Tag Archives: space exploration

Human-Computer interfaces: flying with thoughtpower, reading minds, and wrapping a telephone around your wrist

This time I’ve decided to explore a few of the human/computer interface stories I’ve run across lately. So this posting is largely speculative and rambling as I’m not driving towards a conclusion.

My first item is a May 3, 2011 news item on physorg.com. It concerns an art installation at Rensselaer Polytechnic Institute, The Ascent. From the news item,

A team of Rensselaer Polytechnic Institute students has created a system that pairs an EEG headset with a 3-D theatrical flying harness, allowing users to “fly” by controlling their thoughts. The “Infinity Simulator” will make its debut with an art installation [The Ascent] in which participants rise into the air – and trigger light, sound, and video effects – by calming their thoughts.

I found a video of someone demonstrating this project:
http://blog.makezine.com/archive/2011/03/eeg-controlled-wire-flight.html

Please do watch:

I’ve seen this a few times and it still absolutely blows me away.

If you should be near Rensselaer on May 12, 2011, you could have a chance to fly using your own thoughtpower, a harness, and an EEG helmet. From the event webpage,

Come ride The Ascent, a playful mash-up of theatrics, gaming and mind-control. The Ascent is a live-action, theatrical ride experience created for almost anyone to try. Individual riders wear an EEG headset, which reads brainwaves, along with a waist harness, and by marshaling their calm, focus, and concentration, try to levitate themselves thirty feet into the air as a small audience watches from below. The experience is full of obstacles-as a rider ascends via the power of concentration, sound and light also respond to brain activity, creating a storm of stimuli that conspires to distract the rider from achieving the goal: levitating into “transcendence.” The paradox is that in order to succeed, you need to release your desire for achievement, and contend with what might be the biggest obstacle: yourself.

Theater Artist and Experience Designer Yehuda Duenyas (XXXY) presents his MFA Thesis project The Ascent, and its operating platform the Infinity System, a new user driven experience created specifically for EMPAC’s automated rigging system.

The Infinity System is a new platform and user interface for 3D flying which combines aspects of thrill-ride, live-action video game, and interactive installation.

Using a unique and intuitive interface, the Infinity System uses 3D rigging to move bodies creatively through space, while employing wearable sensors to manipulate audio and visual content.

Like a live-action stunt-show crossed with a video game, the user is given the superhuman ability to safely and freely fly, leap, bound, flip, run up walls, fall from great heights, swoop, buzz, drop, soar, and otherwise creatively defy gravity.

“The effect is nothing short of movie magic.” – Sean Hollister, Engadget

Here’s a brief description of the technology behind this ‘Ascent’ (from the news item on physorg.com),

Ten computer programs running simultaneously link the commercially available EEG headset to the computer-controlled 3-D flying harness and various theater systems, said Todd. [Michael Todd, a Rensselaer 2010 graduate in computer science]

Within the theater, the rigging – including the harness – is controlled by a Stage Tech NOMAD console; lights are controlled by an ION console running MIDI show control; sound through MAX/MSP; and video through Isadora and Jitter. The “Infinity Simulator,” a series of three C programs written by Todd, acts as intermediary between the headset and the theater systems, connecting and conveying all input and output.

“We’ve built a software system on top of the rigging control board and now have control of it through an iPad, and since we have the iPad control, we can have anything control it,” said Duenyas. “The ‘Infinity Simulator’ is the center; everything talks to the ‘Infinity Simulator.’”

This May 3, 2011 article (Mystery Man Gives Mind-Reading Tech More Early Cash Than Facebook, Google Combined) by Kit Eaton on Fast Company also concerns itself with a brain/computer interface. From the article,

Imagine the money that could be made by a drug company that accurately predicted and treated the onset of Alzheimer’s before any symptoms surfaced. That may give us an idea why NeuroVigil, a company specializing in non-invasive, wireless brain-recording tech, just got a cash injection that puts it at a valuation “twice the combined seed valuations of Google’s and Facebook’s first rounds,” according to a company announcement

NeuroVigil’s key product at the moment is the iBrain, a slim device in a flexible head-cap that’s designed to be worn for continuous EEG monitoring of a patient’s brain function–mainly during sleep. It’s non-invasive, and replaces older technology that could only access these kind of brain functions via critically implanted electrodes actually on the brain itself. The idea is, first, to record how brain function changes over time, perhaps as a particular combination of drugs is administered or to help diagnose particular brain pathologies–such as epilepsy.

But the other half of the potentailly lucrative equation is the ability to analyze the trove of data coming from iBrain. And that’s where NeuroVigil’s SPEARS algorithm enters the picture. Not only is the company simplifying collection of brain data with a device that can be relatively comfortably worn during all sorts of tasks–sleeping, driving, watching advertising–but the combination of iBrain and SPEARS multiplies the efficiency of data analysis [emphasis mine].

I assume it’s the notion of combining the two technologies (iBrian and SPEARS) that spawned the ‘mind-reading’ part of this article’s title. The technology could be used for early detection and diagnosis, as well as, other possibilities as Eaton notes,

It’s also possible it could develop its technology into non-medicinal uses such as human-computer interfaces–in an earlier announcement, NeuroVigil noted, “We plan to make these kinds of devices available to the transportation industry, biofeedback, and defense. Applications regarding pandemics and bioterrorism are being considered but cannot be shared in this format.” And there’s even a popular line of kid’s toys that use an essentially similar technique, powered by NeuroSky sensors–themselves destined for future uses as games console controllers or even input devices for computers.

What these two technologies have in common is that, in some fashion or other, they have (shy of implanting a computer chip) a relatively direct interface with our brains, which means (to me anyway) a very different relationship between humans and computers.

In the next couple of items I’m going to profile a couple of very similar to each other technologies that allow for more traditional human/computer interactions, one of which I’ve posted about previously, the Nokia Morph (most recently in my Sept. 29, 2010 posting).

It was first introduced as a type of flexible phone with other capabilities. Since then, they seem to have elaborated on those capabilities. Here’s a description of what they now call the ‘Morph concept’ in a [ETA May 12, 2011: inserted correct link information] May 4, 2011 news item on Nanowerk,

Morph is a joint nanotechnology concept developed by Nokia Research Center (NRC) and the University of Cambridge (UK). Morph is a concept that demonstrates how future mobile devices might be stretchable and flexible, allowing the user to transform their mobile device into radically different shapes. It demonstrates the ultimate functionality that nanotechnology might be capable of delivering: flexible materials, transparent electronics and self-cleaning surfaces.

Morph, will act as a gateway. It will connect the user to the local environment as well as the global internet. It is an attentive device that adapts to the context – it shapes according to the context. The device can change its form from rigid to flexible and stretchable. Buttons of the user interface can grow up from a flat surface when needed. User will never have to worry about the battery life. It is a device that will help us in our everyday life, to keep our self connected and in shape. It is one significant piece of a system that will help us to look after the environment.

Without the new materials, i.e. new structures enabled by the novel materials and manufacturing methods it would be impossible to build Morph kind of device. Graphene has an important role in different components of the new device and the ecosystem needed to make the gateway and context awareness possible in an energy efficient way.

Graphene will enable evolution of the current technology e.g. continuation of the ever increasing computing power when the performance of the computing would require sub nanometer scale transistors by using conventional materials.

For someone who’s been following news of the Morph for the last few years, this news item doesn’t give you any new information. Still, it’s nice to be reminded of the Morph project. Here’s a video produced by the University of Cambridge that illustrates some of the project’s hopes for the Morph concept,

While the folks at the Nokia Research Centre and University of Cambridge have been working on their project, it appears the team at the Human Media Lab at the School of Computing at Queen’s University (Kingston, Ontario, Canada) in cooperation with a team from Arizona State University and E Ink Corporation have been able to produce a prototype of something remarkably similar, albeit with fewer functions. The PaperPhone is being introduced at the Association of Computing Machinery’s CHI 2011 (Computer Human Interaction) conference in Vancouver, Canada next Tuesday, May 10, 2011.

Here’s more about it from a May 4, 2011 news item on Nanowerk,

The world’s first interactive paper computer is set to revolutionize the world of interactive computing.

“This is the future. Everything is going to look and feel like this within five years,” says creator Roel Vertegaal, the director of Queen’s University Human Media Lab,. “This computer looks, feels and operates like a small sheet of interactive paper. You interact with it by bending it into a cell phone, flipping the corner to turn pages, or writing on it with a pen.”

The smartphone prototype, called PaperPhone is best described as a flexible iPhone – it does everything a smartphone does, like store books, play music or make phone calls. But its display consists of a 9.5 cm diagonal thin film flexible E Ink display. The flexible form of the display makes it much more portable that any current mobile computer: it will shape with your pocket.

For anyone who knows the novel, it’s very Diamond Age (by Neal Stephenson). On a more technical note, I would have liked more information about the display’s technology. What is E Ink using? Graphene? Carbon nanotubes?

(That does not look like to paper to me but I suppose you could call it ‘paperlike’.)

In reviewing all these news items, it seems to me there are two themes, the computer as bodywear and the computer as an extension of our thoughts. Both of these are more intimate relationships, the latter far more so than the former, than we’ve had with the computer till now. If any of you have any thoughts on this, please do leave a comment as I would be delighted to engage on some discussion about this.

You can get more information about the Association of Computing Machinery’s CHI 2011 (Computer Human Interaction) conference where Dr. Vertegaal will be presenting here.

You can find more about Dr. Vertegaal and the Human Media Lab at Queen’s University here.

The academic paper being presented at the Vancouver conference is here.

Also, if you are interested in the hardware end of things, you can check out E Ink Corporation, the company that partnered with the team from Queen’s and Arizona State University to create the PaperPhone. Interestingly, E Ink is a spin off company from the Massachusetts Institute of Technology (MIT).

Bumper crop of nano news from NISE Net

The January issue of the NISE Net (Nanoscale Informal Science Education Network) newsletter features information about a new resource for scientists who need to talk or communicate about their work, Mastering Science and Public Presentations is a video. This talk was given by Tim Masters of Spoken Science at Duke University in the summer of 2010.

Larry Bell on his NISE Net blog discusses some of the meetings (National Science Foundation and National Nanotechnology Initiative) he attended in Washington, DC. I found the one about a Periodic Table of Nanoparticles particularly interesting as it includes an image which features the particles in 3 dimensions representing shape, size, and composition.

There’s a very good nanotechnology article by Corinna Wu in the American Association for Engineering Education (ASEE) magazine, PRISM, Peril in Small Places; What dangers lurk in our expanding use of nanotechnology? It does have an ominous title but the writer does a good job of covering the positive and exciting aspects as well as the risks. From the article,

The wonder of nanotechnology is the abundance of materials, devices, and systems made possible by controlling and manipulating matter at the atomic and molecular levels. But with that wonder comes concern that these now ubiquitous nanoparticles could spread new hazardous pollutants that threaten health and the environment. “We’re trying to say, ‘These are new materials. We don’t know if there’s a problem, so let’s ask now,’” says Sally Tinkle, senior science adviser at the National Institute for Environmental Health Sciences, part of the National Institutes of Health. With prodding from the National Research Council and other institutions, inquiry into the health and environmental effects of nanotechnology has gone hand in hand with research on potential applications. The work is interdisciplinary, and engineers play a critical role. By helping to figure out what makes a nanoparticle toxic, they can, for instance, design nanoparticles that kill cancer cells yet don’t harm healthy tissues, or that remove pollutants from soil without poisoning wildlife.

It’s focused on the US scene and, one quibble, I’m not sure about some of the numbers. (For example, Wu gives a value for the number of nanotechnology products on the market but offers no details as to how this number was derived or where it came from.)

There’s a four-part series, Making Stuff, that’s going to be broadcast as part of the NOVA program on PBS. It starts Jan. 19, 2010. From the website,

Invisibility cloaks. Spider silk that is stronger than steel. Plastics made of sugar that dissolve in landfills. Self-healing military vehicles. Smart pills and micro-robots that zap diseases. Clothes that monitor your mood. What will the future bring, and what will it be made of? In NOVA’s four-hour series, “Making Stuff,” popular New York Times technology reporter David Pogue takes viewers on a fun-filled tour of the material world we live in, and the one that may lie ahead. Get a behind-the-scenes look at scientific innovations ushering in a new generation of materials that are stronger, smaller, cleaner, and smarter than anything we’ve ever seen.

Beginning January 19, 2011, NOVA will premiere the new four-hour series on consecutive Wednesday nights at 9 pm ET/PT on PBS (check local listings): “Making Stuff: Stronger, Smaller, Cleaner, Smarter.”

I wonder if they’ve made any changes to the series. After previewing it a few months ago, Andrew Maynard at 2020 Science featured the program in his Nov. 2, 2010 posting and it provoked a bit of a discussion about how to present science. From the posting,

Last week while at the NISE Net network-wide meeting, I was fortunate enough to see a preview of part of NOVA’s forthcoming series Making Stuff. The series focuses on the wonders of modern materials science. But rather than coming away enthralled by the ingenuity of scientists, I found myself breaking out in a cold sweat as I watched something that set my science-engagement alarm-bells ringing: New York Times tech reporter and host David Pogue enthusing about splicing spider genes into a goat so it produces silk protein-containing milk, then glibly drinking the milk while joking about transforming into Spider Man.

I was sitting there thinking, “You start with a spider – not everyone’s favorite creature. And you genetically cross it with a goat – dangerous territory at the best of times. Then you show a middle aged dude drinking the modified milk from a transgenic animal and having a laugh about it. And all this without any hint of a question over the wisdom or ramifications of what’s going on? Man, this is going to go down well!”

Andrew goes on to ask if his reaction was justified. Comments ensued including one from the producer of the series, Chris Schmidt.

Now, the nano haiku. Again this month there are two:

Asian hornets are
powered by nano solar
at the sun’s zenith.

by Frank Kusiak of the Lawrence Hall of Science. This Haiku relates to the BBC article Oriental hornets powered by ‘solar energy’.

After reading about the use of cinnamon in the production of gold nanoparticles, Vrylena Olney got hungry – and creative:

Cinnamon: good for
pumpkin pie, Moroccan stew,
nanoparticles.

Nano on Mars and a nano safety talk in Vancouver

An atomic force microscope (AFM) on something called the Mars Lander (part of the Phoenix Mars mission) demonstrated full functionality on July 8,  2008. The AFM recorded a test grid as part of a calibration process and sent the image back to Earth proving it could function under the harsh conditions found on Mars. The image was 40 microns x 40 microns, “small enough to fit on an eyelash.” For more details, go here.

Nanotech BC is holding a breakfast meeting on July 23, 2008 featuring Dr. Kristen Kulinovsky from the International Council on Nanotechnology (ICON). She will be focusing on their proposed nano safety practices wiki. I don’t know if they have that up and running yet and I’m guessing that she’s going to talk this up in the hope of getting people to participate.

Wednesday July 23, 2008 at the Listel Hotel, 1300 Robston St, 8 am to 10 am,  $25 reserved seat, $30 at the door.  More details and registration here.