Tag Archives: spintronics

Memristors, it’s all about the oxides

I have one research announcement from China and another from the Netherlands, both of which concern memristors and oxides.

China

A May 17, 2021 news item on Nanowerk announces work, which suggests that memristors may not need to rely solely on oxides but could instead utilize light more gainfully,

Scientists are getting better at making neuron-like junctions for computers that mimic the human brain’s random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these ‘memristors’ for the journal Science and Technology of Advanced Materials …

Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.

Electronic circuits in these ‘neuromorphic’ computers include memristors that resemble the junctions between neurons called synapses. Energy flows through a material from one electrode to another, much like a neuron firing a signal across the synapse to the next neuron. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.

I had no success locating the original news release, which originated the news item, but have found this May 17, 2021 news item on eedesignit.com, which provides the remaining portion of the news release.

“Oxides are the most widely used materials in memristors,” said Zhuge. “But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this.”

Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions’ movements ultimately change the memristor’s resistance, which is necessary to send or stop a signal through the junction.

Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.

Now for a picture that accompanied the news release, which follows,

Fig. The all-optically controlled memristor developed for optoelectronic neuromorphic computing (Image by NIMTE)

Here’s the February 7, 2021 Ningbo Institute of Materials Technology and Engineering (NIMTE) press release featuring this work and a more technical description,

A research group led by Prof. ZHUGE Fei at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) developed an all-optically controlled (AOC) analog memristor, whose memconductance can be reversibly tuned by varying only the wavelength of the controlling light.

As the next generation of artificial intelligence (AI), neuromorphic computing (NC) emulates the neural structure and operation of the human brain at the physical level, and thus can efficiently perform multiple advanced computing tasks such as learning, recognition and cognition.

Memristors are promising candidates for NC thanks to the feasibility of high-density 3D integration and low energy consumption. Among them, the emerging optoelectronic memristors are competitive by virtue of combining the advantages of both photonics and electronics. However, the reversible tuning of memconductance depends highly on the electric excitation, which have severely limited the development and application of optoelectronic NC.

To address this issue, researchers at NIMTE proposed a bilayered oxide AOC memristor, based on the relatively mature semiconductor material InGaZnO and a memconductance tuning mechanism of light-induced electron trapping and detrapping.

The traditional electrical memristors require strong electrical stimuli to tune their memconductance, leading to high power consumption, a large amount of Joule heat, microstructural change triggered by the Joule heat, and even high crosstalk in memristor crossbars.

On the contrary, the developed AOC memristor does not involve microstructure changes, and can operate upon weak light irradiation with light power density of only 20 μW cm-2, which has provided a new approach to overcome the instability of the memristor.

Specifically, the AOC memristor can serve as an excellent synaptic emulator and thus mimic spike-timing-dependent plasticity (STDP) which is an important learning rule in the brain, indicating its potential applications in AOC spiking neural networks for high-efficiency optoelectronic NC.

Moreover, compared to purely optical computing, the optoelectronic computing using our AOC memristor showed higher practical feasibility, on account of the simple structure and fabrication process of the device.

The study may shed light on the in-depth research and practical application of optoelectronic NC, and thus promote the development of the new generation of AI.

This work was supported by the National Natural Science Foundation of China (No. 61674156 and 61874125), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB32050204), and the Zhejiang Provincial Natural Science Foundation of China (No. LD19E020001).

Here’s a link to and a citation for the paper,

Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence by Jingrui Wang, Xia Zhuge & Fei Zhuge. Science and Technology of Advanced Materials Volume 22, 2021 – Issue 1 Pages 326-344 DOI: https://doi.org/10.1080/14686996.2021.1911277 Published online:14 May 2021

This paper appears to be open access.

Netherlands

In this case, a May 18, 2021 news item on Nanowerk marries oxides to spintronics,

Classic computers use binary values (0/1) to perform. By contrast, our brain cells can use more values to operate, making them more energy-efficient than computers. This is why scientists are interested in neuromorphic (brain-like) computing.

Physicists from the University of Groningen (the Netherlands) have used a complex oxide to create elements comparable to the neurons and synapses in the brain using spins, a magnetic property of electrons.

The press release, which follows, was accompanied by this image illustrating the work,

Caption: Schematic of the proposed device structure for neuromorphic spintronic memristors. The write path is between the terminals through the top layer (black dotted line), the read path goes through the device stack (red dotted line). The right side of the figure indicates how the choice of substrate dictates whether the device will show deterministic or probabilistic behaviour. Credit: Banerjee group, University of Groningen

A May 18, 2021 University of Groningen press release (also on EurekAlert), which originated the news item, adds more ‘spin’ to the story,

Although computers can do straightforward calculations much faster than humans, our brains outperform silicon machines in tasks like object recognition. Furthermore, our brain uses less energy than computers. Part of this can be explained by the way our brain operates: whereas a computer uses a binary system (with values 0 or 1), brain cells can provide more analogue signals with a range of values.

Thin films

The operation of our brains can be simulated in computers, but the basic architecture still relies on a binary system. That is why scientist look for ways to expand this, creating hardware that is more brain-like, but will also interface with normal computers. ‘One idea is to create magnetic bits that can have intermediate states’, says Tamalika Banerjee, Professor of Spintronics of Functional Materials at the Zernike Institute for Advanced Materials, University of Groningen. She works on spintronics, which uses a magnetic property of electrons called ‘spin’ to transport, manipulate and store information.

In this study, her PhD student Anouk Goossens, first author of the paper, created thin films of a ferromagnetic metal (strontium-ruthenate oxide, SRO) grown on a substrate of strontium titanate oxide. The resulting thin film contained magnetic domains that were perpendicular to the plane of the film. ‘These can be switched more efficiently than in-plane magnetic domains’, explains Goossens. By adapting the growth conditions, it is possible to control the crystal orientation in the SRO. Previously, out-of-plane magnetic domains have been made using other techniques, but these typically require complex layer structures.

Magnetic anisotropy

The magnetic domains can be switched using a current through a platinum electrode on top of the SRO. Goossens: ‘When the magnetic domains are oriented perfectly perpendicular to the film, this switching is deterministic: the entire domain will switch.’ However, when the magnetic domains are slightly tilted, the response is probabilistic: not all the domains are the same, and intermediate values occur when only part of the crystals in the domain have switched.

By choosing variants of the substrate on which the SRO is grown, the scientists can control its magnetic anisotropy. This allows them to produce two different spintronic devices. ‘This magnetic anisotropy is exactly what we wanted’, says Goossens. ‘Probabilistic switching compares to how neurons function, while the deterministic switching is more like a synapse.’

The scientists expect that in the future, brain-like computer hardware can be created by combining these different domains in a spintronic device that can be connected to standard silicon-based circuits. Furthermore, probabilistic switching would also allow for stochastic computing, a promising technology which represents continuous values by streams of random bits. Banerjee: ‘We have found a way to control intermediate states, not just for memory but also for computing.’

Here’s a link to and a citation for the paper,

Anisotropy and Current Control of Magnetization in SrRuO3/SrTiO3 Heterostructures for Spin-Memristors by A.S. Goossens, M.A.T. Leiviskä and T. Banerjee. Frontiers in Nanotechnology DOI: https://doi.org/10.3389/fnano.2021.680468 Published: 18 May 2021

This appears to be open access.

Graphene and its magnetism

I have two news bits about graphene and magnetism. If I understood what I was reading, one is more focused on applications and the other is focused on further establishing the field of valleytronics.

University of Cambridge and superconductivity

A February 8, 2021 news item on Nanowerk announces ‘magnetic work’ from the University of Cambridge (Note: A link has been removed),

The researchers, led by the University of Cambridge, were able to control the conductivity and magnetism of iron thiophosphate (FePS3), a two-dimensional material which undergoes a transition from an insulator to a metal when compressed. This class of magnetic materials offers new routes to understanding the physics of new magnetic states and superconductivity.

Using new high-pressure techniques, the researchers have shown what happens to magnetic graphene during the transition from insulator to conductor and into its unconventional metallic state, realised only under ultra-high pressure conditions. When the material becomes metallic, it remains magnetic, which is contrary to previous results and provides clues as to how the electrical conduction in the metallic phase works. The newly discovered high-pressure magnetic phase likely forms a precursor to superconductivity so understanding its mechanisms is vital.

Their results, published in the journal Physical Review X, also suggest a way that new materials could be engineered to have combined conduction and magnetic properties, which could be useful in the development of new technologies such as spintronics, which could transform the way in which computers process information.

A February 8, 2021 University of Cambridge press release (also on EurekAlert), which originated the news item, delves into the topic,

Properties of matter can alter dramatically with changing dimensionality. For example, graphene, carbon nanotubes, graphite and diamond are all made of carbon atoms, but have very different properties due to their different structure and dimensionality.

“But imagine if you were also able to change all of these properties by adding magnetism,” said first author Dr Matthew Coak, who is jointly based at Cambridge’s Cavendish Laboratory and the University of Warwick. “A material which could be mechanically flexible and form a new kind of circuit to store information and perform computation. This is why these materials are so interesting, and because they drastically change their properties when put under pressure so we can control their behaviour.”

In a previous study by Sebastian Haines of Cambridge’s Cavendish Laboratory and the Department of Earth Sciences, researchers established that the material becomes a metal at high pressure, and outlined how the crystal structure and arrangement of atoms in the layers of this 2D material change through the transition.

“The missing piece has remained however, the magnetism,” said Coak. “With no experimental techniques able to probe the signatures of magnetism in this material at pressures this high, our international team had to develop and test our own new techniques to make it possible.”

The researchers used new techniques to measure the magnetic structure up to record-breaking high pressures, using specially designed diamond anvils and neutrons to act as the probe of magnetism. They were then able to follow the evolution of the magnetism into the metallic state.

“To our surprise, we found that the magnetism survives and is in some ways strengthened,” co-author Dr Siddharth Saxena, group leader at the Cavendish Laboratory. “This is unexpected, as the newly-freely-roaming electrons in a newly conducting material can no longer be locked to their parent iron atoms, generating magnetic moments there – unless the conduction is coming from an unexpected source.”

In their previous paper, the researchers showed these electrons were ‘frozen’ in a sense. But when they made them flow or move, they started interacting more and more. The magnetism survives, but gets modified into new forms, giving rise to new quantum properties in a new type of magnetic metal.

How a material behaves, whether conductor or insulator, is mostly based on how the electrons, or charge, move around. However, the ‘spin’ of the electrons has been shown to be the source of magnetism. Spin makes electrons behave a bit like tiny bar magnets and point a certain way. Magnetism from the arrangement of electron spins is used in most memory devices: harnessing and controlling it is important for developing new technologies such as spintronics, which could transform the way in which computers process information.

“The combination of the two, the charge and the spin, is key to how this material behaves,” said co-author Dr David Jarvis from the Institut Laue-Langevin, France, who carried out this work as the basis of his PhD studies at the Cavendish Laboratory. “Finding this sort of quantum multi-functionality is another leap forward in the study of these materials.”

“We don’t know exactly what’s happening at the quantum level, but at the same time, we can manipulate it,” said Saxena. “It’s like those famous ‘unknown unknowns’: we’ve opened up a new door to properties of quantum information, but we don’t yet know what those properties might be.”

There are more potential chemical compounds to synthesise than could ever be fully explored and characterised. But by carefully selecting and tuning materials with special properties, it is possible to show the way towards the creation of compounds and systems, but without having to apply huge amounts of pressure.

Additionally, gaining fundamental understanding of phenomena such as low-dimensional magnetism and superconductivity allows researchers to make the next leaps in materials science and engineering, with particular potential in energy efficiency, generation and storage.

As for the case of magnetic graphene, the researchers next plan to continue the search for superconductivity within this unique material. “Now that we have some idea what happens to this material at high pressure, we can make some predictions about what might happen if we try to tune its properties through adding free electrons by compressing it further,” said Coak.

“The thing we’re chasing is superconductivity,” said Saxena. “If we can find a type of superconductivity that’s related to magnetism in a two-dimensional material, it could give us a shot at solving a problem that’s gone back decades.”

The citation and link to the paper are at the end of this blog posting.

Aalto University’s valleytronics

Further north in Finland, researchers at Aalto University make some advances applicable to the field of valleytronics, from a February 5, 2021 Aalto University press release (also on EurekAltert but published February 8, 2021),

Electrons in materials have a property known as ‘spin’, which is responsible for a variety of properties, the most well-known of which is magnetism. Permanent magnets, like the ones used for refrigerator doors, have all the spins in their electrons aligned in the same direction. Scientists refer to this behaviour as ferromagnetism, and the research field of trying to manipulate spin as spintronics.

Down in the quantum world, spins can arrange in more exotic ways, giving rise to frustrated states and entangled magnets. Interestingly, a property similar to spin, known as “the valley,” appears in graphene materials. This unique feature has given rise to the field of valleytronics, which aims to exploit the valley property for emergent physics and information processing, very much like spintronics relies on pure spin physics.

‘Valleytronics would potentially allow encoding information in the quantum valley degree of freedom, similar to how electronics do it with charge and spintronics with the spin.’ Explains Professor Jose Lado, from Aalto’s Department of applied physics, and one of the authors of the work. ‘What’s more, valleytronic devices would offer a dramatic increase in the processing speeds in comparison with electronics, and with much higher stability towards magnetic field noise in comparison with spintronic devices.’

Structures made of rotated, ultra-thin materials provide a rich solid-state platform for designing novel devices. In particular, slightly twisted graphene layers have recently been shown to have exciting unconventional properties, that can ultimately lead to a new family of materials for quantum technologies. These unconventional states which are already being explored depend on electrical charge or spin. The open question is if the valley can also lead to its own family of exciting states.

Making materials for valleytronics

For this goal, it turns out that conventional ferromagnets play a vital role, pushing graphene to the realms of valley physics. In a recent work, Ph.D. student Tobias Wolf, together with Profs. Oded Zilberberg and Gianni Blatter at ETH Zurich, and Prof. Jose Lado at Aalto University, showed a new direction for correlated physics in magnetic van der Waals materials.

The team showed that sandwiching two slightly rotated layers of graphene between a ferromagnetic insulator provides a unique setting for new electronic states. The combination of ferromagnets, graphene’s twist engineering, and relativistic effects force the “valley” property to dominate the electrons behaviour in the material. In particular, the researchers showed how these valley-only states can be tuned electrically, providing a materials platform in which valley-only states can be generated. Building on top of the recent breakthrough in spintronics and van der Waals materials, valley physics in magnetic twisted van der Waals multilayers opens the door to the new realm of correlated twisted valleytronics.

‘Demonstrating these states represents the starting point towards new exotic entangled valley states.’ Said Professor Lado, ‘Ultimately, engineering these valley states can allow realizing quantum entangled valley liquids and fractional quantum valley Hall states. These two exotic states of matter have not been found in nature yet, and would open exciting possibilities towards a potentially new graphene-based platform for topological quantum computing.’

Citations and links

Here’s a link to and a citation for the University of Cambridge research,

Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3 by Matthew J. Coak, David M. Jarvis, Hayrullo Hamidov, Andrew R. Wildes, Joseph A. M. Paddison, Cheng Liu, Charles R. S. Haines, Ngoc T. Dang, Sergey E. Kichanov, Boris N. Savenko, Sungmin Lee, Marie Kratochvílová, Stefan Klotz, Thomas C. Hansen, Denis P. Kozlenko, Je-Geun Park, and Siddharth S. Saxena. Phys. Rev. X 11, 011024 DOI: https://doi.org/10.1103/PhysRevX.11.011024 Published 5 February 2021

This article appears to be open access.

Here’s a link to and a citation for the Aalto University research,

Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene by Tobias M. R. Wolf, Oded Zilberberg, Gianni Blatter, and Jose L. Lado. Phys. Rev. Lett. 126, 056803 DOI: https://doi.org/10.1103/PhysRevLett.126.056803 Published 4 February 2021

This paper is behind a paywall.

Defending nanoelectronics from cyber attacks

There’s a new program at the University of Stuttgart (Germany) and their call for projects was recently announced. First, here’s a description of the program in a May 30, 2019 news item on Nanowerk,

Today’s societies critically depend on electronic systems. Past spectacular cyber-attacks have clearly demonstrated the vulnerability of existing systems and the need to prevent such attacks in the future. The majority of available cyber-defenses concentrate on protecting the software part of electronic systems or their communication interfaces.

However, manufacturing technology advancements and the increasing hardware complexity provide a large number of challenges so that the focus of attackers has shifted towards the hardware level. We saw already evidence for powerful and successful hardware-level attacks, including Rowhammer, Meltdown and Spectre.

These attacks happened on products built using state-of-the-art microelectronic technology, however, we are facing completely new security challenges due to the ongoing transition to radically new types of nanoelectronic devices, such as memristors, spintronics, or carbon nanotubes and graphene based transistors.

The use of such emerging nanotechnologies is inevitable to address the key challenges related to energy efficiency, computing power and performance. Therefore, the entire industry, are switching to emerging nano-electronics alongside scaled CMOS technologies in heterogeneous integrated systems.

These technologies come with new properties and also facilitate the development of radically different computer architectures. The new technologies and architectures provide new opportunities for achieving security targets, but also raise questions about their vulnerabilities to new types of hardware attacks.

A May 28, 2019 University of Stuttgart press release provides more information about the program and the call for projects,

Whether it’s cars, industrial plants or the government network, spectacular cyber attacks over the past few months have shown how vulnerable modern electronic systems are. The aim of the new Priority Program “Nano Security”, which is coordinated by the University of Stuttgart, is protecting you and preventing the cyber attacks of the future. The program, which is funded by the German Research Foundation (DFG), emphasizes making the hardware into a reliable foundation of a system or a layer of security.

The challenges of nanoelectronics

Completely new challenges also emerge as a result of the switch to radically new nanoelectronic components, which for example are used to master the challenges of the future in terms of energy efficiency, computing power and secure data transmission. For example, memristors (components which are not just used to store information but also function as logic modules), the spintronics, which exploit quantum-mechanical effects, or carbon nanotubes.

The new technologies, as well as the fundamentally different computer architecture associated with them, offer new opportunities for cryptographic primitives in order to achieve an even more secure data transmission. However, they also raise questions about their vulnerability to new types of hardware attacks.

The problem is part of the solution

In this context, a better understanding should be developed of what consequences the new nanoelectronic technologies have for the security of circuits and systems as part of the new Priority Program. Here, the hardware is not just thought of as part of the problem but also as an important and necessary part of the solution to security problems. The starting points here for example are the hardware-based generation of cryptographic keys, the secure storage and processing of sensitive data, and the isolation of system components which is guaranteed by the hardware. Lastly, it should be ensured that an attack cannot be spread further by the system.

In this process, the scientists want to assess the possible security risks and weaknesses which stem from the new type of nanoelectronics. Furthermore, they want to develop innovative approaches for system security which are based on nanoelectronics as a security anchor.

The Priority Program promotes cooperation between scientists, who develop innovative security solutions for the computer systems of the future on different levels of abstraction. Likewise, it makes methods available to system designers to keep ahead in the race between attackers and security measures over the next few decades.

The call has started

The DFG Priority Program “Nano Security. From Nano-Electronics to Secure Systems“ (SPP 2253) is scheduled to last for a period of six years. The call for projects for the first three-year funding period was advertised a few days ago, and the first projects are set to start at the beginning of 2020.

For more information go to the Nano Security: From Nano-Electronics to Secure Systems webpage on the University of Stuttgart website.

Graphene flakes bring spintronics a step closer?

Italian researchers are hoping that graphene flakes will be instrumental in the development of spintronics according to a March 14, 2018 news item on phys.org,

Graphene nanoflakes are promising for possible applications in the field of nanoelectronics, and the subject of a study recently published in Nano Letters. These hexagonal nanostructures exhibit quantum effects for modulating current flow. Thanks to their intrinsic magnetic properties, they could also represent a significant step forward in the field of spintronics. The study, conducted via computer analysis and simulations, was led by Massimo Capone.

A March 14, 2018 Scuola Internazionale Superiore di Studi Avanzati (SISSA) press release (also on EurekAlert), which originated the news item, expands on the theme,

“We have been able to observe two key phenomena by analysing the properties of graphene nanoflakes. Both are of great interest for possible future applications” explain Angelo Valli and Massimo Capone, authors of the study together with Adriano Amaricci and Valentina Brosco. The first phenomenon deals with the so-called interference between electrons and is a quantum phenomenon: «In nanoflakes, the electrons interfere with each other in a “destructive” manner if we measure the current in a certain configuration. This means that there is no transmission of current. This is a typically quantum phenomenon, which only occurs at very reduced sizes. By studying the graphene flakes we have understood that it is possible to bring this phenomenon to larger systems, therefore into the nano world and on a scale in which it is observable and can be exploited for possible uses in nanoelectronics». The two researchers explain that in what are called “Quantum interference transistors” destructive interference would be the “OFF” status. For the “ON” status, they say it is sufficient to remove the conditions for interference, thereby enabling the current to flow.

Magnetism and spintronics

But there’s more. In the study, the researchers demonstrated that the nanoflakes present new magnetic properties which are absent, for example, in an entire sheet of graphene: «The magnetism emerges spontaneously at their edges, without any external intervention. This enables the creation of a spin current». The union between the phenomena of quantum interference and of magnetism would allow to obtain almost complete spin polarization, with a huge potential in the field of spintronics, explain the researchers. These properties could be used, for example, in the memorising and processing information technologies, interpreting the spin as binary code. The electron spin, being quantised and having only two possible configurations (which we could call “up” and “down”), is very well suited for this kind of implementation.

Next step: the experimental test

To improve the efficiency of the possible device and the percentage of current polarization the researchers have also developed a protocol that envisages the interaction of the graphene flakes with a surface made of nitrogen and boron. «The results obtained are really interesting. This evidence now awaits the experimental test, to confirm what we have theoretically predicted» concludes Massimo Capone, head of the research and recently awarded the title of Outstanding Referee by the American Physical Society journal; in this way, each year, the journal indicates the male and female scientists who have distinguished themselves for their expertise in collaborating with the journal.

Here’s a link to and a citation for the paper,

Quantum Interference Assisted Spin Filtering in Graphene Nanoflakes by Angelo Valli, Adriano Amaricci, Valentina Brosco, and Massimo Capone. Nano Lett., 2018, 18 (3), pp 2158–2164 DOI: 10.1021/acs.nanolett.8b00453 Publication Date (Web): February 23, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Spintronics-based artificial intelligence

Courtesy: Tohoku University

Japanese researchers have managed to mimic a synapse (artificial neural network) with a spintronics-based device according to a Dec. 19, 2016 Tohoku University press release (also on EurekAlert but dated Dec. 20, 2016),

Researchers at Tohoku University have, for the first time, successfully demonstrated the basic operation of spintronics-based artificial intelligence.

Artificial intelligence, which emulates the information processing function of the brain that can quickly execute complex and complicated tasks such as image recognition and weather prediction, has attracted growing attention and has already been partly put to practical use.

The currently-used artificial intelligence works on the conventional framework of semiconductor-based integrated circuit technology. However, this lacks the compactness and low-power feature of the human brain. To overcome this challenge, the implementation of a single solid-state device that plays the role of a synapse is highly promising.

The Tohoku University research group of Professor Hideo Ohno, Professor Shigeo Sato, Professor Yoshihiko Horio, Associate Professor Shunsuke Fukami and Assistant Professor Hisanao Akima developed an artificial neural network in which their recently-developed spintronic devices, comprising micro-scale magnetic material, are employed (Fig. 1). The used spintronic device is capable of memorizing arbitral values between 0 and 1 in an analogue manner unlike the conventional magnetic devices, and thus perform the learning function, which is served by synapses in the brain.

Using the developed network (Fig. 2), the researchers examined an associative memory operation, which is not readily executed by conventional computers. Through the multiple trials, they confirmed that the spintronic devices have a learning ability with which the developed artificial neural network can successfully associate memorized patterns (Fig. 3) from their input noisy versions just like the human brain can.

The proof-of-concept demonstration in this research is expected to open new horizons in artificial intelligence technology – one which is of a compact size, and which simultaneously achieves fast-processing capabilities and ultralow-power consumption. These features should enable the artificial intelligence to be used in a broad range of societal applications such as image/voice recognition, wearable terminals, sensor networks and nursing-care robots.

Here are Fig. 1 and Fig. 2, as mentioned in the press release,

Fig. 1. (a) Optical photograph of a fabricated spintronic device that serves as artificial synapse in the present demonstration. Measurement circuit for the resistance switching is also shown. (b) Measured relation between the resistance of the device and applied current, showing analogue-like resistance variation. (c) Photograph of spintronic device array mounted on a ceramic package, which is used for the developed artificial neural network. Courtesy: Tohoku University

Fig. 2. Block diagram of developed artificial neural network, consisting of PC, FPGA, and array of spintronics (spin-orbit torque; SOT) devices. Courtesy: Tohoku University

Here`s a link to and a citation for the paper,

Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation by William A. Borders, Hisanao Akima1, Shunsuke Fukami, Satoshi Moriya, Shouta Kurihara, Yoshihiko Horio, Shigeo Sato, and Hideo Ohno. Applied Physics Express, Volume 10, Number 1 https://doi.org/10.7567/APEX.10.013007. Published 20 December 2016

© 2017 The Japan Society of Applied Physics

This is an open access paper.

For anyone interested in my other posts on memristors, artificial brains, and artificial intelligence, you can search this blog for those terms  and/or Neuromorphic Engineering in the Categories section.

Superconductivity with spin

Vivid lines of light tracing a pattern reminiscent of a spinning top toy Courtesy: Harvard University

Vivid lines of light tracing a pattern reminiscent of a spinning top toy Courtesy: Harvard University

An Oct. 14, 2016 Harvard University John A. Paulson School of Engineering and Applied Sciences (SEAS) press release (also on EurekAlert) by Leah Burrows describes how scientists have discovered a way to transmit spin information through supercapacitors,

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices. Their breakthrough solves one the main challenges to quantum computing: how to transmit spin information through superconducting materials.

Every electronic device — from a supercomputer to a dishwasher — works by controlling the flow of charged electrons. But electrons can carry so much more information than just charge; electrons also spin, like a gyroscope on axis.

Harnessing electron spin is really exciting for quantum information processing because not only can an electron spin up or down — one or zero — but it can also spin any direction between the two poles. Because it follows the rules of quantum mechanics, an electron can occupy all of those positions at once. Imagine the power of a computer that could calculate all of those positions simultaneously.

A whole field of applied physics, called spintronics, focuses on how to harness and measure electron spin and build spin equivalents of electronic gates and circuits.

By using superconducting materials through which electrons can move without any loss of energy, physicists hope to build quantum devices that would require significantly less power.

But there’s a problem.

According to a fundamental property of superconductivity, superconductors can’t transmit spin. Any electron pairs that pass through a superconductor will have the combined spin of zero.

In work published recently in Nature Physics, the Harvard researchers found a way to transmit spin information through superconducting materials.

“We now have a way to control the spin of the transmitted electrons in simple superconducting devices,” said Amir Yacoby, Professor of Physics and of Applied Physics at SEAS and senior author of the paper.

It’s easy to think of superconductors as particle super highways but a better analogy would be a super carpool lane as only paired electrons can move through a superconductor without resistance.

These pairs are called Cooper Pairs and they interact in a very particular way. If the way they move in relation to each other (physicists call this momentum) is symmetric, then the pair’s spin has to be asymmetric — for example, one negative and one positive for a combined spin of zero. When they travel through a conventional superconductor, Cooper Pairs’ momentum has to be zero and their orbit perfectly symmetrical.

But if you can change the momentum to asymmetric — leaning toward one direction — then the spin can be symmetric. To do that, you need the help of some exotic (aka weird) physics.

Superconducting materials can imbue non-superconducting materials with their conductive powers simply by being in close proximity. Using this principle, the researchers built a superconducting sandwich, with superconductors on the outside and mercury telluride in the middle. The atoms in mercury telluride are so heavy and the electrons move so quickly, that the rules of relativity start to apply.

“Because the atoms are so heavy, you have electrons that occupy high-speed orbits,” said Hechen Ren, coauthor of the study and graduate student at SEAS. “When an electron is moving this fast, its electric field turns into a magnetic field which then couples with the spin of the electron. This magnetic field acts on the spin and gives one spin a higher energy than another.”

So, when the Cooper Pairs hit this material, their spin begins to rotate.

“The Cooper Pairs jump into the mercury telluride and they see this strong spin orbit effect and start to couple differently,” said Ren. “The homogenous breed of zero momentum and zero combined spin is still there but now there is also a breed of pairs that gains momentum, breaking the symmetry of the orbit. The most important part of that is that the spin is now free to be something other than zero.”

The team could measure the spin at various points as the electron waves moved through the material. By using an external magnet, the researchers could tune the total spin of the pairs.

“This discovery opens up new possibilities for storing quantum information. Using the underlying physics behind this discovery provides also new possibilities for exploring the underlying nature of superconductivity in novel quantum materials,” said Yacoby.

Here’s a link to and a citation for the paper,

Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells by Sean Hart, Hechen Ren, Michael Kosowsky, Gilad Ben-Shach, Philipp Leubner, Christoph Brüne, Hartmut Buhmann, Laurens W. Molenkamp, Bertrand I. Halperin, & Amir Yacoby. Nature Physics (2016) doi:10.1038/nphys3877 Published online 19 September 2016

This paper is behind a paywall.

Putting the speed on spin, spintronics that is

This is for physics fans, if you plan on looking at the published paper. Otherwise, the July 20, 2015 news item on ScienceDaily is more accessible to the rest of us,

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought.

Electrons spin around atoms, but also spin around themselves, and can cross over from one spin state to another. A property which can be exploited for next-generation hard drives. However, “spin cross-over” has been considered too slow to be efficient. Using ultrafast measurements, EPFL scientists have now shown for the first time that electrons can cross spins at least 100,000 times faster than previously thought. Aside for its enormous implications for fundamental physics, the finding can also propel the field of spintronics forward. …

A July 20, 2015 EPFL press release on EurekAlert, which originated the news item, provides context for the research,

The rules of spin

Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis. Electrons can spin in different manners referred to as “spin states” and designated by the numbers 0, 1/2, 1, 3/2, 2 etc. During chemical reactions, electrons can cross from one spin state to another, e.g. from 0 to 1 or 1/2 to 3/2.

Spin cross-over is already used in many technologies, e.g. optical light-emitting devices (OLED), energy conversion systems, and cancer phototherapy. Most prominently, spin cross-over is the basis of the fledgling field of spintronics. The problem is that spin cross-over has been thought to be too slow to be efficient enough in circuits.

Spin cross-over is extremely fast

The lab of Majed Chergui at EPFL has now demonstrated that spin cross-over is considerably faster than previously thought. Using the highest time-resolution technology in the world, the lab was able to “see” electrons crossing through four spin states within 50 quadrillionths of a second — or 50 femtoseconds.

“Time resolution has always been a limitation,” says Chergui. “Over the years, labs have used techniques that could only measure spin changes to a billionth to a millionth of a second. So they thought that spin cross-over happened in this timeframe.”

Chergui’s lab focused on materials that show much promise in spintronics applications. In these materials, electrons jump through four spin-states: from 0 to 1 to 2. In 2009, Chergui’s lab pushed the boundaries of time resolution to show that this 0-2 “jump” can happen within 150 femtoseconds — suggesting that it was a direct event. Despite this, the community still maintained that such spin cross-overs go through intermediate steps.

But Chergui had his doubts. Working with his postdoc Gerald Auböck, they used the lab’s world-recognized expertise in ultrafast spectroscopy to “crank up” the time resolution. Briefly, a laser shines on the material sample under investigation, causing its electrons to move. Another laser measures their spin changes over time in the ultraviolet light range.

The finding essentially demolishes the notion of intermediate steps between spin jumps, as it does not allow enough time for them: only 50 quadrillionths of a second to go from the “0” to the “2” spin state. This is the first study to ever push time resolution to this limit in the ultraviolet domain. “This probably means that it’s even faster,” says Chergui. “But, more importantly, that it is a direct process.”

From observation to explanation

With profound implications for both technology and fundamental physics and chemistry, the study is an observation without an explanation. Chergui believes that the key is electrons shuttling back-and-forth between the iron atom at the center of the material’s molecules and its surrounding elements. “When the laser light shines on the atom, it changes the electron’s spin angle, affecting the entire spin dynamics in the molecule.”

It is now up to theoreticians to develop a new model for ultrafast spin changes. On the experimental side of things, Chergui’s lab is now focusing on actually observing electrons shuttling inside the molecules. This will require even more sophisticated approaches, such as core-level spectroscopy. Nonetheless, the study challenges ideas about spin cross-over, and might offer long-awaited solutions to the limitations of spintronics.

Here’s a link to and citation for the paper,

Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+ by Gerald Auböck & Majed Chergui. Nature Chemistry (2015) doi:10.1038/nchem.2305 Published online 20 July 2015

This paper is behind a paywall.

TRIUMF accelerator used by US researchers to visualize properties of nanoscale materials

The US researchers are at the University of California at Los Angeles (UCLA) and while it’s not explicitly stated I’m assuming the accelerator they mention at TRIUMF (Canada’s national laboratory for particle and nuclear physics) has something special as there are accelerators in California and other parts of the US.

A July 15, 2015 news item on Nanotechnology Now announces the latest on visualizing the properties of nanoscale materials,

Scientists trying to improve the semiconductors that power our electronic devices have focused on a technology called spintronics as one especially promising area of research. Unlike conventional devices that use electrons’ charge to create power, spintronic devices use electrons’ spin. The technology is already used in computer hard drives and many other applications — and scientists believe it could eventually be used for quantum computers, a new generation of machines that use quantum mechanics to solve complex problems with extraordinary speed.

A July 15, 2015 UCLA news release, which originated the news item, expands on the theme and briefly mentions TRIUMF’s accelerator (Note: A link has been removed),

Emerging research has shown that one key to greatly improving performance in spintronics could be a class of materials called topological insulators. Unlike ordinary materials that are either insulators or conductors, topological insulators function as both simultaneously — on the inside, they are insulators but on their exteriors, they conduct electricity.

But topological insulators have certain defects that have so far limited their use in practical applications, and because they are so tiny, scientists have so far been unable to fully understand how the defects impact their functionality.

The UCLA researchers have overcome that challenge with a new method to visualize topological insulators at the nanoscale. An article highlighting the research, which was which led by Louis Bouchard, assistant professor of chemistry and biochemistry, and Dimitrios Koumoulis, a UCLA postdoctoral scholar, was published online in the Proceedings of the National Academy of Sciences.

The new method is the first use of beta‑detected nuclear magnetic resonance to study the effects of these defects on the properties of topological insulators.

The technique involves aiming a highly focused stream of ions at the topological insulator. To generate that beam of ions, the researchers used a large particle accelerator called a cyclotron, which accelerates protons through a spiral path inside the machine and forces them to collide with a target made of the chemical element tantalum. This collision produces lithium-8 atoms, which are ionized and slowed down to a desired energy level before they are implanted in the topological insulators.

In beta‑detected nuclear magnetic resonance, ions (in this case, the ionized lithium-8 atoms) of various energies are implanted in the material of interest (the topological insulator) to generate signals from the material’s layers of interest.

Bouchard said the method is particularly well suited for probing regions near the surfaces and interfaces of different materials.

In the UCLA research, the high sensitivity of the beta‑detected nuclear magnetic resonance technique and its ability to probe materials allowed the scientists to “see” the impacts of the defects in the topological insulators by viewing the electronic and magnetic properties beneath the surface of the material.

The researchers used the large TRIUMF cyclotron in Vancouver, British Columbia.

According to the UCLA news release, there were also researchers from the University of British Columbia, the University of Texas at Austin and Northwestern University *were* involved with the work.

Here’s a link to and a citation for the paper,

Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators by Dimitrios Koumoulis, Gerald D. Morris, Liang He, Xufeng Kou, Danny King, Dong Wang, Masrur D. Hossain, Kang L. Wang, Gregory A. Fiete, Mercouri G. Kanatzidis, and Louis-S. Bouchard. PNAS July 14, 2015 vol. 112 no. 28 doi: 10.1073/pnas.1502330112

This paper is behind a paywall.

*’were’ added Jan. 20, 2016.

Japanese researchers note the emergence of the ‘Devil’s staircase’

I wanted to know why it’s called the ‘Devil’s staircase’ and this is what I found. According to Wikipedia there are several of them,

I gather the scientists are referring to the Cantor function (mathematics), Note: Links have been removed,

In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is also referred to as the Cantor ternary function, the Lebesgue function, Lebesgue’s singular function, the Cantor-Vitali function, the Devil’s staircase,[1] the Cantor staircase function,[2] and the Cantor-Lebesgue function.[3]

Here’s a diagram illustrating the Cantor function (from the Wikipedia entry),

CC BY-SA 3.0 File:CantorEscalier.svg Uploaded by Theon Created: January 24, 2009

CC BY-SA 3.0
File:CantorEscalier.svg
Uploaded by Theon
Created: January 24, 2009

As for this latest ‘Devil’s staircase’, a June 17, 2015 news item on Nanowerk announces the research (Note: A link has been removed),

Researchers at the University of Tokyo have revealed a novel magnetic structure named the “Devil’s staircase” in cobalt oxides using soft X-rays (“Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11“). This is an important result since the researchers succeeded in determining the detailed magnetic structure of a very small single crystal invisible to the human eye.

A June 17, 2015 University of Tokyo press release, which originated the news item on Nanowerk, describes why this research is now possible and the impact it could have,

Recent remarkable progress in resonant soft x-ray diffraction performed in synchrotron facilities has made it possible to determine spin ordering (magnetic structure) in small-volume samples including thin films and nanostructures, and thus is expected to lead not only to advances in materials science but also application to spintronics, a technology which is expected to form the basis of future electronic devices. Cobalt oxide is known as one material that is suitable for spintronics applications, but its magnetic structure was not fully understood.

The research group of Associate Professor Hiroki Wada at the University of Tokyo Institute for Solid State Physics, together with the researchers at Kyoto University and in Germany, performed a resonant soft X-ray diffraction study of cobalt (Co) oxides in the synchrotron facility BESSY II in Germany. They observed all the spin orderings which are theoretically possible and determined how these orderings change with the application of magnetic fields. The plateau-like behavior of magnetic structure as a function of magnetic field is called the “Devil’s staircase,” and is the first such discovery in spin systems in 3D transition metal oxides including cobalt, iron, manganese.

By further resonant soft X-ray diffraction studies, one can expect to find similar “Devil’s staircase” behavior in other materials. By increasing the spatial resolution of microscopic observation of the “Devil’s staircase” may lead to the development of novel types of spintronics materials.

Here’s an example of the ‘cobalt’ Devil’s staircase,

The magnetic structure that gives rise to the Devil's Staircase Magnetization (vertical axis) of cobalt oxide shows plateau like behaviors as a function of the externally-applied magnetic field (horizontal axis). The researchers succeeded in determining the magnetic structures which create such plateaus. Red and blue arrows indicate spin direction. © 2015 Hiroki Wadati.

The magnetic structure that gives rise to the Devil’s Staircase
Magnetization (vertical axis) of cobalt oxide shows plateau like behaviors as a function of the externally-applied magnetic field (horizontal axis). The researchers succeeded in determining the magnetic structures which create such plateaus. Red and blue arrows indicate spin direction.
© 2015 Hiroki Wadati.

Here’s a link to and a citation for the paper,

Observation of a Devil’s Staircase in the Novel Spin-Valve System SrCo6O11 by T. Matsuda, S. Partzsch, T. Tsuyama, E. Schierle, E. Weschke, J. Geck, T. Saito, S. Ishiwata, Y. Tokura, and H. Wadati. Phys. Rev. Lett. 114, 236403 – Published 11 June 2015 (paper: Vol. 114, Iss. 23 — 12 June 2015)  DOI: 10.1103/PhysRevLett.114.236403

This paper is behind a paywall.

Germany goes international with SpinNet, its spintronics project

A Feb. 8, 2013 news item on Nanowerk features an announcement of an international spintronics project, SpinNet, being funded by the federal government of Germany,

The German Academic Exchange Service (DAAD) is sponsoring a joint project involving Johannes Gutenberg University Mainz (JGU) in Mainz, Tohoku University in Japan, Stanford University, and IBM Research. The project will be focusing on the field of spintronics, a key technology that enables the creation of new energy-efficient IT devices. At Mainz researchers from JGU’s Institute of Physics and the Institute of Inorganic Chemistry and Analytical Chemistry participate with many of the activities taking place under the Materials Science in Mainz (MAINZ) Graduate School of Excellence. Over the next four years, the SpinNet network will be funded with about EUR 1 million from the German Federal Ministry of Education and Research (BMBF). SpinNet is one of the 21 projects that the German Academic Exchange Service approved from the total of 120 proposals submitted in the first round and from the 40 entries that made it to the second round.

The Johannes Gutenberg-Universität Mainz (Mainz University) Feb. 8, 2013 news release, which originated the news item, provides details about the network and about the project itself,

Under the aegis of the MAINZ Graduate School, Johannes Gutenberg University Mainz had submitted a proposal for financial support as a so-called “Thematic Network”. With this program, the German Academic Exchange Service aims to provide support to research-based multilateral and international networks with leading partners from abroad. The inclusion of non-university research facilities, such as IBM Research, was encouraged and the program is intended to help create attractive conditions that will help attract excellent international young researchers from partner universities to Germany. Another purpose is to enable the participating German universities to work at the cutting edge of international research by creating centers of competence. The MAINZ Graduate School has been closely cooperating with the partners for years and SpinNet will help to further this cooperation and fund complementary activities.

SpinNet will concentrate on the development of energy-saving information technology using the potential provided by spintronics. The current semiconductor-based systems will reach their limits in the foreseeable future, meaning that innovative technologies need to be developed if components are to be miniaturized further and energy consumption is reduced. In this context, spintronics is a highly promising approach. While conventional electronic systems in IT components employ only the charge of electrons, spintronics also involves the intrinsic angular momentum or spin of electrons for information processing. Using this technology, it should be possible to develop non-volatile storage and logic systems and these would then reduce energy consumption while also radically simplifying systems architecture. The new research network will be officially launched on April 1, 2013; with the inaugural meeting of the partners taking place at the Newspin3 Conference that is to be held on April 2-4, 2013 in Mainz.

You can find more information and videos about this initiative and/or spintronics by clicking the news item link or news release link.  There does not seem to be a SpinNet website. NewsSpin3 conference information can be found here along with details about the NewSpin3 summer school which takes place immediately following the conference. Spintronics was last mentioned here in a Jan. 31, 2013 posting about a 3-D microchip developed from a spintronics chip.