical to decision making at any level from local to global. It helps decision makers understand the evidence for or against, and the implications of any choice they make. In that way science advice makes it more likely that decision makers will make better decisions. INGSA as the global capacity building platform has a critical role to play in ensuring the quality of science policy interface.”

Strength in numbers

What makes the 5th edition of this biennial event stand out is the perhaps the novel range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. More information on Parallel Sessions organisers as well as speakers can be found on the website.

About INGSA

Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, and key partnerships in Europe and North America, INGSA has quicky established an important reputation as a collaborative platform for policy exchange, capacity building and operational research across diverse global science advisory organisations and national systems. INGSA is a free community of peer support and practice with over 6,000 members globally. Science communicators and members of the media are warmly welcomed to join for free.

Through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council. INGSA’s secretariat is based at the University of Auckland in New Zealand, while the office of the President is hosted at the Fonds de Recherche de Quebec in Montreal, which has also launched the Réseau francophone international en conseil scientifique (RFICS), which mandate is towards capacity reinforcement in science advice in the Francophonie.

INGSA2024 Sponsors

As always, INGSA organized a highly accessible and inclusive conference by not charging a registration fee. Philanthropic support from many sponsors made the conference possible. Special recognition is made to the Fonds de recherche du Québec, the Rwanda Ministry of Education as well as the University of Rwanda. The full list of donors is available on the INGSA2024 website (link below).

[1] Australia, Belgium, Brazil, Cameroon, Canada, Chile, China, Costa Rica, Cote d’Ivoire, Denmark, Egypt, Ethiopia, Finland, France, Germany, Ghana, India, Ireland, Italy, Jamaica, Japan, Kenya, Lebanon, Malawi, Malaysia, Mauritius, Mexico, New Zealand, Nigeria, Portugal, Rwanda, Saudi Arabia, South Africa, Spain, Sri Lanka, Uganda, UK, USA, Zimbabwe

Satellite session are taking place today (May 3, 2024),

  • High-Level Dialogue on the Future of Science
  • Bridging Worlds of Knowledge
  • Translating Research into Policy and Practice
  • Quantum Technology in Africa

The last session on the list, “Quantum Technology …,” is a science diplomacy role-playing workshop. (It’s of particular interest to me as the Council of Canadian Academies (CCA) released a report, Quantum Potential, in Fall 2023 and about which I’m still hoping to write a commentary.)

Even though the sessions have already taken place,it’s worth taking a look at the conference programme and the satellite events just to get a sense of the global breadth of interest in this work. Here’s the INGSA2024 website.

Nanomedicine development: a South African perspective

Ms Sinovuyo Banzana, science communicator at DSI-Mandela Nanomedicine Platform (Nelson Mandela University, South Africa) and Dr Steven Mufamadi, Research Chair in nanomedicine at the DSI-Mandela Nanomedicine Platform (Nelson Mandela University) and the founder of Nabio Consulting (Pty) Ltd. have written a January 15, 2023 Nanowerk Spotlight article. While the focus is largely on South Africa, they also provide insight into what is happening in other countries on the African continent.

From the January 15, 2023 Nanowerk Spotlight article, Note: Links have been removed,

In Africa, South Africa is considered as the leading country in terms of health care services and biomedical research. In the past few years or so, the South Africa Agency for Science and Technology Advancement (SAASTA) and other education programs started to engage with the community and spread the word on nanomedicine so that everyone can have a better understanding about how nanomedicine works.

South Africa has established a MSc Nanoscience Postgraduate Programme – a collaborative programme between the University of Johannesburg (UJ), Nelson Mandela University (NMU), the University of the Free State (UFS) and the University of the Western Cape (UWC).

In Egypt, the Zewail City of Science, Technology, and Innovation a non-profit, independent institution of learning, research and innovation, has established an undergraduate bachelor’s degree of science in nanoscience: the BSc in Nano Science.

Over the past decade, the South African government has been investing in nanotechnology-based equipment and infrastructure, human capital development, and R&D at several public universities and science centres. These research facilities are available to researchers from across the continent and beyond. Prominent among them are the

Centre for High Resolution Transmission Electron Microscopy (HRTEM)

DSI-Mandela nanomedicine platform at Nelson Mandela University (NMU)

National Centre for Nanostructured Materials – a characterisation facility and nanomaterials industrial development facility at the Council for Scientific and Industrial Research (CSIR)

Mintek Nanotechnology Innovation Centre (NIC).

The future of nanomedicine in Africa is promising. The World Health Organization (WHO) has established partnerships with the pharmaceutical industry, such as Pfizer in South Africa and Moderna in Kenya, to establish the first two African mRNA hubs. These public-private partnerships focus on technology transfer and human capacity building, which will enable African scientists and inventors to produce their own mRNA vaccines and nanomedicine products that are tailored to the specific needs of the African population. This is crucial in addressing vaccine inequality and ensuring access to medicine for all.

In the next few years, it is likely that we will see nanomedicine-based drugs or vaccines developed in Africa enter the global market.

African governments need to take advantage of nanomedicine innovation and their partnerships with international private companies in order to develop their nanomedicine innovation and create job opportunities, and/or to achieve their United Nation Sustainable Development Goals (UN-SDGs) by 2030.

You can find out more about the Nanomedicine programme at Nelson Mandela University here.

Thank you to Ms Banzana and Dr. Mufamadi. It’s always good to get some insight into nanotechnology developments from a region that is not North America or Europe.

Nigeria and its nanotechnology research

Agbaje Lateef’s (Professor of Microbiology and Head of Nanotechnology Research Group (NANO+) at Ladoke Akintola University of Technology) April 20, 2022 essay on nanotechnology in Nigeria for The Conversation offers an overview and a plea, Note: Links have been removed,

Egypt, South Africa, Tunisia, Nigeria and Algeria lead the field in Africa. Since 2006, South Africa has been developing scientists, providing infrastructure, establishing centres of excellence, developing national policy and setting regulatory standards for nanotechnology. Companies such as Mintek, Nano South Africa, SabiNano and Denel Dynamics are applying the science.

In contrast, Nigeria’s nanotechnology journey, which started with a national initiative in 2006, has been slow. It has been dogged by uncertainties, poor funding and lack of proper coordination. Still, scientists in Nigeria have continued to place the country on the map through publications.

In addition, research clusters at the University of Nigeria, Nsukka, Ladoke Akintola University of Technology and others have organised conferences. Our research group also founded an open access journal, Nano Plus: Science and Technology of Nanomaterials.

To get an idea of how well Nigeria was performing in nanotechnology research and development, we turned to SCOPUS, an academic database.

Our analysis shows that research in nanotechnology takes place in 71 Nigerian institutions in collaboration with 58 countries. South Africa, Malaysia, India, the US and China are the main collaborators. Nigeria ranked fourth in research articles published from 2010 to 2020 after Egypt, South Africa and Tunisia.

Five institutions contributed 43.88% of the nation’s articles in this period. They were the University of Nigeria, Nsukka; Covenant University, Ota; Ladoke Akintola University of Technology, Ogbomoso; University of Ilorin; and University of Lagos.

The number of articles published by Nigerian researchers in the same decade was 645. Annual output grew from five articles in 2010 to 137 in the first half of 2020. South Africa published 2,597 and Egypt 5,441 from 2010 to 2020. The global total was 414,526 articles.

The figures show steady growth in Nigeria’s publications. But the performance is low in view of the fact that the country has the most universities in Africa.

The research performance is also low in relation to population and economy size. Nigeria produced 1.58 articles per 2 million people and 1.09 articles per US$3 billion of GDP in 2019. South Africa recorded 14.58 articles per 2 million people and 3.65 per US$3 billion. Egypt published 18.51 per 2 million people and 9.20 per US$3 billion in the same period.

There is no nanotechnology patent of Nigerian origin in the US patents office. Standards don’t exist for nano-based products. South Africa had 23 patents in five years, from 2016 to 2020.

Nigerian nanotechnology research is limited by a lack of sophisticated instruments for analysis. It is impossible to conduct meaningful research locally without foreign collaboration on instrumentation. The absence of national policy on nanotechnology and of dedicated funds also hinder research.

In February 2018, Nigeria’s science and technology minister unveiled a national steering committee on nanotechnology policy. But the policy is yet to be approved by the federal government. In September 2021, I presented a memorandum to the national council on science, technology and innovation to stimulate national discourse on nanotechnology.

Given that this essay is dated more than six months after Professor Lateef’s memorandum to the national council, I’m assuming that no action has been taken as of yet.

A June 2022 addition to the Nigerian nanotechnology story

Agbaje Lateef has written a June 8, 2022 essay for The Conversation about nanotechnology and the Nigerian textile industry (Note: Links have been removed),

Nigeria’s cotton production has fallen steeply in recent years. It once supported the largest textile industry in Africa. The fall is due to weak demand for cotton and to poor yields resulting from planting low-quality cottonseeds. For these reasons, farmers switched from cotton to other crops.

Nigeria’s cotton output fell from 602,400 tonnes in 2010 to 51,000 tonnes in 2020. In the 1970s and early 1980s, the country’s textile industry had 180 textile mills employing over 450,000 people, supported by about 600,000 cotton farmers. By 2019, there were 25 textile mills and 25,000 workers.

Nowadays, textiles’ properties can be greatly improved through nanotechnology – the use of extremely small materials with special properties. Nanomaterials like graphene and silver nanoparticles make textiles stronger, durable, and resistant to germs, radiation, water and fire.

Adding nanomaterials to textiles produces nanotextiles. These are often “smart” because they respond to the external environment in different ways when combined with electronics. They can be used to harvest and store energy, to release drugs, and as sensors in different applications.

Nanotextiles are increasingly used in defence and healthcare. For hospitals, they are used to produce bandages, curtains, uniforms and bedsheets with the ability to kill pathogens. The market value of nanotextiles was US$5.1 billion in 2019 and could reach US$14.8 billion in 2024.

At the moment, Nigeria is not benefiting from nanotextiles’ economic potential as it produces none. With over 216 million people, the country should be able to support its textile industry. It could also explore trading opportunities in the African Continental Free Trade Agreement to market innovative nanotextiles.

Lateef goes on to describe his research (from his June 8, 2022 essay),

Our nanotechnology research group has made the first attempt to produce nanotextiles using cotton and silk in Nigeria. We used silver and silver-titanium oxide nanoparticles produced by locust beans’ wastewater. Locust bean is a multipurpose tree legume found in Nigeria and some other parts of Africa. The seeds, the fruit pulp and the leaves are used to prepare foods and drinks.

The seeds are used to produce a local condiment called “iru” in southwest Nigeria. The processing of iru generates a large quantity of wastewater that is not useful. We used the wastewater to reduce some compounds to produce silver and silver-titanium nanoparticles in the laboratory.

Fabrics were dipped into nanoparticle solutions to make nanotextiles. Thereafter, the nanotextiles were exposed to known bacteria and fungi. The growth of the organisms was monitored to determine the ability of the nanotextiles to kill them.

The nanotextiles prevented growth of several pathogenic bacteria and black mould, making them useful as antimicrobial materials. They were active against germs even after being washed five times with detergent. Textiles without nanoparticles did not prevent the growth of microorganisms.

These studies showed that nanotextiles can kill harmful microorganisms including those that are resistant to drugs. Materials such as air filters, sportswear, nose masks, and healthcare fabrics produced from nanotextiles possess excellent antimicrobial attributes. Nanotextiles can also promote wound healing and offer resistance to radiation, water and fire.

Our studies established the value that nanotechnology can add to textiles through hygiene and disease prevention. Using nanotextiles will promote good health and well-being for sustainable development. They will assist to reduce infections that are caused by germs.

Despite these benefits, nanomaterials in textiles can have some unwanted effects on the environment, health and safety. Some nanomaterials can harm human health causing irritation when they come in contact with skin or inhaled. Also, their release to the environment in large quantities can harm lower organisms and reduce growth of plants. We recommend that the impacts of nanotextiles should be evaluated case by case before use.

Dear Professor Lateef, I hope you see some action on your suggestions soon and thank you for the update. Also, good luck with your nanotextiles.

Science policy updates (INGSA in Canada and SCWIST)

I had just posted my Aug. 30, 2021 piece (4th International Conference on Science Advice to Governments (INGSA2021) August 30 – September 2, 2021) when the organization issued a news release, which was partially embargoed. By the time this is published (after 8 am ET on Wednesday, Sept. 1, 2021), the embargo will have lifted and i can announce that Rémi Quirion, Chief Scientist of Québec (Canada), has been selected to replace Sir Peter Gluckman (New Zealand) as President of INGSA.

Here’s the whole August 30, 2021 International Network for Government Science Advice (INGSA) news release on EurekAlert, Note: This looks like a direct translation from a French language news release, which may account for some unusual word choices and turns of phrase,

What? 4th International Conference on Science Advice to Governments, INGSA2021.

Where? Palais des Congrès de Montréal, Québec, Canada and online at www.ingsa2021.org

When? 30 August – 2 September, 2021.

CONTEXT: The largest ever independent gathering of interest groups, thought-leaders, science advisors to governments and global institutions, researchers, academics, communicators and diplomats is taking place in Montreal and online. Organized by Prof Rémi Quirion, Chief Scientist of Québec, speakers from over 50 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 2000 delegates from over 130 countries, will spotlight what is really at stake in the relationship between science and policy-making, both during crises and within our daily lives. From the air we breathe, the food we eat and the cars we drive, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely.  

Prof Rémi Quirion, Conference Organizer, Chief Scientist of Québec and incoming President of INGSA added: “For those of us who believe wholeheartedly in evidence and the integrity of science, the past 18 months have been challenging. Information, correct and incorrect, can spread like a virus. The importance of open science and access to data to inform our UN sustainable development goals discussions or domestically as we strengthen the role of cities and municipalities, has never been more critical. I have no doubt that this transparent and honest platform led from Montréal will act as a carrier-wave for greater engagement”.

Chief Science Advisor of Canada and Conference co-organizer, Dr Mona Nemer, stated that: “Rapid scientific advances in managing the Covid pandemic have generated enormous public interest in evidence-based decision making. This attention comes with high expectations and an obligation to achieve results. Overcoming the current health crisis and future challenges will require global coordination in science advice, and INGSA is well positioned to carry out this important work. Canada and our international peers can benefit greatly from this collaboration.”

Sir Peter Gluckman, founding Chair of INGSA stated that: “This is a timely conference as we are at a turning point not just in the pandemic, but globally in our management of longer-term challenges that affect us all. INGSA has helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making”.

He added that: “Issues that were considered marginal seven years ago when the network was created are today rightly seen as central to our social, environmental and economic wellbeing. The pandemic highlights the strengths and weaknesses of evidence-based policy-making at all levels of governance. Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics, from countries at all levels of development. Learning from each other, we can help bring scientific evidence more centrally into policy-making. INGSA has achieved much since its formation in 2014, but the energy shown in this meeting demonstrates our potential to do so much more”.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and delayed for one year due to Covid, the advantage of the new hybrid and virtual format is that organizers have been able to involve more speakers, broaden the thematic scope and offer the conference as free to view online, reaching thousands more people. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching INGSA2021 theme is: “Build back wiser: knowledge, policy & publics in dialogue”.

The first three days will scrutinize everything from concrete case-studies outlining successes and failures in our advisory systems to how digital technologies and AI are reshaping the profession itself. The final day targets how expertize and action in the cultural context of the French-speaking world is encouraging partnerships and contributing to economic and social development. A highlight of the conference is the 2 September announcement of a new ‘Francophonie Science Advisory Network’.       

Prof. Salim Abdool Karim, a member of the World Health Organization’s Science Council, and the face of South Africa’s Covid-19 science, speaking in the opening plenary outlined that: “As a past anti-apartheid activist now providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but approach problems differently. We scientists constantly question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology”.

He added: “What is changing is that grass-roots citizens worldwide are no longer ill-informed and passive bystanders. And they are rightfully demanding greater transparency and accountability. This has brought the complex contradictions between evidence and ideology into the public eye. Covid-19 is not just a disease, its social fabric exemplifies humanity’s interdependence in slowing global spread and preventing new viral mutations through global vaccine equity. This starkly highlights the fault-lines between the rich and poor countries, especially the maldistribution of life-saving public health goods like vaccines. I will explore some of the key lessons from Covid-19 to guide a better response to the next pandemic”.

Speaking on a panel analysing different advisory models, Prof. Mark Ferguson, Chair of the European Innovation Council’s Advisory Board and Chief Science Advisor to the Government of Ireland, sounded a note of optimism and caution in stating that: “Around the world, many scientists have become public celebrities as citizens engage with science like never before. Every country has a new, much followed advisory body. With that comes tremendous opportunities to advance the status of science and the funding of scientific research. On the flipside, my view is that we must also be mindful of the threat of science and scientists being viewed as a political force”.

Strength in numbers

What makes the 4th edition of this biennial event stand out is the perhaps never-before assembled range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. In a truly ‘Olympics’ approach to getting all stakeholders on-board, organisers succeeded in involving, amongst others, the UN Office for Disaster Risk Reduction, the United Nations Development Programme, UNESCO and the OECD. The in-house science services of the European Commission and Parliament, plus many country-specific science advisors also feature prominently.

As organisers foster informed debate, we get a rare glimpse inside the science advisory worlds of the Comprehensive Nuclear Test Ban Treaty Organisation, the World Economic Forum and the Global Young Academy to name a few. From Canadian doctors, educators and entrepreneurs and charitable foundations like the Welcome Trust, to Science Europe and media organisations, the programme is rich in its diversity. The International Organisation of the Francophonie and a keynote address by H.E. Laurent Fabius, President of the Constitutional Council of the French Republic are just examples of two major draws on the final day dedicated to spotlighting advisory groups working through French. 

INGSA’s Elections: New Canadian President and Three Vice Presidents from Chile, Ethiopia, UK

The International Network for Government Science Advice has recently undertaken a series of internal reforms intended to better equip it to respond to the growing demands for support from its international partners, while realising the project proposals and ideas of its members.

Part of these reforms included the election in June, 2021 of a new President replacing Sir Peter Gluckman (2014 – 2021) and the creation of three new Vice President roles.

These results will be announced at 13h15 on Wednesday, 1st September during a special conference plenary and awards ceremony. While noting the election results below, media are asked to respect this embargo.

Professor Rémi Quirion, Chief Scientist of Québec (Canada), replaces Sir Peter Gluckman (New Zealand) as President of INGSA.
 

Professor Claire Craig (United Kingdom), CBE, Provost of Queen’s College Oxford and a member of the UK government’s AI Council, has been elected by members as the inaugural Vice President for Evidence.
 

Professor Binyam Sisay Mendisu (Egypt), PhD, Lecture at the University of Addis Ababa and Programme Advisor, UNESCO Institute for Building Capacity in Africa, has been elected by members as the inaugural Vice President for Capacity Building.
 

Professor Soledad Quiroz Valenzuela (Chile), Science Advisor on Climate Change to the Ministry of Science, Technology, Knowledge and Innovation of the government of Chile, has been elected by members as the Vice President for Policy.

Satellite Events: From 7 – 9 September, as part of INGSA2021, the conference is partnering with local,  national and international organisations to ignite further conversations about the science/policy/society interface. Six satellite events are planned to cover everything from climate science advice and energy policy, open science and publishing during a crisis, to the politicisation of science and pre-school scientific education. International delegates are equally encouraged to join in online. 

About INGSA: Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, INGSA has quicky established an important reputation as aa collaborative platform for policy exchange, capacity building and research across diverse global science advisory organisations and national systems. Currently, over 5000 individuals and institutions are listed as members. Science communicators and members of the media are warmly welcomed to join.

As the body of work detailed on its website shows (www.ingsa.org) through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council which acts as trustee of INGSA funds and hosts its governance committee. INGSA’s secretariat is based in Koi Tū: The Centre for Informed Futures at the University of Auckland in New Zealand.

Conference Programme: 4th International Conference on Science Advice to Government (ingsa2021.org)

Newly released compendium of Speaker Viewpoints: Download Essays From The Cutting Edge Of Science Advice – Viewpoints

[1] Argentina, Australia, Austria, Barbados, Belgium, Benin, Brazil, Burkina Faso, Cameroon, Canada, Chad, Colombia, Costa Rica, Côte D’Ivoire, Denmark, Estonia, Finland, France, Germany, Hong Kong, Indonesia, Ireland, Japan, Lebanon, Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Pakistan, Papua New Guinea, Rwanda, Senegal, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Thailand, UK, USA. 

Society for Canadian Women in Science and Technology (SCWIST)

As noted earlier this year in my January 28, 2021 posting, it’s SCWIST’s 40th anniversary and the organization is celebrating with a number of initiatives, here are some of the latest including as talk on science policy (from the August 2021 newsletter received via email),

SCWIST “STEM Forward Project”
Receives Federal Funding

SCWIST’s “STEM Forward for Economic Prosperity” project proposal was among 237 projects across the country to receive funding from the $100 million Feminist Response Recovery Fund of the Government of Canada through the Women and Gender Equality Canada (WAGE) federal department.

Read more. 

iWIST and SCWIST Ink Affiliate MOU [memorandum of understanding]

Years in planning, the Island Women in Science and Technology (iWIST) of Victoria, British Columbia and SCWIST finally signed an Affiliate MOU (memorandum of understanding) on Aug 11, 2021.

The MOU strengthens our commitment to collaborate on advocacy (e.g. grants, policy and program changes at the Provincial and Federal level), events (networking, workshops, conferences), cross promotion ( event/ program promotion via digital media), and membership growth (discounts for iWIST members to join SCWIST and vice versa).

Dr. Khristine Carino, SCWIST President, travelled to Victoria to sign the MOU in person. She was invited as an honoured guest to the iWIST annual summer picnic by Claire Skillen, iWIST President. Khristine’s travel expenses were paid from her own personal funds.

Discovery Foundation x SBN x SCWIST Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape

The Discovery Foundation, Student Biotechnology Network, and Society for Canadian Women in Science and Technology are proud to bring you the first-ever “Business Mentorship Program: Enhancing Diversity in today’s Biotechnology Landscape”. 

The Business Mentorship Program aims to support historically underrepresented communities (BIPOC, Women, LGBTQIAS+ and more) in navigating the growth of the biotechnology industry. The program aims to foster relationships between individuals and professionals through networking and mentorship, providing education and training through workshops and seminars, and providing 1:1 consultation with industry leaders. Participants will be paired with mentors throughout the week and have the opportunity to deliver a pitch for the chance to win prizes at the annual Building Biotechnology Expo. 

This is a one week intensive program running from September 27th – October 1st, 2021 and is limited to 10 participants. Please apply early. 

Events

September 10

Art of Science and Policy-Making Go Together

Science and policy-making go together. Acuitas’ [emphasis mine] Molly Sung shares her journey and how more scientists need to engage in this important area.

September 23

Au-delà de l’apparence :

des femmes de courage et de résilience en STIM

Dans le cadre de la semaine de l’égalité des sexes au Canada, ce forum de la division québécoise de la Société pour les femmes canadiennes en science et technologie (la SCWIST) mettra en vedette quatre panélistes inspirantes avec des parcours variés qui étudient ou travaillent en science, technologie, ingénierie et mathématiques (STIM) au Québec. Ces femmes immigrantes ont laissé leurs proches et leurs pays d’origine pour venir au Québec et contribuer activement à la recherche scientifique québécoise. 

….

The ‘Art and Science Policy-Making Go Together’ talk seems to be aimed at persuasion and is not likely to offer any insider information as to how the BC life sciences effort is progressing. For a somewhat less rosy view of science and policy efforts, you can check out my August 23, 2021 posting, Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?; scroll down to ‘The BC biotech gorillas’ subhead for more about Acuitas and some of the other life sciences companies in British Columbia (BC).

For some insight into how competitive the scene is here in BC, you can see my August 20, 2021 posting (Getting erased from the mRNA/COVID-19 story) about Ian MacLachlan.

You can check out more at the SCWIST website and I’m not sure when the August issue will be placed there but they do have a Newsletter Archive.

Plantains and carbon nanotubes to improve cars

I always enjoy the unexpected in a story and this one has to do with plantains and luxury cars, from a July 29, 2020 news item on phys.org (Note: A link has been removed),

A luxury automobile is not really a place to look for something like sisal, hemp, or wood. Yet automakers have been using natural fibers for decades. Some high-end sedans and coupes use these in composite materials for interior door panels, for engine, interior and noise insulation, and internal engine covers, among other uses.

Unlike steel or aluminum, natural fiber composites do not rust or corrode. They can also be durable and easily molded. The biggest advantages of fiber reinforced polymer composites for cars are light weight, good crash properties, and noise- and vibration-reducing characteristics. But making more parts of a vehicle from renewable sources is a challenge. Natural fiber polymer composites can crack, break and bend. The reasons include low tensile, flexural and impact strength in the composite material.

Researchers from the University of Johannesburg [South Africe] have now demonstrated that plantain, a starchy type of banana, is a promising source for an emerging type of composite material for the automotive industry. The natural plantain fibers are combined with carbon nanotubes and epoxy resin to form a natural fiber-reinforced polymer hybrid nanocomposite material. Plantain is a year-round staple food crop in tropical regions of Africa, Asia and South America. Many types of plantain are eaten cooked.

A July 29, 2020 University of Johannesburg press release, which originated the news item, delves into plantains and how their fibers enhance nanocomposites destined for integration into luxury cars,

Plantain is a year-round staple food crop in tropical regions of Africa, Asia and South America. Many types of plantain are eaten cooked.

The researchers moulded a composite material from epoxy resin, treated plantain fibers and carbon nanotubes. The optimum amount of nanotubes was 1% by weight of the plantain-epoxy resin combined.

The resulting plantain nanocomposite was much stronger and stiffer than epoxy resin on its own.

The composite had 31% more tensile and 34% more flexural strength than the epoxy resin alone. The nanocomposite also had 52% higher tensile modulus and 29% higher flexural modulus than the epoxy resin alone.

“The hybridization of plantain with multi-walled carbon nanotubes increases the mechanical and thermal strength of the composite. These increases make the hybrid composite a competitive and alternative material for certain car parts,” says Prof Tien-Chien Jen.

Prof Jen is the lead researcher in the study and the Head of the Department of Mechanical Engineering Science at the University of Johannesburg.

Natural fibres vs metals

Producing car parts from renewable sources have several benefits, says Dr Patrick Ehi Imoisili. Dr Imoisili is a postdoctoral researcher in the Department of Mechanical Engineering Science at the University of Johannesburg.

“There is a trend of using natural fibre in vehicles. The reason is that natural fibres composites are renewable, low cost and low density. They have high specific strength and stiffness. The manufacturing processes are relatively safe,” says Imoisili.

“Using car parts made from these composites, can reduce the mass of a vehicle. That can result in better fuel-efficiency and safety. These components will not rust or corrode like metals. Also, they can be stiff, durable and easily molded,” he adds.

However, some natural fibre reinforced polymer composites currently have disadvantages such as water absorption, low impact strength and low heat resistance. Car owners can notice effects such as cracking, bending or warping of a car part, says Imoisili.

Standardised tests

The researchers subjected the plantain nanocomposite to a series of standardised industrial tests. These included ASTM Test Methods D638 and D790; impact testing according to the ASTM A-370 standard; and ASTM D-2240.

The tests showed that a composite with 1% nanotubes had the best strength and stiffness, compared to epoxy resin alone.

The plantain nanocomposite also showed marked improvement in micro hardness, impact strength and thermal conductivity compared to epoxy resin alone.

Moulding a nanocomposite from natural fibres

The researchers compression-moulded a ‘stress test object’. They used 1 part inedible plantain fibres, 4 parts epoxy resin and multi-walled carbon nanotubes. The epoxy resin and nanotubes came from commercial suppliers. The epoxy was similar to resins that auto manufacturers use in certain car parts.

The plantain fibres came from the ‘trunks’ or pseudo-stems, of plantain plants in the south-western region of Nigeria. The pseudo-stems consist of tightly-overlapping leaves.

The researchers treated the plantain fibers with several processes. The first process is an ancient method to separate plant fibres from stems, called water-retting.

In the second process, the fibres were soaked in a 3% caustic soda solution for 4 hours. After drying, the fibres were treated with high-frequency microwave radiation of 2.45GHz at 550W for 2 minutes.

The caustic soda and microwave treatments improved the bonding between the plantain fibers and the epoxy resin in the nanocomposite.

Next, the researchers dispersed the nanotubes in ethanol to prevent ‘bunching’ of the tubes in the composite. After that, the plantain fibres, nanotubes and epoxy resin were combined inside a mold. The mold was then compressed with a load for 24 hours at room temperature.

Food crop vs industrial raw material

Plantain is grown in tropical regions worldwide. This includes Mexico, Florida and Texas in North America; Brazil, Honduras, Guatemala in South and Central America; India, China, and Southeast Asia.

In West and Central Africa, farmers grow plantain in Cameroon, Ghana, Uganda, Rwanda, Nigeria, Cote d’Ivoire and Benin.

Using biomass from major staple food crops can create problems in food security for people with low incomes. In addition, the automobile industry will need access to reliable sources of natural fibres to increase use of natural fibre composites.

In the case of plantains, potential tensions between food security and industrial uses for composite materials are low. This is because plantain farmers discard the pseudo-stems as agro-waste after harvest.

Here’s a link to and a citation for the paper,

Physical, mechanical and thermal properties of high frequency microwave treated plantain (Musa Paradisiaca) fibre/MWCNT hybrid epoxy nanocomposites by Patrick Ehi Imoisili, Kingsley Ukoba, Tien-Chien Jen. Journal of Materials Research and Technology Volume 9, Issue 3, May–June 2020, Pages 4933-4939 DOI: https://doi.org/10.1016/j.jmrt.2020.03.012

This paper is open access.

Nanoparticles make home refrigeration more accessible

Periodically, academic institutions recycle news about their research. I think it happens when, for one reason or another, a piece of news (somebody was exciting) slips past with little notice. I’m glad this June 1, 2020 news item on phys.org brought this research from South Africa to my attention,

Power consumption of a home refrigerator can be cut by 29% while improving cooling capacity. Researchers replaced widely used but environmentally unfriendly R134a refrigerant with the more energy-efficient R600a dosed with multi-walled carbon nanotube nanoparticles (MWCNT). This drop-in refrigerant replacement can be deployed in the field by trained technicians, says an engineer from the University of Johannesburg.

A May 30, 2020 University of Johannesburg press release on EurekAlert, which originated the news item, provides more details about the research,

This test of nanoparticle-dosed refrigerants is a first of its kind and recently published in Energy Reports, an open-access journal. The results can help make home refrigeration more accessible for low-income families.

R134a is one of the most widely-used refrigerants in domestic and industrial refrigerators. It is safe for many applications because it is not flammable. However, it has high global warming potential, contributing to climate change. It also causes fridges, freezers and air-conditioning equipment to consume a lot of electrical energy. The energy consumption contributes even more to climate change.

Meanwhile, a more energy-efficient refrigerant can result in much lower electricity bills. For vulnerable households, energy security can be improved as a result. Improved energy economy and demand-side management can also benefit planners at power utilities, as cooling accounts for about 40% of energy demand.

Nanoparticles enhance power reduction

Nano eco-friendly refrigerants have been made with water and ethylene glycol. Previous studies showed reduced energy use in nano-refrigeration, where refrigerants were dosed with multi-walled carbon nanotube (MWCNT) nanoparticles. The nanoparticles also resulted in reduced friction and wear on appliance vapour compressors.

But previous research did not test the effects of MWCNT’s on hydro-carbon refrigerants such as R600a.

In a recent study, researchers at the University of Johannesburg tested the drop-in replacement of environmentally-unfriendly refrigerant R134a, in a home refrigerator manufactured to work with 100g R134a.

They replaced R134a with the more energy-efficient refrigerant R600a, dosed with MWCNT nanoparticles.

Reduces electricity use by more than a quarter

The researchers removed the R134a refrigerant and its compressor oil from a household fridge. They used a new refrigerant, R600a, and dosed it with multi-walled carbon nanotubes (MWCNTs). Mineral oil was used as a lubricant. The new mix was fed into the fridge and performance tests were conducted.

They found that the R600a-MWCNT refrigerant resulted in much better performance and cooling capacity for the fridge.

“The fridge cooled faster and had a much lower evaporation temperature of -11 degrees Celsius after 150 minutes. This was lower than the -8 degrees Celsius for R134a. It also exceeded the ISO 8187 standard, which requires -3 degrees Celsius at 180 minutes,” says Dr Daniel Madyira.

Dr Madyira is from the Department of Mechanical Engineering Science at the University of Johannesburg.

“Electricity usage decreased by 29% compared to using R134a. This is a significant energy efficiency gain for refrigerator users, especially for low income earners,” he adds.

To gain these advantages, the choice of MWCNT nanoparticles is critical, he says.

“The MWCNT’s need to have nanometer-scale particle size, which is extremely small. The particles also need to reduce friction and wear, prevent corrosion and clogging, and exhibit very good thermal conductivity,” says Dr Madyira.

Managing flammability

The new refrigerant mix introduces a potential risk though. Unlike R134a, R600a is flammable. On the other hand, it is more energy efficient, and it has a low Global Warming potential. Some refrigerator manufacturers have already adopted production with R600a and these appliances are available in the market.

“To do a safe drop-in replacement, no more than 150g of R600a should be used in a domestic fridge,” says Dr Madyira. “Before the replacement, the fridge used 100g of R134a gas. We replaced that with 50g to 70g of R600a, to stay within safety parameters.”

An untrained person should not attempt this drop-in replacement, says Dr Madyira. Rather, a trained refrigeration technician or technologist should do it.

Replacement procedure

“Mineral oil is used as the compressor oil. This should be mixed with the recommended concentration. A magnetic stirrer and ultrasonicator are needed to agitate and homogenize the ingredients in the mixture. The mixture can then be introduced into the compressor. After that, R600a can be charged into the refrigerator compressor, while taking care to not use more than 150g of the gas,” says Dr Madyira.

A woman’s fridge is her castle [Haven’t seen that kind of reference in many years]

A far more energy-efficient refrigerant, such as the R600a-MWCNT mix, can save consumers a lot of money. Vulnerable households in hot climates in developing countries can benefit even more.

Low income earners in many countries are dependent on home fridges and freezers to safely store bulk food supplies. This greatly reduces the risk of wasting food due to spoilage, or food poisoning due to improperly stored food. These appliances are no longer a luxury but a necessity, says Dr Madyira.

Without fridges, people may be forced to buy food daily in small quantities and at much higher prices. Because daily buying may not be required anymore, travel time and costs for buying food can be much lower as well.

Refrigeration also makes it possible to safely store more diverse food supplies, such as fresh fruit and vegetables. Medicines that require cooling can be stored at home. This can make more balanced diets and nutrition, and better physical health, more accessible for a low-income household.

Grid power still rules for low-income refrigeration

From a sustainability point of view, it can look preferable to run most home fridges and freezers from solar power.

However solar panels, backup batteries, and direct current (DC) fridges are still too expensive for most low-income families in areas served by power utilities.

Energy-efficient, alternating current (AC) fridges running on grid power may be more affordable for most. Further cutting power consumption with R600a-MWCNT refrigerant can bring down costs even more.

Refrigeration for all vs demand-side management

As more low-income households and small businesses switch on grid-powered fridges, freezers and air-conditioning, power demand needs be managed better

In South Africa where the study was conducted, the state-operated power utility faces huge challenges in meeting demand consistently. Long-lasting rolling blackouts, known as load-shedding, have been implemented as a demand-side power management measure.

Shaving off more than a quarter of the power consumption of fridges, freezers and air-conditioning units can free up national power supply for improved energy security.

Here’s a link to and a citation for the paper,

Energy performance evaluation of R600a/MWCNT-nanolubricant as a drop-in replacement for R134a in household refrigerator system by T.O Babarinde, S.A Akinlabi, D.M Madyira. Energy Reports Volume 6, Supplement 2 ([proceedings] The 6th International Conference on Power and Energy Systems Engineering (CPESE 2019), 20–23 September 2019, Okinawa, Japan), February 2020, Pages 639-647 DOI: https://doi.org/10.101/j.egyr.2019.11.132

This paper is open access.

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

Technology, athletics, and the ‘new’ human

There is a tension between Olympic athletes and Paralympic athletes as it is felt by some able-bodied athletes that paralympic athletes may have an advantage due to their prosthetics. Roger Pielke Jr. has written a fascinating account of the tensions as a means of asking what it all means. From Pielke Jr.’s Aug. 3, 2016 post on the Guardian Science blogs (Note: Links have been removed),

Athletes are humans too, and they sometimes look for a performance improvement through technological enhancements. In my forthcoming book, The Edge: The War Against Cheating and Corruption in the Cutthroat World of Elite Sports, I discuss a range of technological augmentations to both people and to sports, and the challenges that they pose for rule making. In humans, such improvements can be the result of surgery to reshape (like laser eye surgery) or strengthen (such as replacing a ligament with a tendon) the body to aid performance, or to add biological or non-biological parts that the individual wasn’t born with.

One well-known case of technological augmentation involved the South African sprinter Oscar Pistorius, who ran in the 2012 Olympic Games on prosthetic “blades” below his knees (during happier days for the athlete who is currently jailed in South Africa for the killing of his girlfriend, Reeva Steenkamp). Years before the London Games Pistorius began to have success on the track running against able-bodied athletes. As a consequence of this success and Pistorius’s interest in competing at the Olympic games, the International Association of Athletics Federations (or IAAF, which oversees elite track and field competitions) introduced a rule in 2007, focused specifically on Pistorius, prohibiting the “use of any technical device that incorporates springs, wheels, or any other element that provides the user with an advantage over another athlete not using such a device.” Under this rule, Pistorius was determined by the IAAF to be ineligible to compete against able-bodied athletes.

Pistorius appealed the decision to the Court of Arbitration for Sport. The appeal hinged on answering a metaphysical question—how fast would Pistorius have run had he been born with functioning legs below the knee? In other words, did the blades give him an advantage over other athletes that the hypothetical, able-bodied Oscar Pistorius would not have had? Because there never was an able-bodied Pistorius, the CAS looked to scientists to answer the question.

CAS concluded that the IAAF was in fact fixing the rules to prevent Pistorius from competing and that “at least some IAAF officials had determined that they did not want Mr. Pistorius to be acknowledged as eligible to compete in international IAAF-sanctioned events, regardless of the results that properly conducted scientific studies might demonstrate.” CAS determined that it was the responsibility of the IAAF to show “on the balance of probabilities” that Pistorius gained an advantage by running on his blades. CAS concluded that the research commissioned by the IAAF did not show conclusively such an advantage.

As a result, CAS ruled that Pistorius was able to compete in the London Games, where he reached the semifinals of the 400 meters. CAS concluded that resolving such disputes “must be viewed as just one of the challenges of 21st Century life.”

The story does not end with Oscar Pistorius as Pielke, Jr. notes. There has been another challenge, this time by Markus Rehm, a German long-jumper who leaps off a prosthetic leg. Interestingly, the rules have changed since Oscar Pistorius won his case (Note: Links have been removed),

In the Pistorius case, under the rules for inclusion in the Olympic games the burden of proof had been on the IAAF, not the athlete, to demonstrate the presence of an advantage provided by technology.

This precedent was overturned in 2015, when the IAAF quietly introduced a new rule that in such cases reverses the burden of proof. The switch placed the burden of proof on the athlete instead of the governing body. The new rule—which we might call the Rehm Rule, given its timing—states that an athlete with a prosthetic limb (specifically, any “mechanical aid”) cannot participate in IAAF events “unless the athlete can establish on the balance of probabilities that the use of an aid would not provide him with an overall competitive advantage over an athlete not using such aid.” This new rule effectively slammed the door to participation by Paralympians with prosthetics from participating in Olympic Games.
Advertisement

Even if an athlete might have the resources to enlist researchers to carefully study his or her performance, the IAAF requires the athlete to do something that is very difficult, and often altogether impossible—to prove a negative.

If you have the time, I encourage you to read Pielke Jr.’s piece in its entirety as he notes the secrecy with which the Rehm rule was implemented and the implications for the future. Here’s one last excerpt (Note: A link has been removed),

We may be seeing only the beginning of debates over technological augmentation and sport. Silvia Camporesi, an ethicist at King’s College London, observed: “It is plausible to think that in 50 years, or maybe less, the ‘natural’ able-bodied athletes will just appear anachronistic.” She continues: “As our concept of what is ‘natural’ depends on what we are used to, and evolves with our society and culture, so does our concept of ‘purity’ of sport.”

I have written many times about human augmentation and the possibility that what is now viewed as a ‘normal’ body may one day be viewed as subpar or inferior is not all that farfetched. David Epstein’s 2014 TED talk “Are athletes really getting faster, better, stronger?” points out that in addition to sports technology innovations athletes’ bodies have changed considerably since the beginning of the 20th century. He doesn’t discuss body augmentation but it seems increasingly likely not just for athletes but for everyone.

As for athletes and augmentation, Epstein has an Aug. 7, 2016 Scientific American piece published on Salon.com in time for the 2016 Summer Olympics in Rio de Janeiro,

I knew Eero Mäntyranta had magic blood, but I hadn’t expected to see it in his face. I had tracked him down above the Arctic Circle in Finland where he was — what else? — a reindeer farmer.

He was all red. Not just the crimson sweater with knitted reindeer crossing his belly, but his actual skin. It was cardinal dappled with violet, his nose a bulbous purple plum. In the pictures I’d seen of him in Sports Illustrated in the 1960s — when he’d won three Olympic gold medals in cross-country skiing — he was still white. But now, as an older man, his special blood had turned him red.

Mäntyranta had about 50 percent more red blood cells than a normal man. If Armstrong [Lance Armstrong, cyclist] had as many red blood cells as Mäntyranta, cycling rules would have barred him from even starting a race, unless he could prove it was a natural condition.

During his career, Mäntyranta was accused of doping after his high red blood cell count was discovered. Two decades after he retired, Finnish scientists found his family’s mutation. …

Epstein also covers the Pistorius story, albeit with more detail about the science and controversy of determining whether someone with prosthetics may have an advantage over an able-bodied athlete. Scientists don’t agree about whether or not there is an advantage.

I have many other posts on the topic of augmentation. You can find them under the Human Enhancement category and you can also try the tag, machine/flesh.

Nanotechnology-enhanced roads in South Africa and in Kerala, India

It’s all about road infrastructure in these two news bits.

Road building and maintenance in sub-Saharan Africa

A July 7, 2016 news item on mybroadband.co.za describes hopes that nanotechnology-enabled products will make roads easier to build and maintain,

The solution for affordable road infrastructure development could lie in the use of nanotechnology, according to a paper presented at the 35th annual Southern African Transport Conference in Pretoria.

The cost of upgrading, maintaining and rehabilitating road infrastructure with limited funds makes it impossible for sub-Saharan Africa to become competitive in the world market, according to Professor Gerrit Jordaan of the University of Pretoria, a speaker at the conference.

The affordability of road infrastructure depends on the materials used, the environment in which the road will be built and the traffic that will be using the road, explained Professor James Maina of the department of civil engineering at the University of Pretoria.

Hauling materials to a construction site contributes hugely to costs, which planners try to minimise by getting materials closer to the site. But if there aren’t good quality materials near the site, another option is to modify poor quality materials for construction purposes. This is where nanotechnology comes in, he explained.

For example, if the material is clay soil, it has a high affinity to water so when it absorbs water it expands, and when it dries out it contracts. Nanotechnology can make the soil water repellent. “Essentially, nanotechnology changes the properties to work for the construction process,” he said.

These nanotechnology-based products have been used successfully in many parts of the world, including India, the USA and in the West African region.

There have also been concerns about road building and maintenance in Kerala, India.

Nanotechnology for city roads in Kochi

A March 23, 2015 news item in the Times of India describes an upcoming test of a nanotechnology-enabled all weather road,

Citizens can now look forward to better roads with the local self-government department planning to use nanotechnology to construct all-weather roads.

For the district trial run, the department has selected a 300-metre stretch of a panchayat road in Edakkattuvayal panchayat. The trial would experiment with nanotechnology to build moisture resistant, long-lasting and maintenance-free roads.

“Like the public, the department is also fed up with the poor condition of roads in the state. Crores of rupees are spent every year for repairing and resurfacing the roads. This is because of heavy rains in the state that weakens the soil base of roads, resulting in potholes that affect the ride-quality of the road surface,” said KT Sajan, assistant executive engineer, LSGD, who is supervising the work.

The nanotechnology has been developed by Zydex Technologies, a Gujarat-headquartered firm. The company’s technology has already been used by major private contract firms that build national highways in India and in other major projects in European and African countries.

Oddly, you can’t find out more about the Zydex products mentioned in the article on its Roads Solution webpage , where you are provided a general description of the technology,

Revolutionary nanotechnology for building moisture resistant, long lasting & maintenance free roads through innovative adaptation of Organosilane chemistry.

Zydex Nanotechnology: A Game Changer

Zydex Nanotechnology has a value propositions for all layers of the road

SOIL LAYERS
Zydex Nanotechnology makes the soil moisture resistant, reduces expansiveness and stabilizes the soil to improve its bearing strength manifold. If used with 1% cement, it can stabilize almost any type of soil, by improving the California Bearing Ratio (CBR) to even 100 or above.

Here is the real change in game, as stronger soil bases would now allow optimization of road section thicknesses, potentially saving 10-15% road construction cost.

BOND COATS
Prime & Tack coats become 100 % waterproofed, due to penetration and chemical bonding. This also ensures uniform load transfer. And all this at lower residual bitumen.

ASPHALTIC LAYERS
Chemical bonding between aggregates and asphalt eliminates moisture induced damage of asphaltic layers.

Final comment

I hadn’t meant to wait so long to publish the bit about Kerala’s road but serendipity has allowed me to link it to a piece about South Africa ‘s roads and to note a resemblance to the problems encountered in both regions.

South Africa, energy, and nanotechnology

South African academics Nosipho Moloto, Associate Professor, Department of Chemistry, University of the Witwatersrand and Siyabonga P. Ngubane, Lecturer in Chemistry, University of the Witwatersrand have written a Feb. 17, 2016 article for The Conversation (also available on the South African Broadcasting Corporation website) about South Africa’s energy needs and its nanotechnology efforts (Note: Links have been removed),

Energy is an economic driver of both developed and developing countries. South Africa over the past few years has faced an energy crisis with rolling blackouts between 2008 and 2015. Part of the problem has been attributed to mismanagement by the state-owned utility company Eskom, particularly the shortcomings of maintenance plans on several plants.

But South Africa has two things going for it that could help it out of its current crisis. By developing a strong nanotechnology capability and applying this to its rich mineral reserves the country is well-placed to develop new energy technologies.

Nanotechnology has already shown that it has the potential to alleviate energy problems. …

It can also yield materials with new properties and the miniaturisation of devices. For example, since the discovery of graphene, a single atomic layer of graphite, several applications in biological engineering, electronics and composite materials have been identified. These include economic and efficient devices like solar cells and lithium ion secondary batteries.

Nanotechnology has seen an incredible increase in commercialisation. Nearly 10,000 patents have been filed by large corporations since its beginning in 1991. There are already a number of nanotechnology products and solutions on the market. Examples include Miller’s beer bottling composites, Armor’s N-Force line bulletproof vests and printed solar cells produced by Nanosolar – as well as Samsung’s nanotechnology television.

The advent of nanotechnology in South Africa began with the South African Nanotechnology Initiative in 2002. This was followed by the a [sic] national nanotechnology strategy in 2003.

The government has spent more than R450 million [Rand] in nanotechnology and nanosciences research since 2006. For example, two national innovation centres have been set up and funding has been made available for equipment. There has also been flagship funding.

The country could be globally competitive in this field due to the infancy of the technology. As such, there are plenty of opportunities to make novel discoveries in South Africa.

Mineral wealth

There is another major advantage South Africa has that could help diversify its energy supply. It has an abundance of mineral wealth with an estimated value of US$2.5 trillion. The country has the world’s largest reserves of manganese and platinum group metals. It also has massive reserves of gold, diamonds, chromite ore and vanadium.

Through beneficiation and nanotechnology these resources could be used to cater for the development of new energy technologies. Research in beneficiation of minerals for energy applications is gaining momentum. For example, Anglo American and the Department of Science and Technology have embarked on a partnership to convert hydrogen into electricity.

The Council for Scientific and Industrial research also aims to develop low cost lithium ion batteries and supercapacitors using locally mined manganese and titanium ores. There is collaborative researchto use minerals like gold to synthesize nanomaterials for application in photovoltaics.

The current photovoltaic market relies on importing solar cells or panels from Europe, Asia and the US for local assembly to produce arrays. South African UV index is one of the highest in the world which reduces the lifespan of solar panels. The key to a thriving and profitable photovoltaic sector therefore lies in local production and research and development to support the sector.

It’s worth reading the article in its entirety if you’re interested in a perspective on South Africa’s energy and nanotechnology efforts.