Tag Archives: Surrey Nanosystems

More of the ‘blackest black’

There’s a very good November 11, 2019 article by Natalie Angier for the New York Times on carbon nanotubes (CNTs) and the colour black,

On a laboratory bench at the National Institute of Standards and Technology was a square tray with two black disks inside, each about the width of the top of a Dixie cup. Both disks were undeniably black, yet they didn’t look quite the same.

Solomon Woods, 49, a trim, dark-haired, soft-spoken physicist, was about to demonstrate how different they were, and how serenely voracious a black could be.

“The human eye is extraordinarily sensitive to light,” Dr. Woods said. Throw a few dozen photons its way, a few dozen quantum-sized packets of light, and the eye can readily track them.

Dr. Woods pulled a laser pointer from his pocket. “This pointer,” he said, “puts out 100 trillion photons per second.” He switched on the laser and began slowly sweeping its bright beam across the surface of the tray.

On hitting the white background, the light bounced back almost unimpeded, as rude as a glaring headlight in a rearview mirror.

The beam moved to the first black disk, a rondel of engineered carbon now more than a decade old. The light dimmed significantly, as a sizable tranche of the incident photons were absorbed by the black pigment, yet the glow remained surprisingly strong.

Finally Dr. Woods trained his pointer on the second black disk, and suddenly the laser’s brilliant beam, its brash photonic probe, simply — disappeared. Trillions of light particles were striking the black disk, and virtually none were winking back up again. It was like watching a circus performer swallow a sword, or a husband “share” your plate of French fries: Hey, where did it all go?

N.I.S.T. disk number two was an example of advanced ultra-black technology: elaborately engineered arrays of tiny carbon cylinders, or nanotubes, designed to capture and muzzle any light they encounter. Blacker is the new black, and researchers here and abroad are working to create ever more efficient light traps, which means fabricating materials that look ever darker, ever flatter, ever more ripped from the void.

The N.I.S.T. ultra-black absorbs at least 99.99 percent of the light that stumbles into its nanotube forest. But scientists at the Massachusetts Institute of Technology reported in September the creation of a carbon nanotube coating that they claim captures better than 99.995 of the incident light.

… The more fastidious and reliable the ultra-black, the more broadly useful it will prove to be — in solar power generators, radiometers, industrial baffles and telescopes primed to detect the faintest light fluxes as a distant planet traverses the face of its star.

Psychology and metaphors

It’s not all technical, Angier goes on to mention the psychological and metaphorical aspects,

Psychologists have gathered evidence that black is among the most metaphorically loaded of all colors, and that we absorb our often contradictory impressions about black at a young age.

Reporting earlier this year in the Quarterly Journal of Experimental Psychology, Robin Kramer and Joanne Prior of the University of Lincoln in the United Kingdom compared color associations in a group of 104 children, aged 5 to 10, with those of 100 university students.

The researchers showed subjects drawings in which a lineup of six otherwise identical images differed only in some aspect of color. The T-shirt of a boy taking a test, for example, was switched from black to blue to green to red to white to yellow. The same for a businessman’s necktie, a schoolgirl’s dress, a dog’s collar, a boxer’s gloves.

Participants were asked to link images with traits. Which boy was likeliest to cheat on the test? Which man was likely to be in charge at work? Which girl was the smartest in her class, which dog the scariest?

Again and again, among both children and young adults, black pulled ahead of nearly every color but red. Black was the color of cheating, and black was the color of cleverness. A black tie was the mark of a boss, a black collar the sign of a pit bull. Black was the color of strength and of winning. Black was the color of rage.

Art

Then, there is the world of art,

For artists, black is basal and nonnegotiable, the source of shadow, line, volume, perspective and mood. “There is a black which is old and a black which is fresh,” Ad Reinhardt, the abstract expressionist artist, said. “Lustrous black and dull black, black in sunlight and black in shadow.”

So essential is black to any aesthetic act that, as David Scott Kastan and Stephen Farthing describe in their scholarly yet highly entertaining book, “On Color,” modern artists have long squabbled over who pioneered the ultimate visual distillation: the all-black painting.

Was it the Russian Constructivist Aleksandr Rodchenko, who in 1918 created a series of eight seemingly all-black canvases? No, insisted the American artist Barnett Newman: Those works were very dark brown, not black. He, Mr. Newman, deserved credit for his 1949 opus, “Abraham,” which in 1966 he described as “the first and still the only black painting in history.”

But what about Kazimir Malevich’s “Black Square” of 1915? True, it was a black square against a white background, but the black part was the point. Then again, the English polymath Robert Fludd had engraved a black square in a white border back in 1617.

Clearly, said Alfred H. Barr, Jr., the first director of the Museum of Modern Art, “Each generation must paint its own black square.”

Structural colour

Solomon and his NIST colleagues and the MIT scientists are all trying to create materials with structural colour, in this case, black. Angier goes on to discuss structural colour in nature mentioning bird feathers and spiders as examples of where you might find superblacks. For anyone unfamiliar with structural colour, the colour is not achieved with pigment or dye but with tiny structures, usually measured at the nanoscale, on a bird’s wing, a spider’s belly, a plant leaf, etc. Structural colour does not fade or change . Still, it’s possible to destroy the structures, i.e., the colour, but light and time will not have any effect since it’s the tiny structures and their optical properties which are producing the colour . (Even after all these years, my favourite structural colour story remains a Feb. 1, 2013 article, Color from Structure, by Cristina Luiggi for The Scientist magazine. For a shorter version, I excerpted parts of Luiggi’s story for my February 7, 2013 posting.)

The examples of structural colour in Angier’s article were new to me. However, there are many, many examples elsewhere,. You can find some here by using the terms ‘structural colour’ or ‘structural color’ in the blog’s search engine.

Angier’s is a really good article and I strongly recommend reading it if you have time but I’m a little surprised she doesn’t mention Vantablack and the artistic feud. More about that in a moment,

Massachusetts Institute of Technology and a ‘blacker black’

According to MIT (Massachusetts Institute of Technology), they have the blackest black. It too is courtesy of carbon nanotubes.

The Redemption of Vanity, is a work of art by MIT artist in residence Diemut Strebe that has been realized together with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano- Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen. Strebe’s residency at MIT is supported by the Center for Art, Science & Technology (CAST). Image: Diemut Strebe

What you see in the above ‘The Redemption of Vanity’ was on show at the New York Stock Exchange (NYSE) from September 13 – November 29, 2019. It’s both an art piece and a demonstration of MIT’s blackest black.

There are two new releases from MIT. The first is the more technical one. From a Sept. 12, 2019 MIT news release,

With apologies to “Spinal Tap,” it appears that black can, indeed, get more black.

MIT engineers report today that they have cooked up a material that is 10 times blacker than anything that has previously been reported. The material is made from vertically aligned carbon nanotubes, or CNTs — microscopic filaments of carbon, like a fuzzy forest of tiny trees, that the team grew on a surface of chlorine-etched aluminum foil. The foil captures at least 99.995 percent* of any incoming light, making it the blackest material on record.

The researchers have published their findings today in the journal ACS-Applied Materials and Interfaces. They are also showcasing the cloak-like material as part of a new exhibit today at the New York Stock Exchange, titled “The Redemption of Vanity.”

The artwork, conceived by Diemut Strebe, an artist-in-residence at the MIT Center for Art, Science, and Technology, in collaboration with Brian Wardle, professor of aeronautics and astronautics at MIT, and his group, and MIT Center for Art, Science, and Technology artist-in-residence Diemut Strebe, features a 16.78-carat natural yellow diamond from LJ West Diamonds, estimated to be worth $2 million, which the team coated with the new, ultrablack CNT material. The effect is arresting: The gem, normally brilliantly faceted, appears as a flat, black void.

Wardle says the CNT material, aside from making an artistic statement, may also be of practical use, for instance in optical blinders that reduce unwanted glare, to help space telescopes spot orbiting exoplanets.

“There are optical and space science applications for very black materials, and of course, artists have been interested in black, going back well before the Renaissance,” Wardle says. “Our material is 10 times blacker than anything that’s ever been reported, but I think the blackest black is a constantly moving target. Someone will find a blacker material, and eventually we’ll understand all the underlying mechanisms, and will be able to properly engineer the ultimate black.”

Wardle’s co-author on the paper is former MIT postdoc Kehang Cui, now a professor at Shanghai Jiao Tong University.

Into the void

Wardle and Cui didn’t intend to engineer an ultrablack material. Instead, they were experimenting with ways to grow carbon nanotubes on electrically conducting materials such as aluminum, to boost their electrical and thermal properties.

But in attempting to grow CNTs on aluminum, Cui ran up against a barrier, literally: an ever-present layer of oxide that coats aluminum when it is exposed to air. This oxide layer acts as an insulator, blocking rather than conducting electricity and heat. As he cast about for ways to remove aluminum’s oxide layer, Cui found a solution in salt, or sodium chloride.

At the time, Wardle’s group was using salt and other pantry products, such as baking soda and detergent, to grow carbon nanotubes. In their tests with salt, Cui noticed that chloride ions were eating away at aluminum’s surface and dissolving its oxide layer.

“This etching process is common for many metals,” Cui says. “For instance, ships suffer from corrosion of chlorine-based ocean water. Now we’re using this process to our advantage.”

Cui found that if he soaked aluminum foil in saltwater, he could remove the oxide layer. He then transferred the foil to an oxygen-free environment to prevent reoxidation, and finally, placed the etched aluminum in an oven, where the group carried out techniques to grow carbon nanotubes via a process called chemical vapor deposition.

By removing the oxide layer, the researchers were able to grow carbon nanotubes on aluminum, at much lower temperatures than they otherwise would, by about 100 degrees Celsius. They also saw that the combination of CNTs on aluminum significantly enhanced the material’s thermal and electrical properties — a finding that they expected.

What surprised them was the material’s color.

“I remember noticing how black it was before growing carbon nanotubes on it, and then after growth, it looked even darker,” Cui recalls. “So I thought I should measure the optical reflectance of the sample.

“Our group does not usually focus on optical properties of materials, but this work was going on at the same time as our art-science collaborations with Diemut, so art influenced science in this case,” says Wardle.

Wardle and Cui, who have applied for a patent on the technology, are making the new CNT process freely available to any artist to use for a noncommercial art project.

“Built to take abuse”

Cui measured the amount of light reflected by the material, not just from directly overhead, but also from every other possible angle. The results showed that the material absorbed at least 99.995 percent of incoming light, from every angle. In other words, it reflected 10 times less light than all other superblack materials, including Vantablack. If the material contained bumps or ridges, or features of any kind, no matter what angle it was viewed from, these features would be invisible, obscured in a void of black.  

The researchers aren’t entirely sure of the mechanism contributing to the material’s opacity, but they suspect that it may have something to do with the combination of etched aluminum, which is somewhat blackened, with the carbon nanotubes. Scientists believe that forests of carbon nanotubes can trap and convert most incoming light to heat, reflecting very little of it back out as light, thereby giving CNTs a particularly black shade.

“CNT forests of different varieties are known to be extremely black, but there is a lack of mechanistic understanding as to why this material is the blackest. That needs further study,” Wardle says.

The material is already gaining interest in the aerospace community. Astrophysicist and Nobel laureate John Mather, who was not involved in the research, is exploring the possibility of using Wardle’s material as the basis for a star shade — a massive black shade that would shield a space telescope from stray light.

“Optical instruments like cameras and telescopes have to get rid of unwanted glare, so you can see what you want to see,” Mather says. “Would you like to see an Earth orbiting another star? We need something very black. … And this black has to be tough to withstand a rocket launch. Old versions were fragile forests of fur, but these are more like pot scrubbers — built to take abuse.”

[Note] An earlier version of this story stated that the new material captures more than 99.96 percent of incoming light. That number has been updated to be more precise; the material absorbs at least 99.995 of incoming light.

Here’s an August 29, 2019 news release from MIT announcing the then upcoming show. Usually I’d expect to see a research paper associated with this work but this time it seems to an art exhibit only,

The MIT Center for Art, Science &Technology (CAST) and the New York Stock Exchange (NYSE) will present The Redemption of Vanity,created by artist Diemut Strebe in collaboration with MIT scientist Brian Wardle and his lab, on view at the New York Stock Exchange September 13, 2019 -November 25, 2019. For the work, a 16.78 carat natural yellow diamond valued at $2 million from L.J.West was coated using a new procedure of generating carbon nanotubes (CNTs), recently measured to be the blackest black ever created, which makes the diamond seem to disappear into an invisible void. The patented carbon nanotube technology (CNT) absorbs more than 99.96% of light and was developed by Professor Wardle and his necstlablab at MIT.

“Any object covered with this CNT material loses all its plasticity and appears entirely flat, abbreviated/reduced to a black silhouette. In outright contradiction to this we see that a diamond,while made of the very same element (carbon) performs the most intense reflection of light on earth.Because of the extremely high light absorbtive qualities of the CNTs, any object, in this case a large diamond coated with CNT’s, becomes a kind of black hole absent of shadows,“ explains Strebe.“The unification of extreme opposites in one object and the particular aesthetic features of the CNTs caught my imagination for this art project.”

“Strebe’s art-science collaboration caused us to look at the optical properties of our new CNT growth, and we discovered that these particular CNTs are blacker than all other reported materials by an order of magnitude across the visible spectrum”, says Wardle. The MIT team is offering the process for any artist to use. “We do not believe in exclusive ownership of any material or idea for any artwork and have opened our method to any artist,” say Strebe and Wardle.“

The project explores material and immaterial value attached to objects and concepts in reference to luxury, society and to art. We are presenting the literal devaluation of a diamond, which is highly symbolic and of high economic value.It presents a challenge to art market mechanisms on the one hand, while expressing at the same time questions of the value of art in a broader way. In this sense it manifests an inquiry into the significance of the value of objects of art and the art market,” says Strebe. “We are honored to present this work at The New York Stock Exchange, which I believe to be a most fitting location to consider the ideas embedded in The Redemption of Vanity.”

“The New York Stock Exchange, a center of financial and technological innovation for 227 years, is the perfect venue to display Diemut Strebe and Professor Brian Wardle’s collaboration. Their work brings together cutting-edge nanotube technology and a natural diamond, which is a symbol of both value and longevity,” said John Tuttle, NYSE Group Vice Chairman & Chief Commercial Officer.

“We welcome all scientists and artists to venture into the world of natural color diamonds. The Redemption of Vanity exemplifies the bond between art, science, and luxury. The 16-carat vivid yellow diamond in the exhibit spent millions of years in complete darkness, deep below the earth’s surface. It was only recently unearthed —a once-in-a-lifetime discovery of exquisite size and color. Now the diamond will relive its journey to darkness as it is covered in the blackest of materials. Once again, it will become a reminder that something rare and beautiful can exist even in darkness,”said Larry West.

The “disappearing” diamond in The Redemption of Vanity is a $2 Million Fancy Vivid Yellow SI1 (GIA), Radiant shape, from color diamond specialist, L.J. West Diamonds Inc. of New York.

The Redemption of Vanity, conceived by Diemut Strebe, has been realized with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano-Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen, in conjunction with Strebe’s residency at MIT supported by the Center for Art, Science & Technology (CAST).

ABOUT THE ARTISTS

Diemut Strebe is a conceptual artist based in Boston, MA and a MIT CAST Visiting Artist. She has collaborated with several MIT faculty, including Noam Chomsky and Robert Langer on Sugababe (2014), Litmus (2014) and Yeast Expression(2015); Seth Lloyd and Dirk Englund on Wigner’s Friends(2014); Alan Guth on Plötzlich! (2018); researchers in William Tisdale’s Lab on The Origin of the Works of Art(2018); Regina Barzilay and Elchanan Mossel on The Prayer (2019); and Ken Kamrin and John Brisson on The Gymnast (2019). Strebe is represented by the Ronald Feldman Gallery.

Brian L. Wardle is a Professor of Aeronautics and Astronautics at MIT and the director of the necstlab research group and MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium. Wardle previously worked with CAST Visiting Artist Trevor Paglen on The Last Picturesproject (2012).

ABOUT THE MIT CENTER FOR ART, SCIENCE & TECHNOLOGY

A major cross-school initiative, the MIT Center for Art, Science & Technology (CAST) creates new opportunities for art, science and technology to thrive as interrelated, mutually informing modes of exploration, knowledge and discovery. CAST’s multidisciplinary platform presents performing and visual arts programs, supports research projects for artists working with science and engineering labs, and sponsors symposia, classes, workshops, design studios, lectures and publications. The Center is funded in part by a generous grant from the Andrew W. Mellon Foundation. Evan Ziporyn is the Faculty Director and Leila W. Kinney is the Executive Director.Since its inception in 2012, CAST has been the catalyst for more than 150 artist residencies and collaborative projects with MIT faculty and students, including numerous cross-disciplinary courses, workshops, concert series, multimedia projects, lectures and symposia. The visiting artists program is a cornerstone of CAST’s activities, which encourages cross-fertilization among disciplines and intensive interaction with MIT’s faculty and students. More info at https://arts.mit.edu/cast/ .

HISTORY OF VISITING ARTISTS AT MIT

Since the late 1960s, MIT has been a leader in integrating the arts and pioneering a model for collaboration among artists, scientists and engineers in a research setting. CAST’s Visiting Artists Program brings internationally acclaimed artists to engage with MIT’s creative community in ways that are mutually enlightening for the artists and for faculty, students and research staff at the Institute. Artists who have worked extensively at MIT include Mel Chin, Olafur Eliasson, Rick Lowe, Vik Muniz, Trevor Paglen, Tomás Saraceno, Maya Beiser, Agnieszka Kurant, and Anicka Yi.

ABOUT L.J. WEST DIAMONDS

L.J. West Diamonds is a three generation natural color diamond whole sale rfounded in the late 1970’s by Larry J. West and based in New York City. L.J. West has established itself as one of the world’s prominent houses for some of the most rare and important exotic natural fancy color diamonds to have ever been unearthed. This collection includes a vast color spectrum of rare pink, blue, yellow, green, orange and red diamonds. L.J. West is an expert in every phase of the jewelry process –from sourcing to the cutting, polishing and final design. Each exceptional jewel is carefully set to become a unique work of art.The Redemption of Vanity is on view at the New York Stock Exchange by appointment only.

Press viewing: September 13, 2019 at 3pmNew York Stock Exchange, 11 Wall Street, New York, NY 10005RSVP required. Please check-in at the blue tent at 2 Broad Street(at the corner of Wall and Broad Streets). All guests are required to show a government issued photo ID and go through airport-like security upon entering the NYSE.NYSE follows a business casual dress code -jeans & sneakers are not permitted.

No word yet if there will be other showings.

An artistic feud (of sorts)

Earlier this year, I updated a story on Vantablack. It was the blackest black, blocking 99.8% of light when I featured it in a March 14, 2016 posting. The UK company making the announcement, Surrey NanoSystems, then laid the groundwork for an artistic feud when it granted exclusive rights to their carbon nanotube-based coating, Vantablack, to Sir Anish Kapoor mentioned here in an April 16, 2016 posting.

This exclusivity outraged some artists notably, Stuart Semple. In his first act of defiance, he created the pinkest pink. Next, came a Kickstarter campaign to fund Semple’s blackest black, which would be available to all artists except Anish Kapoor. You can read all about the pinkest pink and blackest black as per Semple in my February 21, 2019 posting. You can also get a bit of an update in an Oct. 17, 2019 Stuart Semple proffile by Berenice Baker for Verdict,

… so I managed to hire a scientist, Jemima, to work in the studio with me. She got really close to a super black, and we made our own pigment to this recipe and it was awesome, but we couldn’t afford to put it into manufacture because it cost £25,000.”

Semple launched a Kickstarter campaign and was amazed to raise half a million pounds, making it the second most-supported art Kickstarter of all time.

The ‘race to the blackest’ is well underway, with MIT researchers recently announcing a carbon nanotube-based black whose light absorption they tested by coasting a diamond. But Semple is determined that his black should be affordable by all artists and work like a paint, not only perform in laboratory conditions. He’s currently working with Jemima and two chemists to upgrade the recipe for Black 3.2.

I don’t know how Semple arrived at his blackest black. I think it’s unlikely that he achieved the result by working with carbon nanotubes since my understanding is that CNTs aren’t that easy to produce.

Finally

Interesting, eh? In just a few years scientists have progressed from achieving a 99.8% black to 99.999%. It doesn’t seem like that big a difference to me but with Solomon Woods, at the beginning of this post, making the point that our eyes are very sensitive to light, an artistic feud, and a study uncovering deep emotions, getting the blackest black is a much more artistically fraught endeavour than I had imagined.

An artistic feud over the blackest black (a coating material)

This artistic feud has its roots in a nanotechnology-enabled coating material known as Vantablack. Surrey Nanosystems in the UK sent me an announcement which I featured here in a March 14, 2016 posting. About one month later (in an April 16, 2016 posting regarding risks and an artistic controversy), I recounted the story of the controversy, which resulted from the company’s exclusive deal with artist, Sir Anish Kapoor (scroll down the post about 60% of the way to ‘Anish Kapoor and his exclusive rights to Vantablack’.

Apparently, the controversy led to an artistic feud between artists Stuart Semple and Kapoor. Outraged by the notion that only Kapoor could have access to the world’s blackest black, Semple created the world’s pinkest pink and stipulated that any artist in the world could have access to this colour—except Anish Kapoor.

Kapoor’s response can seen in a January 30,2019 article by Sarah Cascone for artnet.com,

… Semple started selling what he called “the world’s pinkest pink, available to anyone who wasn’t Kapoor.”

“I wanted to make a point about elitism and self-expression and the fact that everybody should be able to make art,” Semple said. But within weeks, “tragedy struck. Anish Kapoor got our pink! And he dipped his middle finger in it and put a picture on Instagram!”

[downloaded from http://www.artlyst.com/wp-content/uploads/2016/10/anish-kapoor-pink-1200x600_c.jpg]

Cascone’s article, which explores the history of the feud in greater detail also announces the latest installment (Note: Links have been removed),

In the battle over artistic access to the world’s blackest blacks, Stuart Semple isn’t backing down. The British artist, who took exception to Anish Kapoor’s exclusive contract to use Vantablack, the world’s blackest black substance, just launched a Kickstarter to produce a super dark paint of his own—and it has now been fully funded.

Jesus Diaz’s February 1, 2019 article for Fast Company provides some general technical details (Note: A link has been removed),

… Semple decided to team up with paint makers and about 1,000 artists to develop and test a competitor to Vantablack. His first version, Black 2.0, wasn’t quite as black as Vantablack, since it only absorbed 95% of the visible light (Vantablack absorbs about 99%).

Now, Black 3.0 is out and available on Kickstarter for about $32 per 150ml tube. According to Semple, it is the blackest, mattest, flattest acrylic paint available on the planet, capturing up to 99% of all the visible spectrum radiation. The paint is based on a new pigment called Black Magick, whose exact composition they aren’t disclosing. Black 3.0 is made up of this pigment, combined with a custom acrylic polymer. Semple and his colleagues claim that the polymer “is special because it has more available bonds than any other acrylic polymer being used in paints,” allowing more pigment density. The paint is then finished with what they claim are new “nano-mattifiers,” which remove any shine from the paint. Unlike Vantablack, the resulting paint is soluble in water and nontoxic. [emphasis mine]

I wonder what a ‘nano-mattifier’ might be. Regardless, I’m glad to see this new black is (with a nod to my April 16, 2016 posting about risks and this artistic controversy) nontoxic.

Semple’s ‘blackest black paint’ Kickstarter campaign can be found here. It ends on March 22, 2019 at 1:01 am PDT. The goal is $42,755 in Canadian dollars (CAD) and, as Iwrite this, they currently have $473,062 CAD in pledges.

I don’t usually embed videos that run over 5 mins. but Stuart Semple is very appealing in at least two senses of the word,

Not enough talk about nano risks?

It’s not often that a controversy amongst visual artists intersects with a story about carbon nanotubes, risk, and the roles that  scientists play in public discourse.

Nano risks

Dr. Andrew Maynard, Director of the Risk Innovation Lab at Arizona State University, opens the discussion in a March 29, 2016 article for the appropriately named website, The Conversation (Note: Links have been removed),

Back in 2008, carbon nanotubes – exceptionally fine tubes made up of carbon atoms – were making headlines. A new study from the U.K. had just shown that, under some conditions, these long, slender fiber-like tubes could cause harm in mice in the same way that some asbestos fibers do.

As a collaborator in that study, I was at the time heavily involved in exploring the risks and benefits of novel nanoscale materials. Back then, there was intense interest in understanding how materials like this could be dangerous, and how they might be made safer.

Fast forward to a few weeks ago, when carbon nanotubes were in the news again, but for a very different reason. This time, there was outrage not over potential risks, but because the artist Anish Kapoor had been given exclusive rights to a carbon nanotube-based pigment – claimed to be one of the blackest pigments ever made.

The worries that even nanotech proponents had in the early 2000s about possible health and environmental risks – and their impact on investor and consumer confidence – seem to have evaporated.

I had covered the carbon nanotube-based coating in a March 14, 2016 posting here,

Surrey NanoSystems (UK) is billing their Vantablack as the world’s blackest coating and they now have a new product in that line according to a March 10, 2016 company press release (received via email),

A whole range of products can now take advantage of Vantablack’s astonishing characteristics, thanks to the development of a new spray version of the world’s blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack.

Oddly, the company news release notes Vantablack S-VIS could be used in consumer products while including the recommendation that it not be used in products where physical contact or abrasion is possible,

… Its ability to deceive the eye also opens up a range of design possibilities to enhance styling and appearance in luxury goods and jewellery [emphasis mine].

… “We are continuing to develop the technology, and the new sprayable version really does open up the possibility of applying super-black coatings in many more types of airborne or terrestrial applications. Possibilities include commercial products such as cameras, [emphasis mine] equipment requiring improved performance in a smaller form factor, as well as differentiating the look of products by means of the coating’s unique aesthetic appearance. It’s a major step forward compared with today’s commercial absorber coatings.”

The structured surface of Vantablack S-VIS means that it is not recommended for applications where it is subject to physical contact or abrasion. [emphasis mine] Ideally, it should be applied to surfaces that are protected, either within a packaged product, or behind a glass or other protective layer.

Presumably Surrey NanoSystems is looking at ways to make its Vantablack S-VIS capable of being used in products such as jewellery, cameras, and other consumers products where physical contact and abrasions are a strong possibility.

Andrew has pointed questions about using Vantablack S-VIS in new applications (from his March 29, 2016 article; Note: Links have been removed),

The original Vantablack was a specialty carbon nanotube coating designed for use in space, to reduce the amount of stray light entering space-based optical instruments. It was this far remove from any people that made Vantablack seem pretty safe. Whatever its toxicity, the chances of it getting into someone’s body were vanishingly small. It wasn’t nontoxic, but the risk of exposure was minuscule.

In contrast, Vantablack S-VIS is designed to be used where people might touch it, inhale it, or even (unintentionally) ingest it.

To be clear, Vantablack S-VIS is not comparable to asbestos – the carbon nanotubes it relies on are too short, and too tightly bound together to behave like needle-like asbestos fibers. Yet its combination of novelty, low density and high surface area, together with the possibility of human exposure, still raise serious risk questions.

For instance, as an expert in nanomaterial safety, I would want to know how readily the spray – or bits of material dislodged from surfaces – can be inhaled or otherwise get into the body; what these particles look like; what is known about how their size, shape, surface area, porosity and chemistry affect their ability to damage cells; whether they can act as “Trojan horses” and carry more toxic materials into the body; and what is known about what happens when they get out into the environment.

Risk and the roles that scientists play

Andrew makes his point and holds various groups to account (from his March 29, 2016 article; Note: Links have been removed),

… in the case of Vantablack S-VIS, there’s been a conspicuous absence of such nanotechnology safety experts in media coverage.

This lack of engagement isn’t too surprising – publicly commenting on emerging topics is something we rarely train, or even encourage, our scientists to do.

And yet, where technologies are being commercialized at the same time their safety is being researched, there’s a need for clear lines of communication between scientists, users, journalists and other influencers. Otherwise, how else are people to know what questions they should be asking, and where the answers might lie?

In 2008, initiatives existed such as those at the Center for Biological and Environmental Nanotechnology (CBEN) at Rice University and the Project on Emerging Nanotechnologies (PEN) at the Woodrow Wilson International Center for Scholars (where I served as science advisor) that took this role seriously. These and similar programs worked closely with journalists and others to ensure an informed public dialogue around the safe, responsible and beneficial uses of nanotechnology.

In 2016, there are no comparable programs, to my knowledge – both CBEN and PEN came to the end of their funding some years ago.

Some of the onus here lies with scientists themselves to make appropriate connections with developers, consumers and others. But to do this, they need the support of the institutions they work in, as well as the organizations who fund them. This is not a new idea – there is of course a long and ongoing debate about how to ensure academic research can benefit ordinary people.

Media and risk

As mainstream media such as newspapers and broadcast news continue to suffer losses in audience numbers, the situation vis à vis science journalism has changed considerably since 2008. Finding information is more of a challenge even for the interested.

As for those who might be interested, the chances of catching their attention are considerably more challenging. For example, some years ago scientists claimed to have achieved ‘cold fusion’ and there were television interviews (on the 60 minutes tv programme, amongst others) and cover stories in Time magazine and Newsweek magazine, which you could find in the grocery checkout line. You didn’t have to look for it. In fact, it was difficult to avoid the story. Sadly, the scientists had oversold and misrepresented their findings and that too was extensively covered in mainstream media. The news cycle went on for months. Something similar happened in 2010 with ‘arsenic life’. There was much excitement and then it became clear that scientists had overstated and misrepresented their findings. That news cycle was completed within three or fewer weeks and most members of the public were unaware. Media saturation is no longer what it used to be.

Innovative outreach needs to be part of the discussion and perhaps the Vantablack S-VIS controversy amongst artists can be viewed through that lens.

Anish Kapoor and his exclusive rights to Vantablack

According to a Feb. 29, 2016 article by Henri Neuendorf for artnet news, there is some consternation regarding internationally known artist, Anish Kapoor and a deal he has made with Surrey Nanosystems, the makers of Vantablack in all its iterations (Note: Links have been removed),

Anish Kapoor provoked the fury of fellow artists by acquiring the exclusive rights to the blackest black in the world.

The Indian-born British artist has been working and experimenting with the “super black” paint since 2014 and has recently acquired exclusive rights to the pigment according to reports by the Daily Mail.

The artist clearly knows the value of this innovation for his work. “I’ve been working in this area for the last 30 years or so with all kinds of materials but conventional materials, and here’s one that does something completely different,” he said, adding “I’ve always been drawn to rather exotic materials.”

This description from his Wikipedia entry gives some idea of Kapoor’s stature (Note: Links have been removed),

Sir Anish Kapoor, CBE RA (Hindi: अनीश कपूर, Punjabi: ਅਨੀਸ਼ ਕਪੂਰ), (born 12 March 1954) is a British-Indian sculptor. Born in Bombay,[1][2] Kapoor has lived and worked in London since the early 1970s when he moved to study art, first at the Hornsey College of Art and later at the Chelsea School of Art and Design.

He represented Britain in the XLIV Venice Biennale in 1990, when he was awarded the Premio Duemila Prize. In 1991 he received the Turner Prize and in 2002 received the Unilever Commission for the Turbine Hall at Tate Modern. Notable public sculptures include Cloud Gate (colloquially known as “the Bean”) in Chicago’s Millennium Park; Sky Mirror, exhibited at the Rockefeller Center in New York City in 2006 and Kensington Gardens in London in 2010;[3] Temenos, at Middlehaven, Middlesbrough; Leviathan,[4] at the Grand Palais in Paris in 2011; and ArcelorMittal Orbit, commissioned as a permanent artwork for London’s Olympic Park and completed in 2012.[5]

Kapoor received a Knighthood in the 2013 Birthday Honours for services to visual arts. He was awarded an honorary doctorate degree from the University of Oxford in 2014.[6] [7] In 2012 he was awarded Padma Bhushan by Congress led Indian government which is India’s 3rd highest civilian award.[8]

Artists can be cutthroat but they can also be prankish. Take a look at this image of Kapoor and note the blue background,

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

Artist Anish Kapoor is known for the rich pigments he uses in his work. (Image: Andrew Winning/Reuters)

I don’t know why or when this image (used to illustrate Andrew’s essay) was taken so it may be coincidental but the background for the image brings to mind, Yves Klein and his International Klein Blue (IKB) pigment. From the IKB Wikipedia entry,

L'accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) - Foundation Stedelijk Museum Amsterdam Collection

L’accord bleu (RE 10), 1960, mixed media piece by Yves Klein featuring IKB pigment on canvas and sponges Jaredzimmerman (WMF) – Foundation Stedelijk Museum Amsterdam Collection

Here’s more from the IKB Wikipedia entry (Note: Links have been removed),

International Klein Blue (IKB) was developed by Yves Klein in collaboration with Edouard Adam, a Parisian art paint supplier whose shop is still in business on the Boulevard Edgar-Quinet in Montparnasse.[1] The uniqueness of IKB does not derive from the ultramarine pigment, but rather from the matte, synthetic resin binder in which the color is suspended, and which allows the pigment to maintain as much of its original qualities and intensity of color as possible.[citation needed] The synthetic resin used in the binder is a polyvinyl acetate developed and marketed at the time under the name Rhodopas M or M60A by the French pharmaceutical company Rhône-Poulenc.[2] Adam still sells the binder under the name “Médium Adam 25.”[1]

In May 1960, Klein deposited a Soleau envelope, registering the paint formula under the name International Klein Blue (IKB) at the Institut national de la propriété industrielle (INPI),[3] but he never patented IKB. Only valid under French law, a soleau enveloppe registers the date of invention, according to the depositor, prior to any legal patent application. The copy held by the INPI was destroyed in 1965. Klein’s own copy, which the INPI returned to him duly stamped is still extant.[4]

In short, it’s not the first time an artist has ‘owned’ a colour. Kapoor is not a performance artist as was Klein but his sculptural work lends itself to spectacle and to stimulating public discourse. As to whether or not, this is a prank, I cannot say but it has stimulated a discourse which ranges from intellectual property and artists to the risks of carbon nanotubes and the role scientists could play in the discourse about the risks associated with emerging technologies.

Regardless of how is was intended, bravo to Kapoor.

More reading

Andrew’s March 29, 2016 article has also been reproduced on Nanowerk and Slate.

Johathan Jones has written about Kapoor and the Vantablack  controversy in a Feb. 29, 2016 article for The Guardian titled: Can an artist ever really own a colour?

The world’s blackest coating material

Surrey NanoSystems (UK) is billing their Vantablack as the world’s blackest coating and they now have a new product in that line according to a March 10, 2016 company press release (received via email),

A whole range of products can now take advantage of Vantablack’s astonishing characteristics, thanks to the development of a new spray version of the world’s blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack.

Vantablack’s nano-structure absorbs virtually all incident light, enabling the performance of precision optical systems to be optimized. The material’s developer, UK-based Surrey NanoSystems, has mimicked the performance of its original Vantablack with a new version that can be sprayed onto objects, rather than deposited using a chemical vapour deposition (CVD) process.

Vantablack S-VIS greatly widens the potential applications space, making it possible to coat larger complex shapes and structures. It is applied at temperatures that are easily withstood by common plastics, further extending its use. Even though the material is applied using a simple spraying process, it traps a massive 99.8% of incident light. This property gives Vantablack S-VIS its ability to make objects appear to be two-dimensional black holes, as it becomes impossible to make out surface topography.

The only other commercially-available material that is darker than the new S-VIS version is original Vantablack, which set a world record for absorption of light at a staggering 99.965%. Vantablack was originally developed for satellite-borne earth observation imaging and calibration systems, where it increases instrument sensitivity by improving absorption of stray ultraviolet, visible and infrared light. Since then, many other applications have emerged, including solar-energy collector elements, functional surfaces in buildings and architecture, cinematographic projectors, high-performance baffles and lenses, and scientific instruments.  Its ability to deceive the eye also opens up a range of design possibilities to enhance styling and appearance in luxury goods and jewellery [emphasis mine].

“The original Vantablack coating has had a big impact on the market, and is helping many companies to bring out higher-performing equipment,” says Ben Jensen of Surrey NanoSystems. “We are continuing to develop the technology, and the new sprayable version really does open up the possibility of applying super-black coatings in many more types of airborne or terrestrial applications. Possibilities include commercial products such as cameras, [emphasis mine] equipment requiring improved performance in a smaller form factor, as well as differentiating the look of products by means of the coating’s unique aesthetic appearance. It’s a major step forward compared with today’s commercial absorber coatings.”

Vantablack S-VIS is so effective that its performance far outstrips that of any other conventionally-applied coating, typically achieving a reflectance of less than 0.2%. Unlike other black absorbers, it offers this exceptional performance across a wide-range of viewing angles and wavelengths, which is critical for optical instruments, as well as in many aesthetic applications. It is, for example, some 17 times less reflective than the super-black paint used for minimizing stray light in the Hubble space telescope.

The active element of Vantablack S-VIS is a carbon nanotube matrix. The coating is applied using a proprietary process that includes a number of pre- and post-application steps to achieve its ultra-low reflectance.

Vantablack S-VIS can be applied to most stable surfaces, with the only major constraint being the ability to withstand temperatures of 100 degrees Centigrade, making Vantablack S-VIS suitable for many types of engineering-grade polymers and composite materials. The process is scalable and suitable for high-volume production on a range of substrate sizes.

The structured surface of Vantablack S-VIS means that it is not recommended for applications where it is subject to physical contact or abrasion. [emphasis mine] Ideally, it should be applied to surfaces that are protected, either within a packaged product, or behind a glass or other protective layer.

Coating with Vantablack S-VIS is offered as a service from Surrey NanoSystems’ processing centre in the UK. It is also available under license to companies wishing to integrate the coating into their production processes.

Presumably Surrey NanoSystems is looking at ways to make its Vantablack S-VIS capable of being used in products such as jewellery, cameras, and other consumers products where physical contact and abrasions are a strong possibility.

Helen Clark has written about Vantablack S-VIS in a March 9, 2016 article, which features an embedded video, for themarshalltown.com.

For the curious, here’s an image of the Vantablack coating,

Courtesy: Surrey NanoSystems

Courtesy: Surrey NanoSystems

Nanomaterial growth system sold to L’École Polytechnique et L’Universite de Montreal

NanoGrowth-Catalyst produced by Surrey Nanosystems has been sold to L’École Polytechnique de Montréal, the Université de Montréal, and the University of Surrey’s (England) Advanced Technology Institute. From the Jan. 10, 2011 news item on Azonano,

These leading research organisations have chosen the NanoGrowth-Catalyst as a platform for their work on materials including carbon nanotubes, silicon nanowires, graphene and nanoparticles for semiconductor, optical device and other applications. The growth system’s multi-chamber design ensures the purest nanomaterial processing conditions by continuously maintaining the substrate under vacuum, from the deposition of catalysts to growth of materials.

The Advanced Technology Institute (ATI) is a partner to Surrey NanoSystems and has already been using an earlier version of the NanoGrowth system for around four years to support its research into next-generation semiconductor and photonic device technologies. ATI is the first customer to receive the new NanoGrowth-Catalyst, and the system’s advanced processing resources are now starting to play a role in its work. Facilities including the rapid infrared heating process and a water-cooled chuck are helping ATI to grow ordered carbon nanotube (CNT) structures while maintaining the substrate below 350 degrees C. Low temperature processing is critical as CNTs are typically grown at around 700 degrees C – a level that is incompatible with CMOS semiconductor fabrication. This pioneering semiconductor-related work is currently the subject of a current ATI paper in the journal Carbon†.

“The top-down infrared heating technique provided by this tool allows us to localise energy delivery very accurately”, says Professor Ravi Silva, Head of the Nano-Electronics Centre at the Advanced Technology Institute. “The system provides unparalleled control of processing parameters, giving the required flexibility to support research into nanoelectronic materials – including carbon nanotubes, graphene and silicon nanowires – enabling us to overcome roadblocks to ongoing semiconductor development.”

“Some researchers are still relying on simple thermal furnaces to develop nanomaterials”, explains Ben Jensen of Surrey NanoSystems. “The NanoGrowth system’s comprehensive suite of deposition and processing capabilities, plus end-to-end processing in vacuum, gives both researchers and commercial developers precise and automated control over catalyst deposition and material growth, to explore nanomaterial capabilities and turn ideas into repeatable production processes.”

The folks in Montréal will have a special function added to their system (from the news item),

It will also incorporate a unique form of rapid thermal growth for nanomaterials developed to prevent the agglomeration of catalyst particles. The configuration of the tool was specified by Professor Patrick Desjardins, Director of the École Polytechnique’s Department of Engineering Physics.