Tag Archives: STM

Nanocar Race winners!

In fact, there was a tie although it seems the Swiss winners were a little more excited. A May 1, 2017 news item on swissinfo.ch provides fascinating detail,

“Swiss Nano Dragster”, driven by scientists from Basel, has won the first international car race involving molecular machines. The race involved four nano cars zipping round a pure gold racetrack measuring 100 nanometres – or one ten-thousandth of a millimetre.

The two Swiss pilots, Rémy Pawlak and Tobias Meier from the Swiss Nanoscience Institute and the Department of Physicsexternal link at the University of Basel, had to reach the chequered flag – negotiating two curves en route – within 38 hours. [emphasis mine*]

The winning drivers, who actually shared first place with a US-Austrian team, were not sitting behind a steering wheel but in front of a computer. They used this to propel their single-molecule vehicle with a small electric shock from a scanning tunnelling microscope.

During such a race, a tunnelling current flows between the tip of the microscope and the molecule, with the size of the current depending on the distance between molecule and tip. If the current is high enough, the molecule starts to move and can be steered over the racetrack, a bit like a hovercraft.

….

The race track was maintained at a very low temperature (-268 degrees Celsius) so that the molecules didn’t move without the current.

What’s more, any nudging of the molecule by the microscope tip would have led to disqualification.

Miniature motors

The race, held in Toulouse, France, and organised by the National Centre for Scientific Research (CNRS), was originally going to be held in October 2016, but problems with some cars resulted in a slight delay. In the end, organisers selected four of nine applicants since there were only four racetracks.

The cars measured between one and three nanometres – about 30,000 times smaller than a human hair. The Swiss Nano Dragster is, in technical language, a 4′-(4-Tolyl)-2,2′:6′,2”-terpyridine molecule.

The Swiss and US-Austrian teams outraced rivals from the US and Germany.

The race is not just a bit of fun for scientists. The researchers hope to gain insights into how molecules move.

I believe this Basel University .gif is from the race,

*Emphasis added on May 9, 2017 at 12:26 pm PT. See my May 9, 2017 posting: Nanocar Race winners: The US-Austrian team for the other half of this story.

Nature celebrates some nanotechnology anniversaries

An April 5, 2016 editorial in Nature magazine celebrates some nanotechnology milestones (Note: Links have been removed),

In March 1986, the atomic force microscope (AFM) was introduced by Gerd Binnig, Calvin Quate and Christoph Gerber with a paper in the journal Physical Review Letters titled simply ‘Atomic force microscope’1. This was 5 years (to the month) after the precursor to the AFM, the scanning tunnelling microscope (STM), had first been successfully tested at IBM’s Zurich Research Laboratory by Binnig and the late Heinrich Rohrer, and 7 months before Binnig and Rohrer were awarded a share of the Nobel Prize in Physics for the design of the STM (the prize was shared with Ernst Ruska, the inventor of the electron microscope). Achieving atomic resolution with the AFM proved more difficult than with the STM. It was, for example, only two years after its invention that the STM provided atomic-resolution images of an icon of surface science, the 7 × 7 surface reconstruction of Si(111) (ref. 2), whereas it took 8 years to achieve a similar feat with the AFM3, 4.

The editorial also provides an explanation of how the AFM works,

The AFM works by scanning a sharp tip attached to a flexible cantilever across a sample while measuring the interaction between the tip and the sample surface. The technique can operate in a range of environments, including in liquid and in air, and unlike the STM, it can be used with insulating materials; in their original paper, Binnig and colleagues used the instrument to analyse an aluminium oxide sample.

Then, the editorial touches on DNA (deoxyribonucleic acid) nanotechnology (Note: Links have been removed),

The history of structural DNA nanotechnology can, like the AFM, be traced back to the early 1980s, when Nadrian Seeman suggested that the exquisite base-pairing rules of DNA could be exploited to build artificial self-assembled structures11. But the founding experiment of the field came later. In April 1991, Seeman and Junghuei Chen reported building a cube-like molecular complex from DNA using a combination of branched junctions and single-stranded ‘sticky’ ends12. A range of significant advances soon followed, from 2D DNA arrays to DNA-based nanomechanical devices.

Then, in March 2006, the field of structural DNA nanotechnology experienced another decisive moment: Paul Rothemund reported the development of DNA origami13. This technique involves folding a long single strand of DNA into a predetermined shape with the help of short ‘staple’ strands. Used at first to create 2D structures, which were incidentally characterized using the AFM, the approach was quickly expanded to the building of intricate 3D structures and the organization of other species such as nanoparticles and proteins. …

Happy reading!

Characterizing anatase titanium dixoide at the nanoscale

An international collaboration of researchers combined atomic force microscopy (AFM) and scanning tunneling microscopy (STM) to characterize anatase titanium dixoxide. From a Sept. 14, 2015 news item on Azonano,

A [Japan National Institute for Materials Science] NIMS research team successfully identified the atoms and common defects existing at the most stable surface of the anatase form of titanium dioxide by characterizing this material at the atomic scale with scanning probe microscopy. This work was published under open access policy in the online version of Nature Communications on June 29, 2015.

A June 29, 2015 NIMS press release, which originated the news item, includes the paper’s abstract in numbered point form,

  1. The research team consisting of Oscar Custance and Tomoko Shimizu, group leader and senior scientist, respectively, at the Atomic Force Probe Group, NIMS, Daisuke Fujita and Keisuke Sagisaka, group leader and senior researcher, respectively, at the Surface Characterization Group, NIMS, and scientists at Charles University in the Czech Republic, Autonomous University of Madrid in Spain, and other organizations combined simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) measurements with first-principles calculations for the unambiguous identification of the atomic species at the most stable surface of the anatase form of titanium dioxide (hereinafter referred to as anatase) and its most common defects.
  2. In recent years, anatase has attracted considerable attention, because it has become a pivotal material in devices for photo-catalysis and for the conversion of solar energy to electricity. It is extremely challenging to grow large single crystals of anatase, and most of the applications of this material are in the form of nano crystals. To enhance the catalytic reactivity of anatase and the efficiency of devices for solar energy conversion based on anatase, it is critical to gain in-depth understanding and control of the reactions taking place at the surface of this material down to the atomic level. Only a few research groups worldwide possess the technology to create proper test samples and to make in-situ atomic-level observations of anatase surfaces.
  3. In this study, the research team used samples obtained from anatase natural single crystals extracted from naturally occurring anatase rocks. The team characterized the (101) surface of anatase at atomic level by means of simultaneous AFM and STM. Using single water molecules as atomic markers, the team successfully identified the atomic species of this surface; result that was additionally confirmed by the comparison of simultaneous AFM and STM measurements with the outcomes of first-principles calculations.
  4. In regular STM, in which an atomically sharp probe is scanned over the surface by keeping constant an electrical current flowing between them, it is difficult to stably image anatase surfaces as this material presents poor electrical conductivity over some of the atomic positions of the surface. However, simultaneous operation of AFM and STM allowed imaging the surface with atomic resolution even within the materials band gap (a region where the flow of current between the probe and the surface is, in principle, prohibited). Here, the detection of inter-atomic forces between the last atom of the atomically sharp probe and the atoms of the surface by AFM was of crucial importance. By regulating the probe-surface distance using AFM, it was possible to image the surface at atomic-scale while collecting STM data over both conductive and not conductive areas of the surface. By comparing simultaneous AFM and STM measurements with theoretical simulations, the team was not only able to discern which atomic species were contributing to the AFM and the STM images but also to identify the most common defects found at the surface.
  5. In the future, based on the information gained from this study, the NIMS research team will conduct research on molecules of technologically relevance that adsorb on anatase and characterize these hybrid systems by using simultaneous AFM and STM. Their ultimate goal is to formulate novel approaches for the development of photo-catalysts and solar cell materials and devices.

Here’s a link to and a citation for the paper,

Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy by Oleksandr Stetsovych, Milica Todorović, Tomoko K. Shimizu, César Moreno, James William Ryan, Carmen Pérez León, Keisuke Sagisaka, Emilio Palomares, Vladimír Matolín, Daisuke Fujita, Ruben Perez, & Oscar Custance. Nature Communications 6, Article number: 7265 doi:10.1038/ncomms8265 Published 29 June 2015

This is an open access paper.

Molecules (arynes) seen for first time in 113 years

Arynes were first theorized in 1902 and they’ve been used as building blocks to synthesize a variety of compounds but they’re existence hasn’t been confirmed until now.

AFM image of an aryne molecule imaged with a CO tip. Courtesy: IBM

AFM image of an aryne molecule imaged with a CO tip. Courtesy: IBM

A July 13, 2015 news item in Nanowerk makes the announcement (Note: A link has been removed),

chemistry teachers and students can breath a sigh of relief. After teaching and learning about a particular family of molecules for decades, scientists have finally proven that they do in fact exist.

In a new paper published online today in Nature Chemistry (“On-surface generation and imaging of arynes by atomic force microscopy”), scientists from IBM Research and CIQUS at the University of Santiago de Compostela, Spain, have confirmed the existence and characterized the structure of arynes, a family of highly-reactive short-lived molecules which was first suggested 113 years ago. The technique has broad applications for on-surface chemistry and electronics, including the preparation of graphene nanoribbons and novel single-molecule devices.

A July 13, 2015 IBM news release by Chris Sciacca, which originated the news item, describes arynes and the imaging process used to capture them for the first time (Note: Links have been removed),

“Arynes are discussed in almost every undergraduate course on organic chemistry around the world. Therefore, it’s kind of a relief to find the final confirmation that these molecules truly exist,” said Prof. Diego Peña, a chemist at the University of Santiago de Compostela.

“I look forward to seeing new chemical challenges solved by the combination of organic synthesis and atomic force microscopy.”

There are trillions of molecules in the universe and some of them are stable enough to be isolated and characterized, but many others are so short-lived that they can only be proposed indirectly, via chemical reactions or spectroscopic methods.

One such species are arynes, which were first suggested in 1902, and since then have been used as intermediates or building blocks in the synthesis of a variety of compounds for applications including medicine, organic electronics and molecular materials. The challenge with these particular molecules is that they only exist for several milliseconds making them extremely challenging to image, until now.

The imaging was accomplished by means of atomic force microscopy (AFM), a scanning technique that can accomplish nanometer-level resolution. After the preparation of the key aryne precursor by CIQUS, IBM scientists used the sharp tip of a scanning tunneling microscope (STM) to generate individual aryne molecules from precursor molecules by atomic manipulation. The experiments were performed on films of sodium chloride, at temperatures near absolute zero, to stabilize the aryne.

Once the molecules were isolated, the team used AFM to measure the tiny forces between the STM tip, which is terminated with a single carbon monoxide molecule, and the sample to image the aryne’s molecular structure. The resulting image was so clear that the scientists could study their chemical nature based on the minute differences between individual bonds.

“Our team has developed several state-of-the-art techniques since 2009, which made this achievement possible,” said Dr. Niko Pavliček, a physicist at IBM Research – Zurich and lead author of the paper. “For this study, it was absolutely essential to pick an insulating film on which the molecules were adsorbed and to deliberately choose the atomic tip-terminations to probe them. We hope this technique will have profound effects on the future of chemistry and electronics.”

Prof. Peña, added that “These findings on arynes can be compared with the long-standing search for the giant squid. For centuries, fishermen had found clues of the existence of this legendary animal. But it was only very recently that scientists managed to film a giant squid alive. In both cases, state-of-the-art technologies were crucial to observe these elusive species alive: a low-noise submarine for the giant squid; a low-temperature AFM for the aryne.”

This research is part of IBM’s five-year, $3 billion investment to push the limits of chip technology and semiconductor innovations needed to meet the emerging demands of cloud computing and Big Data systems.

This work is a result of the large European project called (Planar Atomic and Molecular Scale Devices). PAMS’ main objective is to develop and investigate novel electronic devices of nanometric-scale size. Part of this research is also funded by a European Research Council Advanced Grant awarded to IBM scientist Gerhard Meyer, who is also a co-author of the paper.

Here’s a link to and a citation for the paper,

On-surface generation and imaging of arynes by atomic force microscopy by Niko Pavliček, Bruno Schuler, Sara Collazos, Nikolaj Moll, Dolores Pérez, Enrique Guitián, Gerhard Meyer, Diego Peña, & Leo Gross. Nature Chemistry (2015) doi:10.1038/nchem.2300 Published online 13 July 2015

This paper is behind a paywall.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

R.I.P. Heinrich Rohrer, co-inventor of the scanning tunneling microscope, 1933-2013

Heinrich Rohrer died May 16, 2013 according to the May 22, 2013 news item on Nanowerk,

The co-inventor of the scanning tunneling microscope, Dr. Heinrich Rohrer, passed away on the evening of May 16, 2013. He was 79.

Heinrich Rohrer, IBM Fellow and Nobel Laureate, joined the IBM Research Laboratory in Zurich, Switzerland, in December of 1963, where he worked for 34 years.

After hiring a young scientist named Gerd Binnig in the late 1970s, the two started collaborating, brought closely together by their backgrounds in superconductivity and their fascination with atomic surfaces. The two scientists grew increasingly frustrated by the limits of the tools then available to study the distinct characteristics of atomic surfaces, so they decided to build their own, something that would be capable of seeing and manipulating atoms at the nanoscale level.

The May 2013 obituary on the IBM research website, which originated the news item, commemorates Rohrer’s Nobel winning accomplishment, the co-invention of the scanning tunneling microscope (STM),

Dr. Heinrich Rohrer, IBM Fellow, Nobel Laureate and co-inventor of the scanning tunneling microscope, passed away on the evening of May 16, 2013. He was 79. Dr. Rohrer joined IBM Research – Zurich in December of 1963, where he worked for 34 years.

“The invention of the scanning tunneling microscope was a seminal moment in the history of science and information technology,” said Dr. John E. Kelly III, IBM senior vice president and director of Research. “This invention gave scientists the ability to image, measure and manipulate atoms for the first time, and opened new avenues for information technology that we are still pursuing today.”

After hiring a young scientist named Gerd Binnig in the late 1970s, the two started collaborating, brought together by their backgrounds in superconductivity and their fascination with atomic surfaces. They grew increasingly frustrated by the limits of the tools then available, so they built their own, capable of seeing and manipulating atoms at the nanoscale level.

They began experimenting with tunneling, a quantum phenomenon in which electrons can escape the surface of a solid. When another surface approaches, the electron clouds can overlap and an electric current can flow.

Binnig and Rohrer found that when maneuvering a sharp metal conducting tip over the surface of a sample, the amount of electrical current flowing between the tip and the surface could be measured. Variations in the current provided information about the inner structure, and from this information,  they could build a three-dimensional atomic-scale map of the sample’s surface.

In January 1979, Binnig and Rohrer submitted their first patent disclosure on the scanning tunneling microscope (STM). Soon afterwards, with the help of fellow IBM researcher Christoph Gerber, they began to design and construct the microscope.

In awarding Binnig and Rohrer the Nobel Prize in Physics in 1986, just five years after the first STM had been built, the Nobel committee said the invention opened up “entirely new fields… for the study of the structure of matter.”

In 2011, in the presence of 600 guests from throughout the research community, IBM and ETH Zurich dedicated the Binnig and Rohrer Nanotechnology Center in Rüschlikon in honor of the scientists’ achievements.

“ For me, Heini was father figure, role model, emotional and spiritual teacher, and best friend – all rolled into one. An eminent person, with an incredible sense of humanity and kindness. ”

-Gerd Binnig

Heinrich Rohrer was as famous for his kindly personality as for his sharp wit and humor. During the opening ceremony of the Center he participated in a public discussion with Binnig and Dr. Ralph Eicher, then president of ETH Zurich. After Binnig attempted to explain their invention, Rohrer jokingly apologized to the audience saying, “If you didn’t quite understand what Gerd just told you, you are not alone.”

Here are a few biographical details from the obituary page on the IBM website,

Heinrich Rohrer was born on June 6, 1933, in Buchs, Switzerland. In 1949, the Rohrer family moved to Zurich and a few years later Heinrich enrolled at the Swiss Federal Institute of Technology in Zurich (ETH), where he studied Physics under Wolfgang Pauli.

In the summer of 1961, Heinrich married Rose-Marie Egger and their honeymoon in the United States led to a two-year project studying thermal conductivity of type-II superconductors and metals at Rutgers University. Shortly thereafter in 1963, he returned to Switzerland to join the Physics department at the newly founded IBM Research – Zurich Laboratory.

The rest, as they say, is history.

ETA May 23, 2013: Dexter Johnson wrote a touching tribute in his May 23, 2013 posting, Heinrich Rohrer: The Modest Pioneer of Nanotechnology.

MORPHONANO, an art/sci exhibit in California

This description of the event (MORPHONANO) which is being held at the Beall Center at the University of California (Irvine) comes from the Beall Center’s home page,

MORPHONANO explores a number of art works created by media artist Victoria Vesna and nanoscientist James Gimzewski. Their collaborative works create an intersection of space, time and embodiment by employing a very subtle and responsive energetic exchange. Participants interact with the works in mindful ways resulting in rich visual and sonic experiences within a meditative space. By reversing the scale of nanotechnology to the realm of human experience, the artist and scientist create a sublime reversal of space-time.

Here’s an image depicting one of the exhibits in the show,

ZERO@WAVEFUNCTION plays with the idea of scale and molecular manipulation from a distance with the participant changing the structures of the buckyballs with their shadows, a real time interactive metaphor of the scanning tunneling microscope (STM).

It looks to me that the idea is to ’embody’ the nanoscale as per the caption “the participants changing the structures of the buckyballs with their shadows, a real time interactive metaphor of the scanning tunneling microscope.” There’s a larger version of the image and information about this exhibit in the Feb. 14, 2012 news item on Nanowerk,

BLUE MORPH is an interactive installation that uses nanoscale images combined with sounds derived from the microscopic undulations of a chrysalis during the period of its metamorphosis into a butterfly recorded using nanotechnology. The work is designed to be responsive to minute, subtle, mindful movements of the participant creating a rich visual and sonic experience of morphing. Most is revealed in complete stillness.

NANOMANDALA is a video projected onto a disk of sand, 8 feet in diameter. Visitors can touch the sand as images are projected in evolving scale from the molecular structure of a single grain of sand – achieved my means of photography, optical and scanning electron microscopy (SEM) – to the recognizable image of the complete mandala, and then back again. The original Chakrasamvara mandala was created by monks of the Ghaden Lhopa Khangsten monastery. Patience will allow experiencing the whole.

ZERO@WAVEFUNCTION plays with the idea of scale and molecular manipulation from a distance with the participant changing the structures of the buckyballs with their shadows, a real time interactive metaphor of the scanning tunneling microscope (STM). Slow motion makes change happen.

BRAIN STORMING: SOUNDS OF THINKING a premier of a work of self organization in progress focusing on scale invariant and the brain using biometric data. A number of brain storming sessions with cutting neuroscientists, nanotechnologists, philosophers and monks will take place throughout the exhibition. In many ways the works in this exhibition reverse the scale of nanotechnology to a visible realm and time in nano scale creating a sublime reversal of space-time.

The show opened Feb. 2 and closes May 6, 2012. The address is

Beall Center for Art + Technology
University of California, Irvine
Claire Trevor School of the Arts
712 Arts Plaza
Irvine, CA 92697-2775
www.beallcenter.uci.edu

Here are some details about the art/sci collaborators, Victoria Vesna and James Gimzewski, from the undated Beall Center news release,

Victoria Vesna is a media artist and Professor at the Department of Design | Media Arts at the UCLA School of the Arts and director of the UCLA Art|Sci center. Currently she is Visiting Professor at Art, Media + Technology, Parsons the New School for Design in New York and a senior researcher at IMéRA – Institut Méditerranéen de Recherches Avancées in Marseille, France. Her work can be defined as experimental creative research that resides between disciplines and technologies. She explores how communication technologies affect collective behavior and how perceptions of identity shift in relation to scientific innovation. Her most recent experiential installations — Blue Morph, Water Bowls, Hox Zodiac, all aim to raise consciousness around environmental issues natural and human-animal relations. …

James Gimzewski FRS is a distinguished Professor in the Dept. of Chemistry and Biochemistry at UCLA. He is director of Pico and Nano core laboratory at the California NanoSynstems Institute (CNSI). He is also scientific director of the Art | Sci center and a senior fellow of IMéRA. He is a satellite co-director and PI of materials nanoarchitectonics at the National Institute of Material Science in Tsukuba, Japan. Until February 2001, he was a group leader at the IBM Zurich Labs, where he was involved in Nanoscale science since 1983. He pioneered research on electrical contact with single atoms and molecules, light emission and molecular imaging using STM. His accomplishments include the first STM-manipulation of molecules at room temperature, the realization of molecular abacus using buckyballs, the discovery of single molecule rotors and the development of nanomechanical sensors based on nanotechnology, which explore the ultimate limits of sensitivity and measurement. …

I have mentioned Gimzewski previously in a post (Oct. 17, 2011) about a three-part nanotechnology series on Canadian television.