Tag Archives: spicules

Sea sponges inspire body armour of the future

A Mar. 15, 2013 news item on ScienceDaily features research inspired by sea sponges,

Scientists at Johannes Gutenberg University Mainz (JGU) and the Max Planck Institute for Polymer Research (MPI-P) in Germany have created a new synthetic hybrid material with a mineral content of almost 90 percent, yet extremely flexible. They imitated the structural elements found in most sea sponges and recreated the sponge spicules using the natural mineral calcium carbonate and a protein of the sponge. Natural minerals are usually very hard and prickly, as fragile as porcelain.

Amazingly, the synthetic spicules are superior to their natural counterparts in terms of flexibility, exhibiting a rubber-like flexibility. The synthetic spicules can, for example, easily be U-shaped without breaking or showing any signs of fracture. …

Spicules are structural elements found in most sea sponges. They provide structural support and deter predators. They are very hard, prickly, and even quite difficult to cut with a knife. The spicules of sponges thus offer a perfect example of a lightweight, tough, and impenetrable defense system, which may inspire engineers to create body armors of the future.

I found an image of a sea sponge (this may not be exactly the same type of sponge that inspired the latest work but I think there are enough similarities to the description the researchers give to  include it here) and more information in a Nov. 13, 2008 post by Ed Grabianows on IO9.com,

Downloaded from: http://io9.com/5085064/giant-deep-sea-sponges-evolved-fiber-optic-exoskeletons

Downloaded from: http://io9.com/5085064/giant-deep-sea-sponges-evolved-fiber-optic-exoskeletons

This gigantic sea sponge has an exoskeleton made of glass rods, and each rod can grow up to a meter in length. In the deep sea, these massive sponges contain a menagerie of other tiny lifeforms, all dependent on their sea sponge hosts for something in short supply far under the water. They need light – and some sponges have a [sic] evolved a way to provide it using fiber optics.Sea sponges are among the most primitive animals on Earth. …

Here’s more about the research (from the ScienceDaily news item),

 The researchers led by Wolfgang Tremel, Professor at Johannes Gutenberg University Mainz, and Hans-Jürgen Butt, Director at the Max Planck Institute for Polymer Research in Mainz, used these natural sponge spicules as a model to cultivate them in the lab. The synthetic spicules were made from calcite (CaCO3) and silicatein-α. The latter is a protein from siliceous sponges that, in nature, catalyzes the formation of silica, which forms the natural silica spicules of sponges. Silicatein-α was used in the lab setting to control the self-organization of the calcite spicules. The synthetic material was self-assembled from an amorphous calcium carbonate intermediate and silicatein and subsequently aged to the final crystalline material. After six months, the synthetic spicules consisted of calcite nanocrystals aligned in a brick wall fashion with the protein embedded like cement in the boundaries between the calcite nanocrystals. The spicules were of 10 to 300 micrometers in length with a diameter of 5 to 10 micrometers.

… the synthetic spicules have yet another special characteristic, i.e., they are able to transmit light waves even when they are bent.

The researchers have created a video animation to illustrate their work,

For those who would like to find out more about the research, there’s a citation for and a link to the researchers’ paper here.