Tag Archives: surface-enhanced Raman spectroscopy (SERS)

Taking spectroscopy to a new dimension with silver nanoparticles

This latest move towards better detection at the nanoscale comes from India (from a January 2, 2018 news item on ScienceDaily),

As medicine and pharmacology investigate nanoscale processes, it has become increasingly important to identify and characterize different molecules. Raman spectroscopy, a technique that leverages the scattering of laser light to identify molecules, has a limited capacity to detect molecules in diluted samples because of low signal yield.

A team of researchers from the University of Hyderabad in India has improved molecular detection at low concentration levels by arranging nanoparticles on nanowires to enhance Raman spectroscopy. Surface-enhanced Raman spectroscopy (SERS) uses electromagnetic fields to improve Raman scattering and boost sensitivity in standard dyes such as R6G by more than one billionfold.

Here’s an image illustrating the work,

Caption: Detection of a low concentration analyte molecule using silicon nanowires decorated with silver nanoparticles and surface enhanced Raman scattering measurements. Credit: V.S. Vendamani

A January 2, 2017 American Institute of Physics press release on EurekAlert, which originated the news item, explains further,

The team decorated vertically aligned silicon nanowires with varying densities of silver nanoparticles, utilizing and enhancing the structure’s 3-D shape. Their results, published in the Journal of Applied Physics, from AIP [American Institute of Physics] Publishing, show that their device was able to enhance the Raman signals for cytosine protein and ammonium perchlorate by a factor of 100,000.

“The beauty is that we can improve the density of these nanowires using simple chemistry,” said Soma Venugopal Rao, one of the paper’s authors. “If you have a large density of nanowires, you can put more silver nanoparticles into the substrate and can increase the sensitivity of the substrate.”

Applying the necessary nanostructures to SERS devices remains a challenge for the field. Building these structures in three dimensions with silicon nanowires has garnered attention for their higher surface area and superior performance, but silicon nanowires are still expensive to produce.

Instead, the team was able to find a cheaper way to make silicon nanowires and used a technique called electroless etching to make a wide range of nanowires. They “decorated” these wires with silver nanoparticles with variable and controlled densities, which increased the nanowires’ surface area.

“Optimizing these vertically aligned structures took a lot of time in the beginning,” said Nageswara Rao, another of the paper’s authors. “We increased the surface area and to do this we needed to change the aspect ratio.”

After optimizing their system to detect Rhodamine dye on a nanomolar level, these new substrates the team built enhanced Raman sensitivity by a factor of 10,000 to 100,000. The substrates detected concentrations of cytosine, a nucleotide found in DNA, and ammonium perchlorate, a molecule with potential for detecting explosives, in as dilute concentrations as 50 and 10 micromolar, respectively.

The results have given the team reason to believe that it might soon be possible to detect compounds in concentrations on the scale of nanomolar or even picomolar, Nageswara Rao said. The team’s work has opened several avenues for future research, from experimenting with different nanoparticles such as gold, increasing the sharpness of the nanowires or testing these devices across several types of molecules.

Here’s a link to and a citation for the paper,

Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection featured by V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak. Journal of Applied Physics 123, 014301 (2018); Published Online: January 2018 https://doi.org/10.1063/1.5000994

This paper is open access.

Glucose-sensing contact lens invented by US and Korean researchers

Blood tests for glucose levels may one day be a feature of the past according to an Oct. 3, 2016 news item on ScienceDaily,

Blood testing is the standard option for checking glucose levels, but a new technology could allow non-invasive testing via a contact lens that samples glucose levels in tears.

“There’s no noninvasive method to do this,” said Wei-Chuan Shih, a researcher with the University of Houston [UH] who worked with colleagues at UH and in Korea to develop the project, described in the high-impact journal Advanced Materials. “It always requires a blood draw. This is unfortunately the state of the art.”

A Sept. 27, 2016 UH news release (also on EurekAlert) by Jeannie Kever, which originated the news item, describes the proposed technology,

… glucose is a good target for optical sensing, and especially for what is known as surface-enhanced Raman scattering spectroscopy [also known as surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy, and SERS], said Shih, an associate professor of electrical and computer engineering whose lab, the NanoBioPhotonics Group, works on optical biosensing enabled by nanoplasmonics.

This is an alternative approach, in contrast to a Raman spectroscopy-based noninvasive glucose sensor Shih developed as a Ph.D. student at the Massachusetts Institute of Technology. He holds two patents for technologies related to directly probing skin tissue using laser light to extract information about glucose concentrations.

The paper describes the development of a tiny device, built from multiple layers of gold nanowires stacked on top of a gold film and produced using solvent-assisted nanotransfer printing, which optimized the use of surface-enhanced Raman scattering to take advantage of the technique’s ability to detect small molecular samples.

Surface-enhanced Raman scattering – named for Indian physicist C.V. Raman [Raman scattering; SERS history begins in 1973 according to its Wikipedia entry], who discovered the effect in 1928 – uses information about how light interacts with a material to determine properties of the molecules that make up the material.

The device enhances the sensing properties of the technique by creating “hot spots,” or narrow gaps within the nanostructure which intensified the Raman signal, the researchers said.

Researchers created the glucose sensing contact lens to demonstrate the versatility of the technology. The contact lens concept isn’t unheard of – Google has submitted a patent for a multi-sensor contact lens, which the company says can also detect glucose levels in tears – but the researchers say this technology would also have a number of other applications.

“It should be noted that glucose is present not only in the blood but also in tears, and thus accurate monitoring of the glucose level in human tears by employing a contact-lens-type sensor can be an alternative approach for noninvasive glucose monitoring,” the researchers wrote.

“Everyone knows tears have a lot to mine,” Shih said. “The question is, whether you have a detector that is capable of mining it, and how significant is it for real diagnostics.”

In addition to Shih, authors on the paper include Yeon Sik Jung, Jae Won Jeong and Kwang-Min Baek, all with the Korea Advanced Institute of Science and Technology; Seung Yong Lee of the Korea Institute of Science and Technology, and Md Masud Parvez Arnob of UH.

Although non-invasive glucose sensing is just one potential application of the technology, Shih said it provided a good way to prove the technology. “It’s one of the grand challenges to be solved,” he said. “It’s a needle in a haystack challenge.”

Scientists know that glucose is present in tears, but Shih said how tear glucose levels correlate with blood glucose levels hasn’t been established. The more important finding, he said, is that the structure is an effective mechanism for using surface-enhanced Raman scattering spectroscopy.

Although traditional nanofabrication techniques rely on a hard substrate – usually glass or a silicon wafer – Shih said researchers wanted a flexible nanostructure, which would be more suited to wearable electronics. The layered nanoarray was produced on a hard substrate but lifted off and printed onto a soft contact, he said.

Here’s a link to and a citation for the paper,

Wafer Scale Phase-Engineered 1T- and 2H-MoSe2/Mo Core–Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction by Yindong Qu, Henry Medina, Sheng-Wen Wang, Yi-Chung Wang, Chia-Wei Chen, Teng-Yu Su, Arumugam Manikandan, Kuangye Wang, Yu-Chuan Shih, Je-Wei Chang, Hao-Chung Kuo, Chi-Yung Lee, Shih-Yuan Lu, Guozhen Shen, Zhiming M. Wang, and Yu-Lun Chueh. Advanced Materials DOI: 10.1002/adma.201602697 Version of Record online: 26 SEP 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Speed of commercializing fashion technology in the 19th century

It took our 19th century ancestors four years to commercialize a new purple dye. While this is not a nanotechnology story as such, it’s a fascinating fashion story that also focuses on commercialization (a newly urgent aspect of the nanotechnology effort). From a Dec. 1, 2015 Elsevier press release on EurekAlert,

The dye industry of the 19th century was fast-moving and international, according to a state-of-the-art analysis of four purple dresses. The study, published in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, reveals that a brand new purple dye went from first synthesis to commercial use in just a few years.

Before the 1800s, purple dye came at a premium, so it was usually restricted to royalty — hence the connection between royals and purple. The 19th century saw the discovery of several synthetic purple dyes, making purple textiles more affordable and readily available. Understanding where these dyes came from and were used is therefore of historical interest.

In the new study, researchers from CSIRO Manufacturing and the National Gallery of Victoria in Australia show that the new purple dyes were part of a fast-moving industry, going from first synthesis to commercial use in as few as four years. This reflects how dynamic the fashion industry must have been at the time.

“Chemical analysis has given us a glimpse into the state of the dye industry in the 19th century, revealing the actual use of dyes around the world,” said Dr. Jeffrey Church, one of the authors of the study and principal research scientist at CSIRO Manufacturing.

The researchers took small samples of fibers from four dresses: three 19th century English dresses and one Australian wedding gown. They extracted the dyes from very small silk yarn samples and analyzed them using a combination of chemical techniques: thin layer chromatography and surface enhanced Raman spectroscopy, Fourier transform infrared spectroscopy and energy dispersive x-ray spectroscopy.

They found that the three English dresses were dyed using methyl violet; one of them was made only four years after the dye was first synthesized.

“The dress containing methyl violet was made shortly after the initial synthesis of the dye, indicating the rapidity with which the new synthetic dyes were embraced by the textile dye trade and the fashion world of the day,” commented Dr. Church.

However, the Australian wedding dress incorporated the use of a different dye — Perkin’s mauve — which was very historically significant, as it was the first synthetic purple dye and was only produced for 10 years. This was a surprise to the researchers, as the dress was made 20 years after the dye had been replaced on the market.

“The dress in question was made in Australia,” explained Dr. Church. “Does the presence of Perkin’s mauve relate to trade delays between Europe and Australia? Or was this precious fabric woven decades earlier and kept for the special purpose of a wedding? This is an excellent example of how state-of-the-art science and technology can shed light on the lives and times of previous generations. In doing so, as is common in science, one often raises more questions.”

The researchers have provided an image of the dresses,

Fig. 1. Dress 1 circa 1865, dress 2 circa 1898, dress 3 circa 1878 and dress 4 circa 1885 (clock-wise from left top). Details of these dresses are presented in the Experimental section. [downloaded from http://www.sciencedirect.com/science/article/pii/S1386142515302742]

Fig. 1. Dress 1 circa 1865, dress 2 circa 1898, dress 3 circa 1878 and dress 4 circa 1885 (clock-wise from left top). Details of these dresses are presented in the Experimental section. [downloaded from http://www.sciencedirect.com/science/article/pii/S1386142515302742]

Can you guess which one is the wedding dress? I was wrong. To find out more about the research and the dresses, here’s a link and a citation,

The purple coloration of four late 19th century silk dresses: A spectroscopic investigation by Andrea L. Woodhead, Bronwyn Cosgrove, Jeffrey S. Church. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Volume 154, 5 February 2016, Pages 185–192  doi:10.1016/j.saa.2015.10.024

This paper appears to be open access. It’s quite interesting as they trace the history of purple dyes back to ancient times before fast forwarding to the 19th Century.

Damage-free art authentication and spatially offset Raman spectroscopy (SORS)

In a world where people will shell out millions of dollars for a single painting, art authentication of some kind is mandatory from a buyer’s perspective while sellers might be a little more reluctant. Reliance on experts who have an intimate familiarity with an artist’s body of work, personal and professional history, as well as, the historical period in which the work was created is the norm. Technological means are not necessarily as heavily employed as one might expect. Given that most technical analyses require damage of some kind, no matter how miniscule, some reluctance is understandable.

A May 29, 2014 news item on phys.org describes a new, damage-free, art conservation and restoration process (which could easily be used for authentication purposes),

UK scientists, working on an international project to conserve precious works of art, have found a new way to analyse paintings without having to remove even a tiny speck of the paint to inspect the layers below.

Using laser spectroscopy, a method that uses light to probe under the surface of an object, the international team has developed a new, non-invasive way to identify the chemical content of the paint layers present.

This new technique will reduce the risk of damage to precious paintings, often worth thousands or even millions of pounds, when conservation and restoration work is being carried out.

Using laser spectroscopy, a method that uses light to probe under the surface of an object, the international team has developed a new, non-invasive way to identify the chemical content of the paint layers present.

This new technique will reduce the risk of damage to precious paintings, often worth thousands or even millions of pounds, when conservation and restoration work is being carried out.

Read more at: http://phys.org/news/2014-05-lasers-analyse-priceless-art.html#jCp

As noted in a March 24, 2014 posting about using surface-enhanced Raman spectroscopy (SERS) to determine the characteristics of red pigment in a Renoir painting, restoration, authentication, and conservation are all linked once researchers start a technical examination,

This next item is about forgery detection. A March 5, 2014 news release on EurekAlert describes the latest developments,

Gallery owners, private collectors, conservators, museums and art dealers face many problems in protecting and evaluating their collections such as determining origin, authenticity and discovery of forgery, as well as conservation issues. Today these problems are more accurately addressed through the application of modern, non-destructive, “hi-tech” techniques.

Getting back to this new technique, a May 28, 2014 Science and Technology Facilities Council news release, which originated the news item, provides information about the various agencies involved with this work and offers some technical detail about the new technique,

The new approach is derived from a technique called Spatially Offset Raman Spectroscopy (SORS). It was originally developed by UK researchers at the Science and Technology Research Council’s (STFC) Central Laser Facility within the Research Complex at Harwell. Now they have joined forces with researchers from the Institute for the Conservation and Promotion of Cultural Heritage (ICVBC), part of Italy’s National Research Council (CNR) to adapt this technology to test paintings without having to destroy any part of them.

The SORS technique involves shining the laser light onto an opaque object. A small number of photons (light ‘particles’) will scatter back, changing colour according to the different paint components they represent, and allowing the scientists to analyse the chemical composition in depth.

Professor Pavel Matousek, from STFC’s Central Laser Facility, explained. “Building on our earlier SORS research, we’ve transformed the method to allow us to probe the painted layers for the first time,” he said. “We’ve called it Micro-SORS because we can analyse the layers at the micrometer scale, rather than the usual millimetre scale”.

For comparison of scale, a human hair is about 100 micrometers wide.

Dr Claudia Conti, a scientist at the ICVBC in Italy, said, “When I heard about the potential of SORS and how it could be applied, I realised the huge contribution this method of analysis could bring to the conservation of artworks.”

The research team tested the Micro-SORS method by collecting data from the light scattered across a surface of painted layers, artificially prepared to mimic a real painting. They isolated the light signals of the individual paint layers, enabling them to assess the chemical make-up of each layer.

The next step in the team’s research is to optimise the sensitivity and depth of penetration, and apply the technique to real artwork.

SORS has been used in other applications, from the news release,

The original SORS technique has already been applied to a number of problems, including non-invasive breast cancer diagnosis and bone disease diagnosis.The Science and Technology Facilities Council (STFC) has also launched a spin-out company, Cobalt Light Systems, which uses the SORS technology and has recently developed products for scanning liquids in unopened bottles for airport security, and in pharmaceutical quality control.

Here’s a link to and a citation for the research paper,

Subsurface Raman Analysis of Thin Painted Layers by Claudia Conti, Chiara Colombo, Marco Realini, Giuseppe Zerbi, and Pavel Matousek. Applied Spectroscopy, Volume 68, Number 6, June 2014, pp. 686-691(6) doi.org/10.1366/13-07376 Available online via Ingentaconnect

This article is open access.

Richard Van Duyne solves mystery of Renoir’s red with surface-enhanced Raman spectroscopy (SERS) and Canadian scientists uncover forgeries

The only things these two items have in common is that they are concerned with visual art. and with solving mysteries The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

The Art Institute of Chicago’s exhibition is called, Renoir’s True Colors: Science Solves a Mystery. being held from Feb. 12, 2014 – April 27, 2014. Here is an image of the Renoir painting in question and an image featuring the equipment being used,

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

The Feb. 13, 2014 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, gives a brief description of Van Duyne’s technique and its impact on conservation at the Art Institute of Chicago (Note: A link has been removed),

To see what the naked eye cannot see, Van Duyne used surface-enhanced Raman spectroscopy (SERS) to uncover details of Renoir’s paint. SERS, discovered by Van Duyne in 1977, is widely recognized as the most sensitive form of spectroscopy capable of identifying molecules.

Van Duyne and his colleagues’ detective work informed the production of a new digital visualization of the painting’s original colors by the Art Institute’s conservation department. The re-colorized reproduction and the original painting (presented in a case that offers 360-degree views) can be viewed side by side at the exhibition “Renoir’s True Colors: Science Solves a Mystery” through April 27 [2014] at the Art Institute.

I first wrote about Van Duyne’s technique in my wiki, The NanoTech Mysteries. From the Scientists get artful page (Note: A footnote was removed),

Richard Van Duyne, then a chemist at Northwestern University, developed the technique in 1977. Van Duyne’s technology, based on Raman spectroscopy which has been around since the 1920s, is called surface-enhanced Raman spectroscopy’ or SERS “[and] uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.”

This next item is about forgery detection. A March 5, 2014 news release on EurekAlert describes the latest developments,

Gallery owners, private collectors, conservators, museums and art dealers face many problems in protecting and evaluating their collections such as determining origin, authenticity and discovery of forgery, as well as conservation issues. Today these problems are more accurately addressed through the application of modern, non-destructive, “hi-tech” techniques.

Dmitry Gavrilov, a PhD student in the Department of Physics at the University of Windsor (Windsor, Canada), along with Dr. Roman Gr. Maev, the Department of Physics Professor at the University of Windsor (Windsor, Canada) and Professor Dr. Darryl Almond of the University of Bath (Bath, UK) have been busy applying modern techniques to this age-old field. Infrared imaging, thermography, spectroscopy, UV fluorescence analysis, and acoustic microscopy are among the innovative approaches they are using to conduct pre-restoration analysis of works of art. Some fascinating results from their applications are published today in the Canadian Journal of Physics.

Since the early 1900s, using infrared imaging in various wave bands, scientists have been able to see what parts of artworks have been retouched or altered and sometimes even reveal the artist’s original sketches beneath layers of the paint. Thermography is a relatively new approach in art analysis that allows for deep subsurface investigation to find defects and past reparations. To a conservator these new methods are key in saving priceless works from further damage.

Gavrilov explains, “We applied new approaches in processing thermographic data, materials spectra data, and also the technique referred to as craquelure pattern analysis. The latter is based on advanced morphological processing of images of surface cracks. These cracks, caused by a number of factors such as structure of canvas, paints and binders used, can uncover important clues on the origins of a painting.”

“Air-coupled acoustic imaging and acoustic microscopy are other innovative approaches which have been developed and introduced into art analysis by our team under supervision of Dr. Roman Gr. Maev. The technique has proven to be extremely sensitive to small layer detachments and allows for the detection of early stages of degradation. It is based on the same principles as medical and industrial ultrasound, namely, the sending a sound wave to the sample and receiving it back. ”

Spectroscopy is a technique that has been useful in the fight against art fraud. It can determine chemical composition of pigments and binders, which is essential information in the hands of an art specialist in revealing fakes. As described in the paper, “…according to the FBI, the value of art fraud, forgery and theft is up to $6 billion per year, which makes it the third most lucrative crime in the world after drug trafficking and the illegal weapons trade.”

One might wonder how these modern applications can be safe for delicate works of art when even flash photography is banned in art galleries. The authors discuss this and other safety concerns, describing both historic and modern-day implications of flash bulbs and exhibit illumination and scientific methods. As the paper concludes, the authors suggest that we can expect that the number of “hi-tech” techniques will only increase. In the future, art experts will likely have a variety of tools to help them solve many of the mysteries hiding beneath the layers.

Here’s a link to and a citation for the paper,

A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis by D. Gavrilov, R.Gr. Maev, and D.P. Almond. Canadian Journal of Physics, 10.1139/cjp-2013-0128

This paper is open access.

Rice University (Texas) researchers ‘soften’ a buckyball (buckminster fullerene)

A Jan. 16, 2014 Rice University news release landed in my mailbox this morning and revealed that researchers have ‘detuned’ or softened the atomic bonks in a molecule known as a buckminster fullenere (aka, buckyball),

Rice University scientists have found they can control the bonds between atoms in a molecule.

The molecule in question is carbon-60, also known as the buckminsterfullerene and the buckyball, discovered at Rice in 1985. The scientists led by Rice physicists Yajing Li and Douglas Natelson found that it’s possible to soften the bonds between atoms by applying a voltage and running an electric current through a single buckyball.

“This doesn’t mean we’re going to be able to arbitrarily dial around the strength of materials or anything like that,” Natelson said. “This is a very specific case, and even here it was something of a surprise to see this going on.

“But in general, if we can manipulate the charge distribution on molecules, we can affect their vibrations. We can start thinking, in the future, about controlling things in a better way.”

The effect appears when a buckyball attaches to a gold surface in the optical nano antenna used to measure the effects of an electric current on intermolecular bonds through a technique called Raman spectroscopy.

Natelson’s group built the nano antenna a few years ago to trap small numbers of molecules in a nanoscale gap between gold electrodes. Once the molecules are in place, the researchers can chill them, heat them, blast them with energy from a laser or electric current and measure the effect through spectroscopy, which gathers information from the frequencies of light emitted by the object of interest.

With continuing refinement, the researchers found they could analyze molecular vibrations and the bonds between the atoms in the molecule. That ability led to this experiment, Natelson said.

Natelson compared the characteristic vibrational frequencies exhibited by the bonds to the way a guitar string vibrates at a specific frequency based on how tightly it’s wound. Loosen the string and the vibration diminishes and the tone drops.

The nano antenna is able to detect the “tone” of detuned vibrations between atoms through surface-enhanced Raman spectroscopy (SERS), a technique that improves the readings from molecules when they’re attached to a metal surface. Isolating a buckyball in the gap between the gold electrodes lets the researchers track vibrations through the optical response seen via SERS.

When a buckyball attaches to a gold surface, its internal bonds undergo a subtle shift as electrons at the junction rearrange themselves to find their lowest energetic states. The Rice experiment found the vibrations in all the bonds dropped ever so slightly in frequency to compensate.

“Think of these molecules as balls and springs,” Natelson said. “The atoms are the balls and the bonds that hold them together are the springs. If I have a collection of balls and springs and I smack it, it would show certain vibrational modes.

“When we push current through the molecule, we see these vibrations turn on and start to shake,” Natelson said. “But we found, surprisingly, that the vibrations in buckyballs get softer, and by a significant amount. It’s as if the springs get floppier at high voltages in this particular system.” The effect is reversible; turn off the juice and the buckyball goes back to normal, he said.

The researchers used a combination of experimentation and sophisticated theoretical calculations to disprove an early suspicion that the well-known vibrational Stark effect was responsible for the shift. The Stark effect is seen when molecules’ spectral responses shift under the influence of an electric field. The Molecular Foundry, a Department of Energy User Facility at Lawrence Berkeley National Laboratory, collaborated on the calculations component.

Natelson’s group had spied similar effects on oligophenylene vinylene molecules used in previous experiments, also prompting the buckyball experiments. “A few years ago we saw hints of vibrational energies moving around, but nothing this clean or this systematic. It does seem like C-60 is kind of special in terms of where it sits energetically,” he said.

The discovery of buckyballs, which earned a Nobel Prize for two Rice professors, kick-started the nanotechnology revolution. “They’ve been studied very well and they’re very chemically stable,” Natelson said of the soccer-ball-shaped molecules. “We know how to put them on surfaces, what you can do to them and have them still be intact. This is all well understood.” He noted other researchers are looking at similar effects through the molecular manipulation of graphene, the single-atomic-layer form of carbon.

“I don’t want to make some grand claim that we’ve got a general method for tuning the molecular bonding in everything,” Natelson said. “But if you want chemistry to happen in one spot, maybe you want to make that bond really weak, or at least make it weaker than it was.

“There’s a long-sought goal by some in the chemistry community to gain precise control over where and when bonds break. They would like to specifically drive certain bonds, make sure certain bonds get excited, make sure certain ones break. We’re offering ways to think about doing that.”

Here’s a link to the abstract and a citation for the paper,

Voltage tuning of vibrational mode energies in single-molecule junctions by Yajing Li, Peter Doak, Leeor Kronik, Jeffrey B. Neatonc, and Douglas Natelsona. PNAS.  doi: 10.1073/pnas.1320210111

This paper is behind a paywall so you need either a subscription to the journal or access to a research library with a subscription or, alternatively, there are two short-term rental options (which for reasons that escape me were difficult to access) here.

As business models go, I don’t believe that aspect of the PNAS model is going to prove successful. Why not make all the options available from the page containing the abstract as do other academic publishers?

Getting back to the buckyball, the researchers have provided an image to illustrate their work,

Rice University scientists discovered the bonds in a carbon-60 molecule – a buckyball – can be "detuned" when exposed to an electric current in an optical antenna. (Credit: Natelson Group/Rice University)

Rice University scientists discovered the bonds in a carbon-60 molecule – a buckyball – can be “detuned” when exposed to an electric current in an optical antenna. (Credit: Natelson Group/Rice University)