Tag Archives: space junk

Space junk clogs up low-Earth orbit

Arianne Cohen’s May 28, 2020 article for Fast Company concisely sums up the space junk problem and solution (Note: A link has been removed),

Throwing money at problems works in space, too! A paper in the Proceedings of the National Academy of Sciences [PNAS] says that the space debris problem can be fixed once and for all, not by the engineers and scientists who consider space their domain, but with cold, hard cash: about $235,000 per satellite. Such a plan would create financial barriers for smaller organizations.

This looks pretty doesn’t it? hard to believe it’s a representation of the junk yard that floats around the earth.

Caption: A computer-generated image representing space debris as could be seen from high Earth orbit. The two main debris fields are the ring of objects in geosynchronous Earth orbit and the cloud of objects in low Earth orbit. Credit: NASA

For those who like a little more detail, a May 25, 2020 University of Colorado at Boulder news release (also on EurekAlert) presents the idea for orbital user fees as a means of limiting the amount of space junk,

Space is getting crowded. Aging satellites and space debris crowd low-Earth orbit, and launching new satellites adds to the collision risk. The most effective way to solve the space junk problem, according to a new study, is not to capture debris or deorbit old satellites: it’s an international agreement to charge operators “orbital-use fees” for every satellite put into orbit.

Orbital use fees would also increase the long-run value of the space industry, said economist Matthew Burgess, a CIRES [Cooperative Institute for Research in Environmental Sciences] Fellow and co-author of the new paper. By reducing future satellite and debris collision risk, an annual fee rising to about $235,000 per satellite would quadruple the value of the satellite industry by 2040, he and his colleagues concluded in a paper published today in the Proceedings of the National Academy of Sciences.

“Space is a common resource, but companies aren’t accounting for the cost their satellites impose on other operators when they decide whether or not to launch,” said Burgess, who is also an assistant professor in Environmental Studies and an affiliated faculty member in Economics at the University of Colorado Boulder. “We need a policy that lets satellite operators directly factor in the costs their launches impose on other operators.”

Currently, an estimated 20,000 objects–including satellites and space debris–are crowding low-Earth orbit. It’s the latest Tragedy of the Commons, the researchers said: Each operator launches more and more satellites until their private collision risk equals the value of the orbiting satellite.

So far, proposed solutions have been primarily technological or managerial, said Akhil Rao, assistant professor of economics at Middlebury College and the paper’s lead author. Technological fixes include removing space debris from orbit with nets, harpoons, or lasers. Deorbiting a satellite at the end of its life is a managerial fix.

Ultimately, engineering or managerial solutions like these won’t solve the debris problem because they don’t change the incentives for operators. For example, removing space debris might motivate operators to launch more satellites–further crowding low-Earth orbit, increasing collision risk, and raising costs. “This is an incentive problem more than an engineering problem. What’s key is getting the incentives right,” Rao said.

A better approach to the space debris problem, Rao and his colleagues found, is to implement an orbital-use fee–a tax on orbiting satellites. “That’s not the same as a launch fee,” Rao said, “Launch fees by themselves can’t induce operators to deorbit their satellites when necessary, and it’s not the launch but the orbiting satellite that causes the damage.”

Orbital-use fees could be straight-up fees or tradeable permits, and they could also be orbit-specific, since satellites in different orbits produce varying collision risks. Most important, the fee for each satellite would be calculated to reflect the cost to the industry of putting another satellite into orbit, including projected current and future costs of additional collision risk and space debris production–costs operators don’t currently factor into their launches. “In our model, what matters is that satellite operators are paying the cost of the collision risk imposed on other operators,” said Daniel Kaffine, professor of economics and RASEI Fellow at the University of Colorado Boulder and co-author on the paper.

And those fees would increase over time, to account for the rising value of cleaner orbits. In the researchers’ model, the optimal fee would rise at a rate of 14 percent per year, reaching roughly $235,000 per satellite-year by 2040.

For an orbital-use fee approach to work, the researchers found, all countries launching satellites would need to participate–that’s about a dozen that launch satellites on their own launch vehicles and more than 30 that own satellites. In addition, each country would need to charge the same fee per unit of collision risk for each satellite that goes into orbit, although each country could collect revenue separately. Countries use similar approaches already in carbon taxes and fisheries management.

In this study, Rao and his colleagues compared orbital-use fees to business as usual (that is, open access to space) and to technological fixes such as removing space debris. They found that orbital use fees forced operators to directly weigh the expected lifetime value of their satellites against the cost to industry of putting another satellite into orbit and creating additional risk. In other scenarios, operators still had incentive to race into space, hoping to extract some value before it got too crowded.

With orbital-use fees, the long-run value of the satellite industry would increase from around $600 billion under the business-as-usual scenario to around $3 trillion, researchers found. The increase in value comes from reducing collisions and collision-related costs, such as launching replacement satellites.

Orbital-use fees could also help satellite operators get ahead of the space junk problem. “In other sectors, addressing the Tragedy of the Commons has often been a game of catch-up with substantial social costs. But the relatively young space industry can avoid these costs before they escalate,” Burgess said.

Here’s a link to and a citation for the paper,

Orbital-use fees could more than quadruple the value of the space industry by Akhil Rao, Matthew G. Burgess, and Daniel Kaffine. DOI: https://doi.org/10.1073/pnas.1921260117 PNAS first published May 26, 2020

This paper is behind a paywall.

Nano art and a solution for space junk from New Zealand

I don’t hear much about New Zealand usually but two items popped up on the radar yesterday. There’s a nano art exhibit opening on Aug. 11, 2010 in Christchurch at Our City O-Tautahi, corner of Worcester Boulevard and Oxford Terrace. Admission is free. More from the news item on Voxy,

A new exhibition at Our City O-Tautahi merges art with the atom in an effort to explain nanotechnology.

Nanotechnology, one of the key technologies of the 21st Century, is probably the least understood despite being well on its way to becoming an integral part of our everyday lives.

Now the University of Canterbury and the MacDiarmid Institute for Advanced Material and Nanotechnology, in collaboration with artists and scientists, is offering a better understanding of nanotechnology through art.

Their exhibition: The Art of Nanotechnology at Our City O-Tautahi from Wednesday 11 August through to Friday 10 September presents intriguing nanotechnology images and art inspired by nanotechnology.

Researchers from around New Zealand were asked to enter the most interesting images from their work in a competition, and the best images are displayed in the exhibition. The MacDiarmid Institute for Advanced Materials and Nanotechnology, which is a government-funded Centre of Research Excellence, kindly donated $2000 in prizes.

Alongside these images are works from artists Claire Beynon (in a collaboration with biologist Sam Bowser), Nicola Gibbons, Sue Novell and Robyn Webster. These artists attempt to shed light on the incredible and tiny new worlds of nanotechnology. Each have selected one little corner of a vast subject, and examined it up close, just as a scientist uses a microscope.

This is one of a series of events being put on by the University of Canterbury this August. You can read more here.

Space junk

As for the space junk item, that comes from an article by Kit Eaton in Fast Company. 1992 was the first I heard that outer space was in fact a floating junk yard. For example, when satellites and other space equipment stop functioning, it’s easier to send a new model up then try and repair them. I imagine that in the 18 years since the situation has gotten worse. Amongst other ideas on how to clean things up, there’s this one (from the Fast Company article, The Most Beautiful Way to Clean Up Space Junk: A Giant GOLD Balloon),

Dr. Kristen Gates has one idea, and it’s beautiful and simple. It’s dubbed GOLD–the Gossamer Orbit Lowering Device–and it’s just been revealed at the “Artificial and Natural Space Debris” session of the AIAA Astrodynamics Specialists Conference.

GOLD is not much more than a football-field sized balloon (made of gossamer-thin but super-tough material, a little like solar sails) that is flown into orbit deflated in a suitcase-sized box and then fastened to a dead satellite. It’s then inflated to maximum size, and the huge bulk of the balloon massively increases the atmospheric drag that satellites experience up there in the void. This drag is due to the rare molecules of gas that hover around above the fringe of the atmosphere, and it’s the same drag that resulted in the premature deorbiting of the famous Skylab satellite in the 1970s, when the mechanics of orbital drag weren’t as well understood. The drag acts to slow a satellite in its orbital path, and then simple orbital mechanics means the satellite descends into the atmosphere where the denser air heats it to the point it burns up.

I guess gold is my other theme for this post.