Tag Archives: Stan Lee

Results in for Generation Nano: Small Science, Superheroes contest

The Generation Nano: Small Science, Superheroes contest last mentioned in my March 31, 2016 posting has ended and the placement of the winners, in a field of three finalists, announced at the 2016 USA Science and Engineering Festival according to an April 18, 2016 US National Science Foundation news release,

On behalf of the National Science Foundation (NSF), actor Wil Wheaton and legendary superhero creator Stan Lee yesterday announced the winners of the Generation Nano: Small Science, Superheroescompetition, sponsored by NSF and the National Nanotechnology Initiative (NNI).

The competition challenged high school students to think big — or, in this case, small — to create superheroes that harness their powers from nanotechnology.

Wheaton applauded the students’ creative storylines, noting that when he was Wesley Crusher on the TV series Star Trek: The Next Generation, such plots were only imaginary. “It is amazing what is today plausible due to the power of nanotechnonlogy,” he said.

In a video introduction before Wheaton announced top prize winners, Stan Lee said it was “great that I can virtually join you today.” He remarked on the winners’ “creativity, ingenuity and initiative.”

“From one superhero storyteller to the next, congratulations,” Lee said.

The winners

  • First Prize: Eric Liu from Thomas Jefferson High School for Science and Technology in Virginia, for his “Nanoman,” who fights the malignant crab-monster “Cancer.”
  • Second Prize and the People’s Choice Award: Madeleine Chang from Bergen County Academies in New Jersey, for her superhero “Radio Blitz,” who disposes of local waste.
  • Third Prize: Vuong Mai from Martha Ellen Stilwell School of the Arts in Georgia, for her protector “Nine,” who dons a nanosuit for strength to save a kidnapping victim.

All weekend, the students displayed their superheroes and described the nanoscience behind them to thousands of attendees at the 2016 USA Science & Engineering Festival in Washington, D.C.

“All three finalists immersed themselves in the worlds of nanotechnology and art, told a great story, entertained and educated — all at the same time,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “Their creations will surely motivate additional students to imagine and learn more about what is possible with nanotechnology.”

Top award winners in this competition show that with imagination and nanotechnology, possibilities abound, said Mihail C. Roco, NSF senior advisor for science and engineering and a key architect of NNI.

“These school students have aimed higher than ever in their lives, pushing their abilities in novel domains where seeds for their high-tech future may germinate,” Roco said. “We need a constant regeneration of new talent to exploit this general purpose science and technology field to its outstanding potential. These students are well on their way.”

Competition details

NSF and NNI challenges students to submit written entries explaining their superhero and nanotechnology-driven gear, along with a one-page comic or 90-second video. A panel of judges from academia and multimedia platforms selected semifinalists and finalists, from which the public selected Madeline Chang as its People’s Choice winner.

Top prizes were determined by judges Elise Lemle, director of special projects at Two Bit Circus; Lizabeth Fogel, director of Education for the Walt Disney Company and Chair of the Board for the Partnership for 21st Century Learning; and James Murday, director of physical sciences at the University of Southern California’s Washington, D.C., office of research advancement.

Visit the Generation Nano competition website for competition details such as eligibility criteria, entry guidelines, timeline, prizes and videos/comics from the finalists and semifinalists. And stay tuned for information on next year’s competition.

Here’s a photo of Wil Wheaton officiating at the ceremony,

Actor, writer and blogger Wil Wheaton hosted the Gen Nano competition award ceremony.

Actor, writer and blogger Wil Wheaton hosted the Gen Nano competition award ceremony. Courtesy of the NSF.

Honestly, this could be anyone but there are videos of the ceremony featuring Wil Wheaton, each of the winner’s pieces, and Stan Lee attending the ceremony virtually (five videos in all).

Vote for* winner for Generation Nano: Small Science, Superheroes

The US National Science Foundation’s (NSF) contest “Generation Nano: Small Science, Superheroes” for high school students has whittled down the entries to three finalists and bringing them to Washington, DC where the winner will announced at the 2016 USA Science & Engineering Festival (April 16 – 17, 2016) according to a March 30, 2016 NSF news release,

The National Science Foundation (NSF) today announced the names of three finalists in its Generation Nano: Small Science, Superheroes competition, sponsored by NSF and its National Nanotechnology Initiative (NNI) and supported by many, including superhero legend Stan Lee.

High school students Madeleine Chang from Bergen County Academies in New Jersey, Vuong Mai from Martha Ellen Stilwell School of the Arts in Georgia and Eric Liu from Thomas Jefferson High School for Science and Technology in Virginia will come to Washington, D.C., to display their comics and compete for prizes at the 2016 USA Science & Engineering Festival in mid-April.

The competition drew submissions from all over the country. All responded to the call to think big — or in this case small — and use nanotechnology to empower their own original superheroes. Chang’s hero “Radio Blitz” disposes of local waste. Mai’s protector “Nine” dons a Nanosuit for strength to save a kidnapping victim. And Liu’s “Nanoman” fights the malignant crab-monster, “Cancer.”

“These three finalists tell a great story — all while they exemplify the combination of a sound technical basis for use of nanotechnology and artistic presentation,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “I think these comics will inspire other students to learn more about what is possible with nanotechnology.”

When it comes to applications for nanotechnology, “The possibilities abound,” said Mihail C. Roco, NSF senior advisor for science and engineering and key architect of NNI.

“Since these high school students were born, more discoveries have come from nanotechnology than any other field of science, with its discoveries penetrating all aspects of society — new industries, medicine, agriculture and the management of natural resources,” Roco said. “It is so exciting that these kids are getting in on the ground floor of progress. The competition inspires young people to dream high and create solutions in a way that may change their lives and those around them. We need this new talent; the future of emerging technologies, including nanotechnology depends on it.”

Those of us who cannot attend the festival, can vote online,

And remember to vote for your favorite from April 7 to 15.

*ETA March 31, 2016 at 1115 hours PDT: The vote link from the news release does not seem to be operational presumably since we the voting period doesn’t start until April 7, 2016.

Congratulations to the three finalists!

*’or’ switched to ‘for’  in the headline at 1110 hours PDT on March 31, 2016.

A study in contrasts: innovation and education strategies in US and British Columbia (Canada)

It’s always interesting to contrast two approaches to the same issue, in this case, innovation and education strategies designed to improve the economies of the United States and of British Columbia, a province in Canada.

One of the major differences regarding education in the US and in Canada is that the Canadian federal government, unlike the US federal government, has no jurisdiction over the matter. Education is strictly a provincial responsibility.

I recently wrote a commentary (a Jan. 19, 2016 posting) about the BC government’s Jan. 18, 2016 announcement of its innovation strategy in a special emphasis on the education aspect. Premier Christy Clark focused largely on the notion of embedding courses on computer coding in schools from K-12 (kindergarten through grade 12) as Jonathon Narvey noted in his Jan. 19, 2016 event recap for Betakit,

While many in the tech sector will be focused on the short-term benefits of a quick injection of large capital [a $100M BC Tech Fund as part of a new strategy was announced in Dec. 2015 but details about the new #BCTECH Strategy were not shared until Jan. 18, 2016], the long-term benefits for the local tech sector are being seeded in local schools. More than 600,000 BC students will be getting basic skills in the K-12 curriculum, with coding academies, more work experience electives and partnerships between high school and post-secondary institutions.

Here’s what I had to say in my commentary (from the Jan. 19, 2016 posting),

… the government wants to embed  computer coding into the education system for K-12 (kindergarten to grade 12). One determined reporter (Canadian Press if memory serves) attempted to find out how much this would cost. No answer was forthcoming although there were many words expended. Whether this failure was due to ignorance (disturbing!) or a reluctance to share (also disturbing!) was impossible to tell. Another reporter (Georgia Straight) asked about equipment (coding can be taught with pen and paper but hardware is better). … Getting back to the reporter’s question, no answer was forthcoming although the speaker was loquacious.

Another reporter asked if the government had found any jurisdictions doing anything similar regarding computer coding. It seems they did consider other jurisdictions although it was claimed that BC is the first to strike out in this direction. Oddly, no one mentioned Estonia, known in some circles as E-stonia, where the entire school system was online by the late 1990s in an initiative known as the ‘Tiger Leap Foundation’ which also supported computer coding classes in secondary school (there’s more in Tim Mansel’s May 16, 2013 article about Estonia’s then latest initiative to embed computer coding into grade school.) …

Aside from the BC government’s failure to provide details, I am uncomfortable with what I see as an overemphasis on computer coding that suggests a narrow focus on what constitutes a science and technology strategy for education. I find the US approach closer to what I favour although I may be biased since they are building their strategy around nanotechnology education.

The US approach had been announced in dribs and drabs until recently when a Jan. 26, 2016 news item on Nanotechnology Now indicated a broad-based plan for nanotechnology education (and computer coding),

Over the past 15 years, the Federal Government has invested over $22 billion in R&D under the auspices of the National Nanotechnology Initiative (NNI) to understand and control matter at the nanoscale and develop applications that benefit society. As these nanotechnology-enabled applications become a part of everyday life, it is important for students to have a basic understanding of material behavior at the nanoscale, and some states have even incorporated nanotechnology concepts into their K-12 science standards. Furthermore, application of the novel properties that exist at the nanoscale, from gecko-inspired climbing gloves and invisibility cloaks, to water-repellent coatings on clothes or cellphones, can spark students’ excitement about science, technology, engineering, and mathematics (STEM).

An earlier Jan. 25, 2016 White House blog posting by Lisa Friedersdorf and Lloyd Whitman introduced the notion that nanotechnology is viewed as foundational and a springboard for encouraging interest in STEM (science, technology, engineering, and mathematics) careers while outlining several formal and information education efforts,

The Administration’s updated Strategy for American Innovation, released in October 2015, identifies nanotechnology as one of the emerging “general-purpose technologies”—a technology that, like the steam engine, electricity, and the Internet, will have a pervasive impact on our economy and our society, with the ability to create entirely new industries, create jobs, and increase productivity. To reap these benefits, we must train our Nation’s students for these high-tech jobs of the future. Fortunately, the multidisciplinary nature of nanotechnology and the unique and fascinating phenomena that occur at the nanoscale mean that nanotechnology is a perfect topic to inspire students to pursue careers in science, technology, engineering, and mathematics (STEM).

The Nanotechnology: Super Small Science series [mentioned in my Jan. 21, 2016 posting] is just the latest example of the National Nanotechnology Initiative (NNI)’s efforts to educate and inspire our Nation’s students. Other examples include:

The announcement about computer coding and courses being integrated in the US education curricula K-12 was made in US President Barack Obama’s 2016 State of the Union speech and covered in a Jan. 30, 2016 article by Jessica Hullinger for Fast Company,

In his final State Of The Union address earlier this month, President Obama called for providing hands-on computer science classes for all students to make them “job ready on day one.” Today, he is unveiling how he plans to do that with his upcoming budget.

The President’s Computer Science for All Initiative seeks to provide $4 billion in funding for states and an additional $100 million directly to school districts in a push to provide access to computer science training in K-12 public schools. The money would go toward things like training teachers, providing instructional materials, and getting kids involved in computer science early in elementary and middle school.

There are more details in the Hullinger’s article and in a Jan. 30, 2016 White House blog posting by Megan Smith,

Computer Science for All is the President’s bold new initiative to empower all American students from kindergarten through high school to learn computer science and be equipped with the computational thinking skills they need to be creators in the digital economy, not just consumers, and to be active citizens in our technology-driven world. Our economy is rapidly shifting, and both educators and business leaders are increasingly recognizing that computer science (CS) is a “new basic” skill necessary for economic opportunity and social mobility.

CS for All builds on efforts already being led by parents, teachers, school districts, states, and private sector leaders from across the country.

Nothing says one approach has to be better than the other as there’s usually more than one way to accomplish a set of goals. As well, it’s unfair to expect a provincial government to emulate the federal government of a larger country with more money to spend. I just wish the BC government (a) had shared details such as the budget allotment for their initiative and (b) would hint at a more imaginative, long range view of STEM education.

Going back to Estonia one last time, in addition to the country’s recent introduction of computer coding classes in grade school, it has also embarked on a nanotechnology/nanoscience educational and entrepreneurial programme as noted in my Sept. 30, 2014 posting,

The University of Tartu (Estonia) announced in a Sept. 29, 2014 press release an educational and entrepreneurial programme about nanotechnology/nanoscience for teachers and students,

To bring nanoscience closer to pupils, educational researchers of the University of Tartu decided to implement the European Union LLP Comenius project “Quantum Spin-Off – connecting schools with high-tech research and entrepreneurship”. The objective of the project is to build a kind of a bridge: at one end, pupils can familiarise themselves with modern science, and at the other, experience its application opportunities at high-tech enterprises. “We also wish to inspire these young people to choose a specialisation related to science and technology in the future,” added Lukk [Maarika Lukk, Coordinator of the project].

The pupils can choose between seven topics of nanotechnology: the creation of artificial muscles, microbiological fuel elements, manipulation of nanoparticles, nanoparticles and ionic liquids as oil additives, materials used in regenerative medicine, deposition and 3D-characterisation of atomically designed structures and a topic covered in English, “Artificial robotic fish with EAP elements”.

Learning is based on study modules in the field of nanotechnology. In addition, each team of pupils will read a scientific publication, selected for them by an expert of that particular field. In that way, pupils will develop an understanding of the field and of scientific texts. On the basis of the scientific publication, the pupils prepare their own research project and a business plan suitable for applying the results of the project.

In each field, experts of the University of Tartu will help to understand the topics. Participants will visit a nanotechnology research laboratory and enterprises using nanotechnologies.

The project lasts for two years and it is also implemented in Belgium, Switzerland and Greece.

As they say, time will tell.