Tag Archives: Steffen Foss Hansen

Life-cycle assessment for electric vehicle lithium-ion batteries and nanotechnology is a risk analysis

A May 29, 2013 news item on Azonano features a new study for the US Environmental Protection Agency (EPA) on nanoscale technology and lithium-ion (li-ion) batteries for electric vehicles,

Lithium (Li-ion) batteries used to power plug-in hybrid and electric vehicles show overall promise to “fuel” these vehicles and reduce greenhouse gas emissions, but there are areas for improvement to reduce possible environmental and public health impacts, according to a “cradle to grave” study of advanced Li-ion batteries recently completed by Abt Associates for the U.S. Environmental Protection Agency (EPA).

“While Li-ion batteries for electric vehicles are definitely a step in the right direction from traditional gasoline-fueled vehicles and nickel metal-hydride automotive batteries, some of the materials and methods used to manufacture them could be improved,” said Jay Smith, an Abt senior analyst and co-lead of the life-cycle assessment.

Smith said, for example, the study showed that the batteries that use cathodes with nickel and cobalt, as well as solvent-based electrode processing, show the highest potential for certain environmental and human health impacts. The environmental impacts, Smith explained, include resource depletion, global warming, and ecological toxicity—primarily resulting from the production, processing and use of cobalt and nickel metal compounds, which can cause adverse respiratory, pulmonary and neurological effects in those exposed.

There are viable ways to reduce these impacts, he said, including cathode material substitution, solvent-less electrode processing and recycling of metals from the batteries.

The May 28, 2013 Abt Associates news release, which originated the news item, describes some of the findings,

Among other findings, Shanika Amarakoon, an Abt associate who co-led the life-cycle assessment with Smith, said global warming and other environmental and health impacts were shown to be influenced by the electricity grids used to charge the batteries when driving the vehicles.
“These impacts are sensitive to local and regional grid mixes,” Amarakoon said.  “If the batteries in use are drawing power from the grids in the Midwest or South, much of the electricity will be coming from coal-fired plants.  If it’s in New England or California, the grids rely more on renewables and natural gas, which emit less greenhouse gases and other toxic pollutants.” However,” she added, “impacts from the processing and manufacture of these batteries should not be overlooked.”
In terms of battery performance, Smith said that “the nanotechnology applications that Abt assessed were single-walled carbon nanotubes (SWCNTs), which are currently being researched for use as anodes as they show promise for improving the energy density and ultimate performance of the Li-ion batteries in vehicles.  What we found, however, is that the energy needed to produce the SWCNT anodes in these early stages of development is prohibitive. Over time, if researchers focus on reducing the energy intensity of the manufacturing process before commercialization, the environmental profile of the technology has the potential to improve dramatically.”

Abt’s Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles can be found here, all 126 pp.

This assessment was performed under the auspices of an interesting assortment of agencies (from the news release),

The research for the life-cycle assessment was undertaken through the Lithium-ion Batteries and Nanotechnology for Electric Vehicles Partnership, which was led by EPA’s Design for the Environment Program in the Office of Chemical Safety and Pollution Prevention and Toxics, and EPA’s National Risk Management Research Laboratory in the Office of Research and Development.  [emphasis mine] The Partnership also included industry partners (i.e., battery manufacturers, recyclers, and suppliers, and other industry groups), the Department of Energy’s Argonne National Lab, Arizona State University, and the Rochester Institute of Technology

I highlighted the National Risk Management Research Laboratory as it reminded me of the lithium-ion battery fires in airplanes reported in January 2013. I realize that cars and planes are not the same thing but lithium-ion batteries have some well defined problems especially since the summer of 2006 when there was a series of li-ion battery laptop fires. From Tracy V. Wilson’s What causes laptop batteries to overheat? article for How stuff works.com (Note: A link has been removed),

In conjunction with the United States Consumer Product Safety Commission (CPSC), Dell and Apple Computer announced large recalls of laptop batteries in the summer of 2006, followed by Toshiba and Lenovo. Sony manufactured all of the recalled batteries, and in October 2006, the company announced its own large-scale recall. Under the right circumstances, these batteries could overheat, potentially causing burns, an explosion or a fire.

Larry Greenemeier in a Jan. 17, 2013 article for Scientific American offers some details about the lithium-ion battery fires in airplanes and elsewhere,

Boeing’s Dreamliner has likely become a nightmare for the company, its airline customers and regulators worldwide. An inflight lithium-ion battery fire broke out Wednesday [Jan. 16, 2013] on an All Nippon Airways 787 over Japan, forcing an emergency landing. And another battery fire occurred last week aboard a Japan Airlines 787 at Boston’s Logan International Airport. Both battery failures resulted in release of flammable electrolytes, heat damage and smoke on the aircraft, according to the U.S. Federal Aviation Administration (FAA).

Lithium-ion batteries—used to power mobile phones, laptops and electric vehicles—have summoned plenty of controversy during their relatively brief existence. Introduced commercially in 1991, by the mid 2000s they had become infamous for causing fires in laptop computers.

More recently, the plug-in hybrid electric Chevy Volt’s lithium-ion battery packs burst into flames following several National Highway Traffic Safety Administration (NHTSA) tests to measure the vehicle’s ability to protect occupants from injury in a side collision. The NHTSA investigated and concluded in January 2012 that Chevy Volts and other electric vehicles do not pose a greater risk of fire than gasoline-powered vehicles.

Philip E. Ross in his Jan. 18, 2013 article about the airplane fires for IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum provides some insight into the fires,

It seems that the batteries heated up in a self-accelerating pattern called thermal runaway. Heat from the production of electricity speeds up the production of electricity, and… you’re off. This sort of things happens in a variety of reactions, not just in batteries, let alone the Li-ion kind. But thermal runaway is particularly grave in Li-ion batteries because they pack a lot more power than the tried-and-true metal-hydride ones, not to speak of Ye Olde lead-acid.

It’s because of this very quality that Li-ion batteries found their first application in small mobile devices, where power is critical and fires won’t cost anyone his life. It’s also why it took so long for the new tech to find its way into electric and hybrid-electric cars.

Perhaps it would have been wiser of Boeing to go for the safest possible Li-ion design, even if it didn’t have quite as much oomph as possible. That’s what today’s main-line electric-drive cars do, as our colleague, John Voelcker, points out.

“The cells in the 787 [Dreamliner], from Japanese company GS Yuasa, use a cobalt oxide (CoO2) chemistry, just as mobile-phone and laptop batteries do,” he writes in greencarreports.com. “That chemistry has the highest energy content, but it is also the most susceptible to overheating that can produce “thermal events” (which is to say, fires). Only one electric car has been built in volume using CoO2 cells, and that’s the Tesla Roadster. Only 2,500 of those cars will ever exist.” Most of today’s electric cars, Voelcker adds, use chemistries that trade some energy density for safety.

The Dreamliner (Boeing 787) is designed to be the lightest of airplanes and using a more energy dense but safer lithium-ion battery seems not to have been an acceptable trade-off.  Interestingly, Boeing according to Ross still had a backlog of orders after the fires.

I find that some of the discussion about risk and nanotechnology-enabled products oddly disconnected. There are the concerns about what happens at the nanoscale (environmental implications, etc.) but that discussion is divorced from some macroscale issues such as battery fires. Taken to absurd lengths, technology at the nanoscale could be considered safe while macroscale issues are completely ignored. It’s as if our institutions are not yet capable of managing multiple scales at once.

For more about an emphasis on scale and other minutiae (pun intended), there’s my May 28, 2013 posting about Steffen Foss Hansen’s plea to revise current European Union legislation to create more categories for nanotechnology regulation, amongst other things.

For more about airplanes and their efforts to get more energy efficient, there’s my May 27, 2013 posting about a biofuel study in Australia.

What do you do with a problem like regulating nanotechnology risks?

You get points for recognizing the “Sound of Music’ reference. Of course, the points aren’t useful for anything, which leads me in a roundabout way to Michael Berger’s fascinating May 28, 2013 Nanowerk Spotlight article, Does the EU’s chemical regulation sufficiently address nanotechnology risks? It’s a digest of a discussion, published in Nature Nanotechnology’s May 2013 issue, about nanotechnology regulations in light of the European Commission’s (EC; a unit in the European Union structure) Second Regulatory Review on Nanomaterials.

Berger summarizes Steffen Foss Hansen’s The European Union’s chemical legislation needs revision (article is behind a paywall) and Antonio Tajani’s response to Hansen, Substance identification of nanomaterials not key to ensuring their safe use (article is behind a paywall; Note: Links have been removed from the following excerpt),

The European Union’s chemical legislation known as REACH needs revision argues Steffen Foss Hansen, Associate Professor at DTU Environment, Technical University of Denmark. In a correspondence to the Editor of Nature Nanotechnology (“The European Union’s chemical legislation needs revision”), Hansen argues that REACH needs to be revised in three major areas.

First of all, a distinction needs to be made in the legal text of REACH between the bulk and the nano form of a given material and Hansen argues that the European Commission should acknowledge that nanomaterials cannot be identified solely by chemical composition. Additional main identifiers (such as primary particle size distribution, shape – including aspect ratio – specific surface area and surface treatment) are needed as this is the only manner in which it can be made clear that the properties and behavior of nanomaterials differ fundamentally from each other and from the bulk material.

In a response to Hansen’s Correspondence, Antonio Tajani, Vice-President of the European Commission and Commissioner for Industry and Entrepreneurship, writes that substance identification of nanomaterials is not key to ensuring their safe use (“Substance identification of nanomaterials not key to ensuring their safe use”).

Tajani argues that substance identification is only one element and that trying to identify unambiguous rules for substance identification is probably elusive and might result in ever more complex rules on what is considered as the same substance as opposed to different substances, without necessarily resulting in more safety of nanomaterials. Instead, Tajani and the European Commission wish to focus on clarifying what is needed to demonstrate the safe use while also noting that the implementation of regulatory changes would take several years and hence is not desirable.

As per my Oct. 25, 2011 posting (Nanoparticle size doesn’t matter), my thinking on environmental, health, and safety issues regarding engineered nanomaterials has been in the process of change and I note that focusing on the size, shape, and other factors would make regulation next to impossible. So, I’m inclined to agree with Tajani’s arguments that trying to develop “unambiguous rules for substance identification” is not a worthwhile approach to dealing with any EHS issues that nanomaterials may present and will likely prove futile in the same way as gaining points for recognizing my attempted ‘Sound of Music’ reference.

I assume that Tajani and Hansen are referring to engineered nanomaterials as opposed to naturally occurring nanomaterials. (I too forget to specify but unless otherwise noted I’m usually referring to engineered nanomaterials.)

For me, two of the most compelling issues that Hansen presents revolve around a lack of data and standardized testing (from Hansen’s article in Nature),

… there are few measured exposure data and that few environmental fate and behaviour studies are available. …

… there are currently no standardized (eco)toxicity test guidelines in use …

I do wonder how many the word ‘few’ represents as I’m reminded of the plethora of studies on silver nanoparticles and on long, multi-walled carbon nanotubes. Certainly, they are attempting to address the situation regarding consistent testing protocols in the US as per my May 8, 2013 post about the NanoGo Consortium. Perhaps the EC folks could consider using these protocols as a model for a European version?  I assume that Hansen is commenting on a broader, European-inflected picture rather than the piecemeal, ‘globalish’ picture I have formed from my meanderings in the nanosphere.

Hansen also points this out in his Nature article (Note: Footnotes have been removed),

Another disturbing aspect of the Second Regulatory Review on Nanomaterials is that it focuses only on first-generation nanomaterials (that is, passive nanostructures such as nanoparticles). The Staff Working Paper acknowledges that second- and third-generation nanomaterials (for example, targeted drug-delivery systems and novel robotic devices) are entering early stages of market development, …

I’m beginning to find the discussion about definitions and resultant regulations wearing and am coming to the conclusion that the focus should be on bringing the information already gathered together, standardizing tests, determining what is  known and not known, and establishing some forward momentum.

Toxicology convo heats up: OECD releases report on inhalation toxicity testing and Nature Nanotechnology publishes severe critique of silver toxicity overanalysis

This has to be one of the rawest reports I’ve seen and that’s not a criticism. The OECD (Organization for Economic Cooperation and Development) has released no. 35 in its Series on the Safety of Manufactured Nanomaterials titled, INHALATION TOXICITY TESTING: EXPERT MEETING ON POTENTIAL REVISIONS TO OECD TEST GUIDELINES AND GUIDANCE DOCUMENT.

This report is the outcome of a meeting which took place in fall 2011 according to the July 4, 2012 news item on Nanowerk,

The expert meeting on Inhalation Toxicity Testing for Nanomaterials was held on 19-20 October 2011 in The Hague, hosted by the Netherlands, with the aim of discussing the results of the OECD Sponsorship Programme (under the responsibility of SG3) on this specific topic and addressing issues relevant to inhalation toxicity. Fifty experts from the WPMN as well as the OECD Working Group of the National Coordinators for the Test Guidelines programme (WNT) participated in the meeting.

This is a partial list of recommendations from the report,

Recommendations raised by the speakers for the discussion

7. Various recommendations were raised by the speakers that served as points for discussion. These recommendations do not necessarily reflect a general agreement. …

• “Provide explicit guidance for the generation of aerosols (sample preparation) based on the exposure scenario”. Hans Muijser

• “Generation of a test atmosphere should have workplace characteristics, but should be adapted to adjust for rodent respirability”. Günter Oberdörster

• “A choice for a dry aerosol or a liquid aerosol should depend on the given test substance and planned test approach (hazard- or risk driven)”. Otto Creutzenberg

• “Aerosol characterization should include size distribution, mass, number and morphology of the material”. Günter Oberdörster

• “Mass concentration is not sufficient for comparison of nanomaterials of the same chemical composition”. Flemming Cassee

• “Dry powders will appear as agglomerate upon aerosolization, which needs to be addressed in the sample preparation guidelines”. Flemming Cassee

• “Dissolution behaviour of the test substance should be assessed in physiological fluids mimicking various lung-specific pH ambiences (neutral, acid)”. Otto Creutzenberg

• “Data analysis should include interpretation of aerosol characteristics, NOAEL, risk assessment implications, mode of action and a strategy for dosimetric extrapolation to humans. The inclusion of biokinetic data is important”. Günter Oberdörster

• “Include biokinetics in the guidance, since different distribution patterns in the whole organism are likely dependent on physicochemical characteristics of nanoparticle aerosols and the dose at the target site will therefore be different. This will allow the assessment of accumulation of nanomaterials in the body at low exposure levels and long-term exposure. A way to perform it is by radiolabelled materials, chemical elemental analysis to determine organ concentrations and transmission electron microscopy”. Wolfgang Kreyling. Others who have suggested inclusion of biokinetics or recognized the importance were Otto Creutzenberg, Frieke Kuper, Günter Oberdörster and David Warheit. (p. 13)

You actually see who made the recommendations! Speakers discussed carbon nanotubes, titanium dioxide, cerium oxide, zinc oxide and more, all of which you can read about in summary form in this 38 pp. report.

Meanwhile, Nature Nanotechnology has published an incendiary commentary about nanosilver and the latest request by the European Commission for another study.  Michael Berger has devoted a July 4, 2012 Nanowerk Spotlight article to the commentary,

A commentary by Steffen Foss Hansen and Anders Baun in this week’s Nature Nanotechnology (“When enough is enough”  [behind a paywall]) pointedly asks “when will governments and regulatory agencies stop asking for more reports and reviews, and start taking regulatory action?”

Hansen and Baun, both from the Technical University of Denmark’s Department of Environmental Engineering, take issue with yet another scientific opinion on nanosilver that has been requested by the European Commission in late 2011: “SCENIHR – Request for a scientific opinion on Nanosilver: safety, health and environmental effects and role in antimicrobial resistance” (pdf). Specifically, the EC wants SCENIHR to answer four questions under the general heading of ‘Nanosilver: safety, health and environmental effects, and role in antimicrobial resistance’.

“Most of these questions – and possibly all of them – have already been addressed by no less than 18 review articles in scientific journals, the oldest dating back to 2008, plus at least seven more reviews and reports commissioned and/or funded by governments and other organizations” Hansen tells Nanowerk. “Many of these reviews and reports go through the same literature, cover the same ground and identify many of the same data gaps and research needs.”

Here’s a prediction from Hansen and Baun as to what will be in the next report due in 2013  (from the Nature Nanotechnology commentary When enough is enough in 7, 409–411 (2012) published online  July 1, 2012 [Note: I have removed links and footnotes]),

… we predict that the SCENIHR’s upcoming review will consist of five main sections summarizing: the properties and uses of nanosilver; human and environmental toxicity; microbial resistance; risk assessment; and research needs. We also predict that the SCENIHR’s report will say something along the following lines: “Nanosilver is reportedly one of the most widely used nanomaterials in consumer products today but the scale of production and use is unknown. The antibacterial properties of nanosilver are exploited in a very diverse set of products and applications including dietary supplements, personal care products, powdered colours, textile, paper, kitchenware and food storage.” And like many previous reviews and reports, the new report is likely to cite the Consumer Product Inventory maintained by the Project on Emerging Nanotechnologies.

We acknowledge that answering the question of how to regulate the use of nanosilver is not easy given the different views of the different stakeholders in this debate and the complex regulatory landscape associated with the many applications of nanosilver. …

Arguably, we all want that the pros and cons of regulatory policy options be based on the best available science while taking broader socio-economical and ethical aspects into consideration before deciding on the appropriate regulatory measures concerning human and environmental exposure to nanosilver. Although it is common for independent scientific experts to be commissioned to gather, analyse and review the available scientific information, and to provide recommendations on how to address a given risk, we do not see the need for further reviews. It is time for the European Commission to decide on the regulatory measures that are appropriate for nanosilver. These measures should then be implemented wholeheartedly and their effectiveness monitored.

I predict this commentary will provoke some interesting responses and I will try to add the ones I can find to this posting as they become available.

ETA July 6, 2012: Dexter Johnson weighed in with his July 5, 2012 posting (Note: I have removed a link),

What may make the matter even worse is that we may already have a pretty substantial framework—in the US, at least—on which to base nanosilver regulations, which dates back to the 1950s. It concerned what was called at the time collodial silver, which is essentially what today is called nanosilver.

But getting back to current stagnant state of affairs, it’s hard to know exactly what’s causing the paralysis. It could be concern over implementing regulations in a depressed economy, or just a fear of taking a position. But in both these instances, the lack of action is making the situation worse. …

Special issue on nanotechnology and regulations from EJLT

The European Journal of Law and Technology (EJLT) is featuring 15 articles on the theme of nanotechnology and regulations in a special issue. From the Dec. 12, 2011 news item on Nanowerk,

The issue contains 15 contributions that canvass some of the most pressing philosophical, ethical and regulatory questions currently being debated around the world in relation to nanotechnologies and more specifically nanomaterials.

The EJLT is an open access journal so you can view these articles or any others that may interest you. Here’s the Table of Contents for the special issue,

Table of Contents

Editorial

Editorial
Philip Leith, Abdul Paliwala

Introduction to the Special Issue

Why the elephant in the room appears to be more than a nano-sized challenge
Joel D’Silva, Diana Meagan Bowman

Nano Technology Special Edition

Decision Ethics and Emergent Technologies: The Case of Nanotechnology
David Berube
Justice or Beneficence: What Regulatory Virtue for Nano-Governance?
Hailemichael Teshome Demissie
Regulating Nanoparticles: the Problem of Uncertainty
Roger Strand, Kamilla Lein Kjølberg
Complexities of labelling of nanoproducts on the consumer markets
Harald Throne-Holst, Arie Rip
Soft regulation and responsible nanotechnological development in the European Union: Regulating occupational health and safety in the Netherlands
Bärbel Dorbeck-Jung
Nanomaterials and the European Water Framework Directive
Steffen Foss Hansen, Anders Baun, Catherine Ganzleben
The Proposed Ban on Certain Nanomaterials for Electrical and Electronic Equipment in Europe and Its Global Security Implications: A Search for an Alternative Regulatory Approach
Hitoshi Nasu, Thomas Faunce
The Regulation of Nano-particles under the European Biocidal Products Directive: Challenges for Effective Civil Society Participation
Michael T Reinsborough, Gavin Sullivan
Value chains as a linking-pin framework for exploring governance and innovation in nano-involved sectors: illustrated for nanotechnologies and the food packaging sector
Douglas Robinson
Food and nano-food within the Chinese regulatory system: no need to have overregulation.Less physicality can produce more power.
Margherita Poto
Regulation and Governance of Nanotechnology in China: Regulatory Challenges and Effectiveness
Darryl Stuart Jarvis, Noah Richmond
How Resilient is India to Nanotechnology Risks? Examining Current Developments, Capacities and an Approach for Effective Risk Governance and Regulation
Shilpanjali Deshpande Sarma
Toward Safe and Sustainable Nanomaterials: Chemical Information Call-in to Manufacturers of Nanomaterials by California as a Case Study
William Ryan, Sho Takatori, Thomas Booze, Hai-Yong Kang
De minimis curat lex: New Zealand law and the challenge of the very small
Colin Gavaghan, Jennifer Moore

I notice that the last article was authored by the same people who produced a review of New Zealand’s nanotechnology regulatory framework in Sept. 2011. The Science Media Centre of New Zealand noted this in a Sept. 6, 2011 article about the review,

The “Review of the Adequacy of New Zealand’s Regulatory Systems to Manage the Possible Impacts of Manufactured Nanomaterials” by Colin Gavaghan (in Dunedin) and Jennifer Moore (in Wellington) lists three possible levels of regulatory gaps, but points to a lack of consensus on just what constitutes a “gap”.

The authors note where such nanomaterials are not covered by existing regulation, and where these regulations are triggered by the presence of the nanomaterials. They focus on first and second generation products and say that as nanomaterials evolve, more work will need to be done on regulation.

“Some reviews of this topic have suggested that subsequent generations of nanotechnologies are likely to present a much more significant challenge to existing regulatory structures,” the authors say.

The EJLT special issue looks like it has a pretty interesting range of articles representing nanotechnology and regulations in various jurisdictions. I’m thrilled to see a couple of articles on China, one on India, and, of course, the piece on New Zealand as I don’t often find material on those countries. Thank you EJLT!

Intersection of philosophy, science policy, and nanotechnology regulation

After coming across a mention of John Rawls in a July 11, 2010 posting by Richard Jones (Soft Machines blog) and his (Rawls’) notions about how people and groups with diverse interests can come to agreements on social norms, I wondered why I hadn’t heard of Rawls before and how his thinking might apply to nanotechnology regulatory frameworks.

Assuming I might not be alone in my ignorance of Rawls’ work, here’s a brief description from a Wikipedia essay,

John Bordley Rawls (February 21, 1921 – November 24, 2002) was an American philosopher and a leading figure in moral and political philosophy. … His magnum opus, A Theory of Justice (1971), is now regarded as “one of the primary texts in political philosophy.”[1] His work in political philosophy, dubbed Rawlsianism,[2] takes as its starting point the argument that “most reasonable principles of justice are those everyone would accept and agree to from a fair position.”[1]

(The footnote details can be found by following the essay link.) I think the idea of people being able to come to agreements when they operate from a fair position is both interesting and seems to be borne out by a recent study in the US that Steffen Foss Hansen has recently published in the Journal of Nanoparticle Research. Michael Berger at Nanowerk has written an in depth article about the study and multicriteria mapping, the technique used to measure and evaluate interviewees’ positions on nanotechnology regulatory frameworks. From the Berger article,

Multicriteria Mapping [MCM] is a computer-based decision analysis technique that provides a way of appraising a series of different potential ways forward on a complex and controversial policy problem. Like other multicriteria approaches, it involves developing a set of criteria, evaluating the performance of each option under each criterion, and weighting each criterion according to its relative importance.

Hansen interviewed 26 stakeholders, including academics, public civil servants, corporate lawyers, [public interest groups,] and representatives from worker unions, industrial companies, and trade association.

One aspect of this research that I thought particularly useful is that the interviews are structured dynamically. From the study,

Once the criteria had been defined, the interviewee was asked to evaluate the relative performance of the different policy options on a numerical scale (0–100) under each of the criteria one-by-one. Zero representing the worst relative performance and a 100 the best. In order to allow for uncertainty in the estimation MCM allows the interviewee to give a range (e.g., 20–30) and to make worst- and best-case assumptions. The lowest values assigned to an option would then reflect the option considered under worst case assumptions whereas the highest would reflect the same option considered under best-case assumptions. Throughout this scoring process the interviewee was asked to explain the value or range assigned to options and assumptions made. One interview had to be terminated at this stage of the interview as the participant realized that he/she had yet to develop a formalized opinion on the most preferred options. Others expressed some dislike with having to put a numerical estimate on something which they normally only discuss in qualitative terms. Others again found it challenging to have to look at all the options through all their criteria scoring and explaining the scoring of up to 72 combinations of policy options and criteria. Normally they would not have to explain their position in such depth.  …  MCM is an iterative process, so interviewees were free to return to review earlier steps of the process at any stage of the interview. (Journal of Nanoparticle Research, vol. 12, p. 1963)

Bravo to the interviewees for going through a demanding process and putting their opinions to the test. Also, I understood from reading the study that MCM captures both quantitative (as the preceding excerpt shows) and qualitative data, an approach I’ve always favoured.

Berger’s article goes on to discuss the results from the study,

“Adopting an incremental approach and implementing a new regulatory framework have been evaluated as the best options whereas a complete ban and no additional regulation of nanotechnology were the least favorable” Hansen explains the key findings to Nanowerk.

Participants described their idea of an ‘incremental approach’ as “…launching an incremental process using existing legislative structures—e.g., dangerous substances legislation, classification and labeling, cosmetic legislation, etc.—to the maximum, revisiting them, and, when appropriate only, amending them…” and a ‘new regulatory framework’ as “…launching a comprehensive, in-depth regulatory process specific to nanotechnologies that aims at developing an entirely new legislative framework that tries to take all the widely different nanomaterials and applications into consideration.”

Hansen notes that comparing the ranking of the various options by the stakeholder groups reveals that an incremental approach was ranked highest by a majority of the various stakeholder groups e.g. civil servants, public interest groups, industrial company representatives and corporate lawyers.

Who would have thought that the most extreme ends of opinion as represented by public interest groups that usually favour the precautionary principle and industrial company representatives who argue in favour of little or voluntary regulation could agree on an incremental approach? I suppose it gets back to Rawls and his notion of coming to an agreement from “a fair position.”

More work needs to be done, it’s a single study, only 26 interviews took place, the MCM is a snapshot of a moment in time and may no longer reflect the interviewee’s personal opinions, and the regulatory situation in the US has changed since these interviews took place. Still, with all these caveats, and I’m sure there are others, the study offers encouraging news about diverse groups being able to come to an agreement on the subject of nanotechnology regulatory frameworks.