Tag Archives: South Africa

Spanning north to south and French to English on the African continent with nanotechnology

A Sept. 27, 2015 news item on the Algérie Presse Service (rough translation: Algerian Press Agency) describes plans for a new nanotechnology centre shared by Algeria and South Africa,

Un projet de réalisation d’un centre de recherche algéro-sud-africain dédié à la synthèse et la caractérisation des nanomatériaux (structures à l’échelle de l’atome) pour différentes applications, a été annoncé dimanche à Alger lors d’un workshop sur les nanotechnologies.

Le lieu d’implantation du centre et le programme qui lui sera dédié seront décidés par le ministre de l’Enseignement supérieur et de la Recherche scientifique et son homologue sud-africain lors d’une réunion prévue en octobre prochain en Afrique du Sud, a indiqué Pr. Hafid Aourag, DG de la Recherche scientifique et du développement technologique qui présidait ce workshop entre experts algériens et sud africains sur les nanotechnologies.

The announcement about the new centre was made during a nanotechnology workshop being held in Algiers this last weekend (Sept. 26-27, 2015). The proposed nanotechnology center’s location and other details will be decided by the Algerian Minister of Higher Education and Scientific Research and his South African counterpart during an October 2015 meeting in South Africa according to Hafid Aourag, professor and Director General of Scientific Research and Technological Development in Algeria.

Aourag noted that Algeria and South Africa have a long and successful history of science collaboration,

“La coopération de l’Algérie avec l’Afrique du Sud a atteint un stade très avancé”, a-t-il estimé, révélant l’existence de “beaucoup de projets entre les laboratoires de recherche des deux pays”.

Pr. Aourag a rappelé que les deux pays avaient déjà “cofinancé plus de 25 projets” ayant donné des résultats concrets comme la publication de 35 travaux dans des revues et la réalisation de produits innovants issus des nanotechnologies.

“Il s’agit essentiellement de produits issus des nanomatériaux dans les domaines de l’agriculture et du traitement de l’eau”, a-t-il précisé.

There have been some 25 joint nanotechnology projects ranging from agricultural applications to water treatment.

Aourag added,

Il a relevé que la première centrale technologique en Algérie, dédiée à la fabrication des semi-conducteurs et spécialisée en nanotechnologie, “est déjà fonctionnelle et sera inaugurée, en octobre prochain”.

If I understand this rightly, Aourag is saying that Algeria has focussed on the semiconductor industry and the fabrication of parts at the nanoscale and this will be inaugurated October 2015.

It’s not clear to me  if this business about the semiconductors is part of the nanotechnology centre initiative or if it’s an incidental, related announcement.

As I found this north-south collaboration intriguing, I ran a search and found this on the University of South Africa website in a Sept. 10, 2013 news release,

Professor Malik Maaza, incumbent of the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology, continues to represent the continent on the global nano stage. He was recently elected as the only African member of the advisory board of the Royal Society of Chemistry’s Journal of Materials Chemistry A, a prestigious materials journal.

With about 20 years of experience in nanosciences, Algerian born and an adoptive South African [emphasis mine] Professor Malik Maaza is an ideal incumbent for the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology. He has undergraduate degrees in Solid State Physics and Photonics from the University of Oran, Algeria, and University of Paris VI, France. His PhD in Neutron Optics was obtained from the University of Paris VI.

He is a man passionate about voicing Africa’s nanoscience and nanotechnology knowledge production progress and contributions. Parallel to the initiation of the South African Nanotechnology Initiative (SANi) launched in 2006, which Maaza instigated with Dr Philemon Mjwara, current Director General of the national department of science and technology, in 2005, in Trieste-Italy, under the patronage of [The World Academy of Sciences] TWAS, [Abdus Salam International Centre for Theoretical Physics] ICTP and [United Nations Industrial Development Organization] UNIDO, he initiated the Nanosciences African Network (NANOAFNET), which has its headquarters at the iThemba LABS-NRF in Cape Town.

That’s all I’ve got on Algeria-South Africa science-themed relations and connections.

Should anyone have a better translation than I’ve been able to offer or more details about any aspect of this initiative, please do leave a comment.

Global overview of nano-enabled food and agriculture regulation

First off, this post features an open access paper summarizing global regulation of nanotechnology in agriculture and food production. From a Sept. 11, 2015 news item on Nanowerk,

An overview of regulatory solutions worldwide on the use of nanotechnology in food and feed production shows a differing approach: only the EU and Switzerland have nano-specific provisions incorporated in existing legislation, whereas other countries count on non-legally binding guidance and standards for industry. Collaboration among countries across the globe is required to share information and ensure protection for people and the environment, according to the paper …

A Sept. 11, 2015 European Commission Joint Research Centre press release (also on EurekAlert*), which originated the news item, summarizes the paper in more detail (Note: Links have been removed),

The paper “Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries” reviews how potential risks or the safety of nanotechnology are managed in different countries around the world and recognises that this may have implication on the international market of nano-enabled agricultural and food products.

Nanotechnology offers substantial prospects for the development of innovative products and applications in many industrial sectors, including agricultural production, animal feed and treatment, food processing and food contact materials. While some applications are already marketed, many other nano-enabled products are currently under research and development, and may enter the market in the near future. Expected benefits of such products include increased efficacy of agrochemicals through nano-encapsulation, enhanced bioavailability of nutrients or more secure packaging material through microbial nanoparticles.

As with any other regulated product, applicants applying for market approval have to demonstrate the safe use of such new products without posing undue safety risks to the consumer and the environment. Some countries have been more active than others in examining the appropriateness of their regulatory frameworks for dealing with the safety of nanotechnologies. As a consequence, different approaches have been adopted in regulating nano-based products in the agri/feed/food sector.

The analysis shows that the EU along with Switzerland are the only ones which have introduced binding nanomaterial definitions and/or specific provisions for some nanotechnology applications. An example would be the EU labelling requirements for food ingredients in the form of ‘engineered nanomaterials’. Other regions in the world regulate nanomaterials more implicitly mainly by building on non-legally binding guidance and standards for industry.

The overview of existing legislation and guidances published as an open access article in the Journal Regulatory Toxicology and Pharmacology is based on information gathered by the JRC, RIKILT-Wageningen and the European Food Safety Agency (EFSA) through literature research and a dedicated survey.

Here’s a link to and a citation for the paper,

Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries by Valeria Amenta, Karin Aschberger, , Maria Arena, Hans Bouwmeester, Filipa Botelho Moniz, Puck Brandhoff, Stefania Gottardo, Hans J.P. Marvin, Agnieszka Mech, Laia Quiros Pesudo, Hubert Rauscher, Reinhilde Schoonjans, Maria Vittoria Vettori, Stefan Weigel, Ruud J. Peters. Regulatory Toxicology and Pharmacology Volume 73, Issue 1, October 2015, Pages 463–476 doi:10.1016/j.yrtph.2015.06.016

This is the most inclusive overview I’ve seen yet. The authors cover Asian countries, South America, Africa, and the MIddle East, as well as, the usual suspects in Europe and North America.

Given I’m a Canadian blogger I feel obliged to include their summary of the Canadian situation (Note: Links have been removed),

4.2. Canada

The Canadian Food Inspection Agency (CFIA) and Public Health Agency of Canada (PHAC), who have recently joined the Health Portfolio of Health Canada, are responsible for food regulation in Canada. No specific regulation for nanotechnology-based food products is available but such products are regulated under the existing legislative and regulatory frameworks.11 In October 2011 Health Canada published a “Policy Statement on Health Canada’s Working Definition for Nanomaterials” (Health Canada, 2011), the document provides a (working) definition of NM which is focused, similarly to the US definition, on the nanoscale dimensions, or on the nanoscale properties/phenomena of the material (see Annex I). For what concerns general chemicals regulation in Canada, the New Substances (NS) program must ensure that new substances, including substances that are at the nano-scale (i.e. NMs), are assessed in order to determine their toxicological profile ( Environment Canada, 2014). The approach applied involves a pre-manufacture and pre-import notification and assessment process. In 2014, the New Substances program published a guidance aimed at increasing clarity on which NMs are subject to assessment in Canada ( Environment Canada, 2014).

Canadian and US regulatory agencies are working towards harmonising the regulatory approaches for NMs under the US-Canada Regulatory Cooperation Council (RCC) Nanotechnology Initiative.12 Canada and the US recently published a Joint Forward Plan where findings and lessons learnt from the RCC Nanotechnology Initiative are discussed (Canada–United States Regulatory Cooperation Council (RCC) 2014).

Based on their summary of the Canadian situation, with which I am familiar, they’ve done a good job of summarizing. Here are a few of the countries whose regulatory instruments have not been mentioned here before (Note: Links have been removed),

In Turkey a national or regional policy for the responsible development of nanotechnology is under development (OECD, 2013b). Nanotechnology is considered as a strategic technological field and at present 32 nanotechnology research centres are working in this field. Turkey participates as an observer in the EFSA Nano Network (Section 3.6) along with other EU candidate countries Former Yugoslav Republic of Macedonia, and Montenegro (EFSA, 2012). The Inventory and Control of Chemicals Regulation entered into force in Turkey in 2008, which represents a scale-down version of the REACH Regulation (Bergeson et al. 2010). Moreover, the Ministry of Environment and Urban Planning published a Turkish version of CLP Regulation (known as SEA in Turkish) to enter into force as of 1st June 2016 (Intertek).

The Russian legislation on food safety is based on regulatory documents such as the Sanitary Rules and Regulations (“SanPiN”), but also on national standards (known as “GOST”) and technical regulations (Office of Agricultural Affairs of the USDA, 2009). The Russian policy on nanotechnology in the industrial sector has been defined in some national programmes (e.g. Nanotechnology Industry Development Program) and a Russian Corporation of Nanotechnologies was established in 2007.15 As reported by FAO/WHO (FAO/WHO, 2013), 17 documents which deal with the risk assessment of NMs in the food sector were released within such federal programs. Safe reference levels on nanoparticles impact on the human body were developed and implemented in the sanitary regulation for the nanoforms of silver and titanium dioxide and, single wall carbon nanotubes (FAO/WHO, 2013).

Other countries included in this overview are Brazil, India, Japan, China, Malaysia, Iran, Thailand, Taiwan, Australia, New Zealand, US, South Africa, South Korea, Switzerland, and the countries of the European Union.

*EurekAlert link added Sept. 14, 2015.

2015 Science & You, a science communication conference in France

Science communicators can choose to celebrate June 2015 in Nancy, France and acquaint themselves with the latest and greatest in communication at the Science & You conference being held from June 1 – 6, 2015. Here’s the conference teaser being offered by the organizers,

The 2015 conference home page (ETA May 5, 2015 1045 hours PDT: the home page features change) offers this sampling of the workshops on offer,

No less than 180 communicators will be lined up to hold workshop sessions, from the 2nd to the 5th June in Nancy’s Centre Prouvé. In the meantime, here is an exclusive peek at some of the main themes which will be covered:

– Science communication and journalism. Abdellatif Bensfia will focus on the state of science communication in a country where major social changes are playing out, Morocco, while Olivier Monod will be speaking about “Chercheurs d’actu” (News Researchers), a system linking science with the news. Finally, Matthieu Ravaud and Fabrice Impériali from the CNRS (Centre National de Recherche Scientifique) will be presenting “CNRS Le journal”, the new on-line media for the general public.

– Using animals in biomedical research. This round-table, chaired by Victor Demaria-Pesce, from the Groupement Interprofessionnel de Réflexion et de Communication sur la Recherche (Gircor) will provide an opportunity to spotlight one of society’s great debates: the use of animals in research. Different actors working in biomedical research will present their point of view on the subject, and the results of an analysis of public perception of animal experimentation will be presented. What are the norms in this field? What are the living conditions of the animals in laboratories? How is this research to be made legitimate? This session will centre on all these questions.

– Science communication and the arts. This session will cover questions such as the relational interfaces between art and science, with in particular the presentation of “Pulse Project” with Michelle Lewis-King, and the Semaine du Cerveau (Brain Week) in Grenoble (Isabelle Le Brun).
Music will also be there with the talk by Milla Karvonen from the University of Oulu, who will be speaking about the interaction between science and music, while Philippe Berthelot will talk about the art of telling the story of science as a communication tool.

– Science on television. This workshop will also be in the form of a round table, with representatives from TVV (Vigyan Prasar, Inde), and Irene Lapuente (La Mandarina de Newton), Mico Tatalovic and Elizabeth Vidal (University of Cordoba), discussing how the world of science is represented on a mass media like television. Many questions will be debated, as for example the changing image of science on television, its historical context, or again, the impact these programmes have on audiences’ perceptions of science.

To learn more, you will find the detailed list of all the workshops and plenaries in the provisional programme on-line.

Science & You seems to be an ‘umbrella brand’ for the “Journées Hubert Curien” conference with plenaries and workshops and the “Science and Culture” forum, which may explain the variety of dates (June 1 – 6, June 2 – 5, and June 2 – 6) on the Science & You home page.

Here’s information about the Science & You organizers and more conference dates (from the Patrons page),

At the invitation of the President of the Université de Lorraine, the professors Etienne Klein, Cédric Villani and Brigitte Kieffer accepted to endorse Science & You. It is an honour to be able to associate them with this major event in science communication, in which they are particularly involved.

Cédric Villani, Fields Medal 2010

Cédric Villani is a French mathematician, the Director of the Institut Henri Poincaré and a professor at the Université Claude Bernard Lyon 1.
His main research interests are in kinetic theory (Boltzmann and Vlasov equations and their variants), and optimal transport and its applications (Monge equation).
He has received several national and international awards for his research, in particular the Fields Medal, which he received from the hands of the President of India at the 2010 International Congress of Mathematicians in Hyderabad (India). Since then he has played the role of spokesperson for the French mathematical community in media and political circles.
Cédric Villani regularly invests in science communication aiming at various audiences: conferences in schools, public conferences in France and abroad, regular participation in broadcasts and current affairs programmes and in science festivals.


Etienne Klein, physicist and philosopher

Etienne Klein is a French physicist, Director of Research at the CEA (Commissariat à l’énergie atomique et aux énergies alternatives – Alternative Energies and Atomic Energy Commission) and has a Ph.D. in philosophy of science. He teaches at the Ecole Centrale in Paris and is head of the Laboratoire de Recherche sur les Sciences de la Matière (LARSIM) at the CEA.

He has taken part in several major projects, such as developing a method of isotope separation involving the use of lasers, and the study of a particle accelerator with superconducting cavities. He was involved in the design of the Large Hadron Collider (LHC) at CERN.
He taught quantum physics and particle physics at Ecole Centrale in Paris for several years and currently teaches philosophy of science. He is a specialist on time in physics and is the author of a number of essays.
He is also a member of the OPECST (Conseil de l’Office parlementaire d’évaluation des choix scientifiques et technologiques – Parliamentary Office for the Evaluation of Scientific and Technological Choices), of the French Academy of Technologies, and of the Conseil d’Orientation (Advisory Board) of the Institut Diderot.
Until June 2014, he presented a weekly radio chronicle, Le Monde selon Etienne Klein, on the French national radio France Culture.

Photo by Philippe Matsas © Flammarion


Brigitte Kieffer, Campaigner for women in science

B. L. Kieffer is Professor at McGill University and at the Université de Strasbourg France. She is also Visiting Professor at UCLA (Los Angeles, USA). She develops her research activity at IGBMC, one of the leading European centres of biomedical research. She is recipient of the Jules Martin (French Academy of Science, 2001) and the Lounsbery (French and US Academies of Science, 2004) Awards, and has become an EMBO Member in 2009.
In 2012 she received the Lamonica Award of Neurology (French Academy of Science) and was nominated Chevalier de la Légion d’honneur. In December 2013 she was elected as a member of the French Academy of Sciences.
In March 2014, she received the International L’OREAL-UNESCO Award for Women in Science (European Laureate). She started as the Scientific Director of the Douglas Hospital Research Centre, affiliated to McGill University in January 2014, and remains Professor at the University of Strasbourg, France.

Photo by Julian Dufort

Here’s more about the conference at the heart of Science & You (from The Journées Hubert Curien International Conference webpage),

Following on the 2012 conference, this project will bring together all those interested in science communication: researchers, PhD students, science communicators, journalists, professionals from associations and museums, business leaders, politicians… A high-level scientific committee has been set up for this international conference, chaired by Professor Joëlle Le Marec, University of Paris 7, and counting among its members leading figures in science communication such as Bernard Schiele (Canada) or Hester du Plessis (South Africa).

The JHC Conference will take place from June 2nd to 6th at the Centre Prouvé, Nancy. These four days will be dedicated to a various programme of plenary conferences and workshops on the theme of science communication today and tomorrow.

You can find the Registration webpage here where you can get more information about the process and access the registration form.

Green nanotechnology centre (meaningful science for helping humanity) launched in South Africa

On July 14, 2014, South Africa’s University of the Western Cape (UWC) launched its Centre for Green Nanotechnology. A July 23, 2014 news item on Nanowerk makes readers feel as if they were present,

The establishment of University of the Western Cape (UWC)’s Centre for Green Nanotechnology was made a reality through a positive partnership between the University of Missouri (UM) and UWC that has spanned approximately 30 years.

[Speakers at the launch of the Centre included Prof Brian O’Connell, Rector of UWC; Prof Richard Bowen Loftin, Chancellor of UM; Prof Ken Dean, Provost of UM; and Prof Ramesh Bharuthram, Deputy Vice-Chancellor of UWC.]

Green nanotechnology is a relatively new science which aims to create environmentally friendly technologies in an effort to tackle real problems. Nanotechnology has improved the design and performance of products in various areas such as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy and so forth. According to Prof Bharuthram, “Green nanotechnology provides an opportunity to combine the strengths of nanobioscience, nanochemistry and nanophysics towards innovative solutions for societal benefit.”

Another keynote speaker at the launch included Professor Kattesh Katti, who has been hailed as the “father of green nanotechnology” and cited as one of the 25 most influential scientists in molecular imaging in the world. Prof Katti will divide his time between the University of Missouri (where he heads up their Green Nanotechnology Centre) and UWC, where he will spend approximately 3-6 months of the year.

Prof Katti noted that nanotechnology involves various role players – including scientists, biologists and chemists – working together. During his lecture, he focused on the use of green nanotechnologies to treat cancer. While the treatment of cancer utilising green nanotechnologies is still at experimental stages, he illustrated how the use of nanotechnologies could be the treatment of the future. He explained that current drugs used to treat cancers don’t always have the desired effect as the drugs don’t always penetrate tumours effectively due to their large size and approximately 60% of drugs go away from the intended target (tumour). Nanotechnology particles, due to their small size and their functioning, have the ability to penetrate tumours much more effectively.

A July 14, 2014 UWC news release, which originated the news item, provides background about events leading to the inception of this new centre and provides insight into its purpose,

The establishment of the Centre for Green Nanotechnology started in 2008/09 when UWC embarked on developing a five-year institutional strategic plan for 2010-2014. The Institutional Operational Plan (IOP) identified eight institutional goals, which included: Goal 2 – Teaching & Learning; and Goal 3 – Research & Innovation. Prof Bharuthram explained, “The IOP articulated the need for UWC to identify emerging and established research niche areas that will not only contribute to high output in the form of research publications and graduating masters and doctoral students, but equally importantly give the University a set of distinctions that will set UWC apart from the other higher education institutions – a calculated move towards becoming a research intensive university. It is indeed fascinating that at the time UWC was engaged in this exercise, the University of Missouri was undertaking a similar comprehensive initiative which resulted in the identification and development of the five MIZZOU Advantage thematic areas. These two parallel undertakings helped to elevate the partnership between UWC and UM to hitherto unknown heights.”

UWC’s Centre for Green Nanotechnology aims to promote:

·    The development of fundamental sciences as they relate to chemistry, physics and biomedical and alternative energy aspects of green nanotechnology.

·   Research and application on indigenous phyto-chemicals and phyto-mediated technologies for the production of green nanotechnologies with applications in medicine, energy and allied disciplines.

· New green nanotechnological synthetic processes and their feasibilities at laboratory levels, pilot scale and industrial scale for mass manufacturing.

·    Green nanoparticles and green nanotechnologies in the design and development of new medical diagnostic/therapeutic agents, biological sensors, chemical sensors, smart electronic materials, nanoscale robots, environmentally benign breathing devices.

Furthermore the Centre aims to provide formal training to students at the undergraduate, graduate and post-doctoral levels in all aspects of green nanotechnology from blue sky to applied, including impact on socioeconomic development, policy development and revision.

UWC is exceptionally excited about this new venture and is proud that it continues to show great developmental strides in all academic spheres. At the launch of the Centre, Prof O’Connell said, “When there is robust engagement there is change. Knowledge and change goes together. The more ways of knowing is a more efficient way to tackle problems.”

There was a general consensus that education is the key factor in shaping our future. Prof Loftin, Chancellor of UM said, “We think of resources in terms of tangible things, but the most precious resource is human capital.

The strides that UM and UWC have made in staying current with regard to offering course studies that are new illustrates that these institutions are investing heavily in human capital and are committed to providing solutions for future challenges.

​As Prof O’Connell noted, “UWC is a metaphor for Africa. Despite being excluded and coming from a disadvantaged past, we are here to show that we can use our brain to push the boundaries.”

I wish them all the best.

Nano news from Malaysia and from Nigeria

I have two nanotechnology news bits, one concerning Malaysia and the other concerning Nigeria.

There’s a March 24, 2014 news item on Bernama ((national news agency of Malaysia) about a recent signing of a memorandum of understanding (MOU),

NanoMalaysia Bhd [aka, NanoMalaysia Berhad] is looking at jumpstarting nanotechnology development to enable it to contribute one per cent to Malaysia’s gross national income (GNI) by 2020, said Chief Executive Officer, Rezal Khairi Ahmad.

“The company would use four sectors — electronic devices and systems; energy and environment; food and agriculture; and, healthcare, medicine and wellness — to achieve the target, which would be equivalent to RM15 to RM17 billion then,” he said.

Rezal said this at the signing of memorandum of understanding (MOU) with Universiti Teknologi Petronas (UTP) here Monday [March 24, 2014].

I took a look at the NanoMalaysia site and found this on their ABOUT US page (Note: A link has been removed),

Nanotechnology was identified as one of the new growth engines for the New Economic Model (NEM).

NanoMalaysia Berhad was incorporated in 2011 as a company limited by guarantee (CLG) to act as a business entity entrusted with nanotechnology commercialisation activities. It will also support the operations of the NanoMalaysia Centre. Some of its roles include:

Managing and developing NanoMalaysia Centre and other approved Strategic Infrastructure and Facilities for the NND [National Nanotechnology Directorate Division]
Pre-commercialisation and commercialisation of nanotechnology products
Education and public awareness programmes
Bringing in venture funds and international investments in nanotechnology
Building capacity and R&D facilities
Health, safety and environmental initiatives
International linkages and networking

NanoMalaysia Berhad is Malaysia’s Lead Agency for the:

Commercialization of Nanotechnology Research and Development
Industrialization of Nanotechnology
Facilitation of Investments in Nanotechnology
Human Capital Development in Nanotechnology

On the other side of the world in Nigeria, a nanotechnology conference is being held, March 24 – 28, 2014 at the University of Nigeria at Nsukka. Here’s a bit more about the African International Conference/Workshop ON Applications Of Nanotechnology To Energy, Environment And Health, from its homepage,

The economic, social and developmental arguments for organizing the African International Conference/Workshop at the University of Nigeria, Nsukka (UNN) are strong, compelling and urgent.

First, it is an incontrovertible fact that science and technology have emerged to become critical to economic growth and sustainability in modern economy. The developments in materials science have contributed significantly in man’s quest to conquer his environment. More importantly, renewable energy is likely to be man’s long term solution to increasing demand for energy.

The conference/workshop is being organized by the Nano Research Group, University of Nigeria at Nsukka In collaboration with Energy Materials, Materials Science and Manufacturing, CSIR [Council for Scientific and Industrial Research] Pretoria, South Africa.

In a March 25, 2014 news item on leadership.ng, Minister of Power, Prof. Chinedu Nebo commented on the conference and the importance of nanotechnology to Nigeria’s plans,

The Minister of Power, Prof. Chinedu Nebo, on Tuesday said increase access to electricity was crucial and fundamental to economic and social development of Nigeria.

Nebo made this known at the “1st African International Conference/Workshop on Application of Nanotechnology to Energy, Health and Environment’’, at the University of Nigeria (UNN), Nsukka.

Represented by Mr Albert Okorogu, his Senior Special Assistant to Access to Power and Renewable Energy, Nebo said about 30 million households in Nigeria had no access to electricity.

Nebo quoting the United Nations said about 600 million people of Sub-Sahara Africa lacked access to electricity.

“In Nigeria, 30 million households have no access to electricity. This is the reason why the Federal Ministry of Power is rolling out comprehensive roadmap on access to power.

“This roadmap will systematically connect households through grid and off-grid solutions,’’ he said.

Nebo said that President Goodluck Jonathan had in January [2014] inaugurated “Operation Light Up Rural Nigeria Initiatives’’, as part of efforts to ensure that all households had access to electricity.

“The pilot programme will provide energy-efficient lighting to homes, streets and community centres and villages with up-to-dates solar technologies.

“There is plan [sic] to replicate this pilot project across the 36 states of the federation,’’ he said.

He said that solar system made from nanoparticles had been used to produce steam, purify water and disinfected dental device. [sic]

According to him, the exploitation of nanotechnology in Nigeria will provide sustainable solutions to our environment, social responsibility, overall wellbeing as well as increase access to electricity.

I think someone was in a rush to write the news item hence the errors I’ve noted; there may be more.

Traffic robots in Kinshasa (Democratic Republic of the Congo) developed by an all women team of engineers

Kinshasa, the capital of the Democratic Republic of the Congo (DRC), now hosts two traffic cop robots with hopes for more of these solar-powered traffic regulators on the way. Before plunging into the story, here’s a video of these ‘gendarmes automates’ (or robot roulage intelligent [RRR] as the inventors prefer) in action,

This story has been making the English language news rounds since late last year when Voxafrica carried a news item, dated Dec. 27, 2013, about the robot traffic cops,

Kinshasa has adopted an innovative way of managing traffic along its city streets, by installing robot cops to direct and monitor traffic along roads instead of using normal policemen to reduce congestion. … They may not have real eyes, but new traffic policemen still spot Kinshasa’s usual signature cop sunglasses. The prototypes are equipped with four cameras that allow them to record traffic flow … . The team behind the new robots are a group of Congolese engineers based at the Kinshasa Higher Institute of Applied Technique, known by its French acronym, ISTA.

A Jan. 30, 2014 article by Matt McFarland for the Washington Post provides additional detail (Note: A link has been removed),

The solar-powered robot is equipped with multiple cameras, opening the potential for monitoring traffic and issuing tickets. “If a driver says that it is not going to respect the robot because it’s just a machine the robot is going to take that and there will be a ticket for him,” said Isaie Therese, the engineer behind the project said in an interview with CCTV Africa. “We are a poor country and our government is looking for money. And I will tell you that with the roads the government has built, it needs to recover its money.”

A Feb. 24, 2014 CNN article by Teo Kermeliotis describes the casings for the robots,

Standing eight feet tall, the robot traffic wardens are on duty 24 hours a day, their towering — even scarecrow-like — mass visible from afar. …

The humanoids, which are installed on Kinshasa’s busy Triomphal and Lumumba intersections, are built of aluminum and stainless steel to endure the city’s year-round hot climate.

The French language press, as might be expected since DRC is a francophone country, were the first to tell the story.  From a June 28, 2013 news item on Radio Okapi’s website,

Les ingénieurs formés à l’Institut supérieur des techniques appliquées (Ista) ont mis au point un robot intelligent servant à réguler la circulation routière. …

Ce robot qui fonctionne grâce à l’énergie solaire, assurera aussi la sécurité routière grâce à la vidéo surveillance. Il est doté de la capacité de stocker les données pendant 6 mois.

Le “robot roulage intelligent” est une invention totalement congolaise. Il a été mis au point par les inventeurs congolais avec l’appui financier de l’association Women technologies, une association des femmes ingénieurs de la RDC.

Ce spécimen coûte près de 20 000 $ US. L’association Women technologies attend le financement du gouvernement pour reproduire ce robot afin de le mettre à la disposition des usagers et même, de l’exporter.

Here’s my very rough translation of the French: an engineering team from the Kinshasa Higher Institute of Applied Technique (ISTA) developed an intelligent automated traffic cop. This intelligent traffic cop is a Congolese invention from design to development fo funding. The prototype, which cost $20,000 US, was funded by the ‘Association Women Technologies’, a DRC (RDC is the abbreviation in French) association of women engineers, who were in June 2013 hoping for additional government funds to implement their traffic solution. Clearly, they received the money.

A January 30, 2014 news item on AfricaNouvelles focussed on the lead engineer and the team’s hopes for future exports of their technology,

Maman Thérèse Inza est ingénieure et responsable des robots régulateurs de la circulation routière à Kinshasa.

L’association Women technologies attend l’accompagnement du gouvernement pour pouvoir exporter des robots à l’international.

Bruno Bonnell’s Feb. 11, 2014 (?) article for Les Echos delves more deeply into the project and the team’s hopes of exporting their technology,

Depuis octobre 2013, le « roulage » au carrefour du Parlement, sur le boulevard Lumumba à Kinshsa, n’est plus assuré par un policier. Un robot en aluminium de 2,50 mètre de haut régule la circulation d’une des artères principales de la capitale congolaise. …

« Un robot qui fait la sécurité et la régulation routières, c’est vraiment made in Congo », assure Thérèse Inza, la présidente de l’association Women Technology, qui a construit ces machines conçues pour résister aux rigueurs du climat équatorial et dont l’autonomie est assurée par des panneaux solaires, dans des quartiers qui ne sont pas reliés au réseau électrique. La fondatrice de l’association voulait à l’origine proposer des débouchés aux femmes congolaises titulaires d’un diplôme d’ingénieur. Grâce aux robots, elle projette désormais de créer des emplois dans tout le pays. … Ces RRI prouvent que la robotique se développe aussi en Afrique. Audacieuse, Thérèse Inza affirme : « Nous devons vendre notre intelligence dans d’autres pays, de l’Afrique centrale comme d’ailleurs. Pourquoi pas aux Etats-Unis, en Europe ou en Asie ? » Entre 2008 et 2012, la demande de bande passante a été multipliée par 20 en Afrique, continent où sont nés le système de services bancaires mobiles M-Pesa et la plate-forme de gestion de catastrophe naturelle Ushahidi, utilisés aujourd’hui dans le monde entier. Et si la robotique, dont aucun pays n’a le monopole, était pour l’Afrique l’opportunité industrielle à ne pas rater ?

Here’s my rough translation, the first implementation was a single robot in October 2013 (the other details have already been mentioned here). The second paragraph describes how and why Thérèse Inza developed the project in the first place. The robot was designed specifically for the equatorial climate and for areas where access to electricity is either nonexistent or difficult. She recruited women engineers from ISTA for her team. I think she was initially trying to create jobs for women engineers. Now the robots have been successful, she’s hoping to create more jobs for everyone throughout the DRC and to export the technology to the US, Europe, and Asia.

The last sentence notes that Africa (Kenya) was the birthplace of mobile banking service, M-Pesa, “the most developed mobile payment system in the world” according to Wikipedia and Ushahidi, a platform which enables crowdsourced reporting and information about natural and other disasters.

Ushahidi, like M-Pesa, was also developed in Kenya. I found this Feb. 27, 2014 article  by Herman Manson on MarkLives.com about Ushahidi and one of its co-founders, Juliana Rotich (Note: A link has been removed),

Rotich [Juliana Rotich] is the co-founder of Ushahidi, the open-source software developed in Kenya which came to the fore and caught global attention for collecting, visualising and mapping information in the aftermath of the disputed 2008 elections.

Rotich challenges the legacies that have stymied the development of Africa’s material and cultural resources — be that broadband cables connecting coastal territories and ignoring the continent’s interior — or the political classes continuing to exploit its citizens.

Ushahidi means “witness” or “testimony”, and allows ordinary people to crowd source and map information, turning them into everything from election monitors reporting electoral misconduct to helpers assisting with the direction of emergency response resources during natural disasters.

The open source software is now available in 30 languages and across the globe.

The Rotich article is a preview of sorts for Design Indaba 2014 being held in Cape Town, South Africa, from Feb. 24, 2014 = March 2, 2014.

Getting back to the robot traffic cops, perhaps one day the inventors will come up with a design that runs on rain and an implementation that can function in either Vancouver.

Clay disks and flowerpots that purify water

Ben Schiller writes in a Mar. 1, 2013 article for Fast Company about a not-for-profit organization, PureMadi, a joint venture between the University of Virginia (US) and the University of Venda (South Africa) and its water purification technology,

PuriMadi has already built a factory in the Limpopo province of South Africa and hopes to expand further. “Eventually that factory will be capable of producing about 500 to 1,000 filters per month, and our 10-year plan is to build 10 to 12 factories in South Africa and other countries,” Smith says. “We plan to eventually serve at least 500,000 people per year with new filters.”

The University of Virginia Feb. 5, 2013 news release by Fariss Samarrai describes both a disc and a flowerpot version of the water purification technology (Note: Some links have been removed),

PureMadi, a nonprofit University of Virginia organization, will introduce a new invention – a simple ceramic water purification tablet – during its one-year celebration event Friday [Feb. 8, 2013] from 7 to 11 p.m. at Alumni Hall.

Called MadiDrop, the tablet – developed and extensively tested at U.Va. – is a small ceramic disk impregnated with silver or copper nanoparticles. It can repeatedly disinfect water for up to six months simply by resting in a vessel where water is poured. It is being developed for use in communities in South Africa that have little or no access to clean water.

“Madi” is the Tshivenda South African word for water. PureMadi brings together U.Va. professors and students to improve water quality, human health, local enterprise and quality of life in the developing world. The organization includes students and faculty members from engineering, architecture, medicine, nursing, business, commerce, economics, anthropology and foreign affairs.

During the past year, PureMadi has established a water filter factory in Limpopo province, South Africa, employing local workers. The factory produced several hundred flowerpot-like water filters, according to James Smith, a U.Va. civil and environmental engineer who co-leads the project with Dr. Rebecca Dillingham, director of U.Va.’s Center for Global Health.

Here’s the flowerpot filter,

 A worker molds a filter from local clay, sawdust and water. (Photo: Rachel Schmidt)


A worker molds a filter from local clay, sawdust and water. (Photo: Rachel Schmidt)

Here are the discs or, as they are known, the MadiDrops,

 The new MadiDrops can be produced in the same factories as the filters. (Photo: Rachel Schmidt)


The new MadiDrops can be produced in the same factories as the filters. (Photo: Rachel Schmidt)

The factory is more than just a producer of water purification technologies, from the University of Virgina news release,

“Eventually that factory will be capable of producing about 500 to 1,000 filters per month, and our 10-year plan is to build 10 to 12 factories in South Africa and other countries,” Smith said. “Each filter can serve a family of five or six for two to five years, so we plan to eventually serve at least 500,000 people per year with new filters.”

The idea is to create sustainable businesses that serve their communities and employ local workers. A small percentage of the profits go back to PureMadi and will be used to help establish more factories.

The PureMadi website’s About page offers more information about the partners, the technology, and the economic impact,

PureMadi has been created by an interdisciplinary collaboration of students and faculty at the University of Virginia.  In partnership with the University of Venda in Thohoyandou, South Africa, and developing-world communities in Limpopo Province, South Africa, PureMadi is working to provide sustainable solutions to global water problems.

Our first project is the development of a sustainable, ceramic water filter factory in South Africa.  Ceramic filters are a point-of-use (e.g. household-level) water treatment technology.  Ceramic filters can be produced with local materials (clay, sawdust, and water) and local labor. The materials are mixed in appropriate proportions, pressed into the shape of a filter pot, and fired in a kiln at 900 ˚C.  Upon firing, the clay forms a ceramic and the sawdust combusts, leaving a porous ceramic matrix for filtration.  In addition, the filters are treated with a dilute solution of silver nanoparticles.  The nanoparticles lodge in the pore space of the ceramic matrix and act as a highly effective disinfectant for waterborne pathogens like Vibrio cholerae and pathogenic strains of Escherichia coli.   Untreated water can then be passed through the filter and collected in a lower reservoir with a spigot to obtain purified water.

In the field and in the laboratory, we have demonstrated that this technology is highly effective at purifying water and the filters are socially acceptable to developing-world communities.  In some of our most recent work, we have shown that the filters significantly improve the health outcomes of human populations using the filters relative to groups who only drink untreated water.

A filter factory can become a sustainable business venture that provides economic stimulus to the local community.  Our goal is to create a blueprint for a successful factory, including its architecture, efficiency of water and energy use, technological performance of the filter itself, and an effective and sustainable business model.

While the flowerpot filter has been well received the MadiDrop fills another need, from the University of Virginia news release,

MadiDrop is an alternative to the flowerpot filter, but ideally would be used in conjunction with it. The plan is to mass-produce the product at the same factories where the PureMadi filters are produced.

“MadiDrop is cheaper, easier to use, and is easier to transport than the PureMadi filter, but because it is placed into the water, rather than having the water filter through it, the MadiDrop is not effective for removing sediment in water that causes discoloration or flavor impairment,” Smith said. “But its ease of use, cost-effectiveness and simple manufacturing process should allow us to make it readily available to a substantial population of users, more so than the more expensive PureMadi filter.”

Testing shows that the filters are safe to use and release only trace amounts of silver or copper particles, well within the safe water standards of the developed world. The filters also would be useful in rural areas of developed countries such as the United States where people rely on untreated well water.

Smith noted that U.Va. Architecture School professor Anselmo Canfora and his students have worked closely with PureMadi to design sustainable filter factories for developing countries that would optimize use of local labor and materials.

The National Science Foundation, the National Institutes of Health, U.Va.’s Jefferson Public Citizen Program and the Vice Provost for Global Affairs provide support to PureMadi. Partners include the University of Venda in South Africa; Potters for Peace, a nonprofit organization committed to providing safe drinking water in the developing world; and local communities in Limpopo province in South Africa.

Taken in conjunction with my Feb. 28, 2013 posting titled, Silver nanoparticles, water, the environment, and toxicity, where I juxtaposed two articles about toxicity and silver nanoparticles (they’re ok/they’re not ok) to illustrate the complexity surrounding the question of risk, this article which features silver (and copper) nanoparticles in use for water purification adds another dimension to the question. What are the risks?, to add, are they worth taking?

Nanotechnology in the developing world/global south

Sometimes it’s called the ‘developing world’, sometimes it’s called the ‘global south’ and there have been other names before these. In any event, the organization, Nanotechnology for Development (Nano-dev) has released a policy brief about nanotechnology and emerging economies (?). Before discussing the brief, I have found a little information on the organization. From the Nano-dev home page,

Nanotechnology for development is a research project that aims at understanding how nanotechnology can contribute to development. By investigating way people deal with nanotechnology in Kenya, India and the Netherlands, the project will flesh out appropriate ways for governing nanotechnology for development.

Nanotechnology is a label for technologies at the nano-scale, roughly between 1 and 100 nanometers. This is extremely small. By comparison, the diameter of one human hair is about 60,000 nanometers. At this scale materials acquire all sorts of new characteristics that can be used in a wide range of novel applications. This potentially includes cheaper and more efficient technologies that can benefit the world’s poor, such as cheap water filters, efficient solar powered electricity, and portable diagnostic tests.

The four team members on the Nano-dev project are (from the Project Team page):

Pankaj Sekhsaria’s project seeks to understand the cultures of innovation in nanotechnology research in India, particularly in laboratories. He has a Bachelors Degree in Mechanical Engineering from Pune University in India and a MA in Mass Communication from the Jamia Milia Islamia in New Delhi, India.

Trust Saidi’s research is on travelling nanotechnologies. He studied BSc in Geography and Environmental Studies at Zimbabwe Open University, BSc Honours in Geography at University of Zimbabwe, MSc in Public Policy and Human Development at Maastricht Graduate School of Governance, Maastricht University.

Charity Urama’s project investigates the role of knowledge brokerage in nanotechnology for development. She obtained her BSc Botany from the faculty of Biological Sciences, University of Nigeria, Nsukka and MSc from the school of Biological and Environmental Sciences, Faculty of Life sciences, University of Aberdeen (UK).

Koen Beumer focuses on the democratic risk governance of nanotechnologies for development. Koen Beumer studied Arts and Culture (BA) and Cultures of Arts, Science and Technology (MPhil, cum laude) at Maastricht University.

According to the April 4, 2012 news item on Nanowerk about the brief,

The key message of the policy brief is that nanotechnology can have both positive and negative consequences for countries in the global South. These should be pro-actively dealt with.

The positive consequences of nanotechnology include direct benefits in the form of solutions to the problems of the poor and indirect benefits in the form of economic growth. The negative consequences of nanotechnology include direct risks to human health and the environment and indirect risks such as a deepening of the global divide. Core challenges to harnessing nanotechnology for development include risk governance, cultures of innovation, knowledge brokerage and travelling technology.

What I found particularly interesting in the policy brief is the analysis of nanotechnology efforts in countries that are not usually mentioned  (from the policy brief),

There are large differences amongst countries in the global South. Some countries, like India, Egypt, Brazil and South Africa, have invested substantial sums of money through dedicated programs. Often these are large countries with emerging economies. Dedicated programs and strategies have been generated with strong political support.

In other countries in the global South things look different. Several African countries, like Nigeria, Kenya, Uganda and Zimbabwe have expressed their interest in nanotechnologies and some activities can indeed be observed. But generally this activity does not exceed the level of individual researchers and incidental funding. [p. 3]

In addition to the usual concerns expressed over human health, they mention this risk,

Furthermore, properties at the nano-scale may be used to imitate the properties of rare minerals, thus affecting the export rates of their main producers, usually countries in the global South. Nanotechnologies may thus have reverse effects on material demands and consequently on the export of raw materials by countries in the global South (Schummer 2007). [p. 3]

Interesting thought that nanotechnology research could pose a risk to the economic welfare of countries that rely on the export of raw materials. Canada, anyone? If you think about it, all the excitement over nanocellulose doesn’t have to be an economic boon for ‘forestry-based’ countries. If cellulose is the most abundant polymer on earth what’s stop other countries from using their own nanocellulose. After all, Brazilian researchers are working on nanocellulose fibres derived from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings).

One final thing from the April 4, 2012 news item on Nanowerk,

The NANO-DEV project is partnership of three research institutes led by Maastricht University, the Netherlands. Besides Maastricht University, it includes the University of Hyderabad (India) and the African Technology Policy Studies Network (Kenya).