Tag Archives: Switzerland

The sense of beauty: an art/science film about CERN, the European Particle Physics Laboratory, in Vancouver, Canada; art/sci September in Toronto (Canada), a science at the bar night in Vancouver (Canada), and a festival in Calgary (Canada)

Compared to five or more years ago, there’s a lollapalooza of art/sci (or sciart) events coming up in September 2018. Of course, it’s helpful if you live in or are visiting Toronto or Vancouver or Calgary at the right time.  All of these events occur from mid September (roughly) to the end of September. In no particular date order:

Sense of beauty in Vancouver

The September 10, 2018 Dante Alighieri Society of British Columbia invitation (received via email) offered more tease than information. Happily, the evite webpage for “The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo filled in the details,

The Dante Alighieri Society of British Columbia

Invites you to the screening of the documentary

“The Sense of Beauty: Art and Science at CERN” (2017) by Valerio Jalongo

TUESDAY, SEPTEMBER 25, 2018 at 6:30 pm

The CINEMATHEQUE – 1131 Howe Street, Vancouver

Duration of film: 75’. Director in attendance; Q&A with the film director to follow the screening

Free Admission

RSVP: info@dantesocietybc.ca

Director Jalongo will discuss the making of his documentary in a seminar open to the public on September 24 (1:00-2:30 pm) at UBC  [University of British Columbia] (Buchanan Penthouse, *1866 Main Maill, Block C, 5th floor*, Vancouver).

The Sense of Beauty is the story of an unprecedented experiment that involves scientists from throughout the world collaborating around the largest machine ever constructed by human beings: the LHC (Large Hadron Collider). As the new experiment at CERN proceeds in its exploration of the mysterious energy that animates the universe, scientists and artists guide us towards the shadow line where science and art, in different ways, pursue truth and beauty.

Some of these men and women believe in God, while others believe only in experiment and doubt. But in their search for truth they are all alert to an elusive sixth – or seventh – sense: the sense of beauty. An unmissable opportunity for lovers of science, of beauty, or of both.

Rome-born Valerio Jalongo is a teacher, screenwriter and director who works in cinema and TV, for which he created works of fiction and award-winning documentaries. Among them: Sulla mia pelle (On My Skin, 2003) and La scuola è finita (2010), starring Valeria Golino, on the difficulties facing public schools in Italy.

This event is presented by the Dante Alighieri Society of BC in collaboration with the Consulate General of Italy in Vancouver and in association with ARPICO (www.arpico.ca), the Society of Italian Researchers and Professionals in Western Canada.

RSVP: info@dantesocietybc.ca

I searched for more information both about the film and about the seminar at UBC. I had no luck with the UBC seminar but I did find more about the film. There’s an April (?) 2017 synopsis by Luciano Barisone on the Vision du Réel website,

From one cave to another. In prehistoric times, human beings would leave paintings in caves to show their amazement and admiration for the complexity of the world. These reproductions of natural forms were the results of an act of creation and also of mystical gestures which appropriated the soul of things. In another gigantic and modern den, the immense CERN laboratory, the same thing is happening today, a combination of enthralled exploration of the cosmos and an attempt to control it. Valerio Jalongo’s film tackles the big questions that have fascinated poets, artists and philosophers since the dawn of time. Who are we? Where do we come from? Where are we going? The scientists at CERN attempt to answer them through machines that explore matter and search for the origins of life. In their conversations or their words to camera, the meaning of existence thus seems to become a pure question of the laws of physics and mathematical formulae. If only for solving the mystery of the universe a sixth sense is necessary. That of beauty…

There’s also a February 5, 2018 essay by Stefano Caggiano for Interni, which uses a description of the film to launch into a paean to Italian design,

The success of the documentary The Sense of Beauty by Valerio Jalongo, which narrates the ‘aesthetic’ side of the physicists at CERN when faced with the fundamental laws of nature, proves that the yearning for beauty is not just an aspect of art, but something shared by all human efforts to interpret reality.

It is no coincidence that the scientists themselves define the LHC particle accelerator (27 km) as a grand machine for beauty, conceived to investigate the meaning of things, not to perform some practical function. In fact, just as matter can be perceived only through form, and form only if supported by matter (Aristotle already understood this), so the laws of physics can be glimpsed only when they are applied to reality.

This is why in the Large Hadron Collider particles are accelerated to speeds close to that of light, reconstructing the matter-energy conditions just a few instants after the Big Bang. Only in this way is it possible to glimpse the hidden fundamental laws of the universe. It is precisely this evanescence that constitutes ‘beauty.’

The quivering of the form that reveals itself in the matter that conceals it, and which – given the fact that everything originates in the Big Bang – is found everywhere, in the most faraway stars and the closest objects: you just have to know how to prove it, grasp it, how to wait. Because this is the only way to establish relations with beauty: not perceiving it but awaiting it. Respecting its way of offering itself, which consists in denying itself.

Charging the form of an object with this sensation of awaiting, then, means catalyzing the ultimate and primary sense of beauty. And it is what is held in common by the work of the five Italian designers nominated for the Rising Talent Awards of Maison & Object 2018 (with Kensaku Oshiro as the only non-Italian designer, though he does live and work in Milan).

There’s a trailer (published by CERN on November 7, 2017,

It’s in both Italian and English with subtitles throughout, should you need them.

*The address for the Buchanan Penthouse was corrected from: 2329 West Mall to 1866 Main Maill, Block C, 5th floor on Sept. 17, 2018.

Toronto’s ArtSci Salon at Nuit Blanche, Mycology, Wild Bees and Art+Tech!

From a Tuesday, September 11, 2018 Art/Sci Salon announcement (received via email),

Baba Yaga Collective and ArtSci Salon Present:
Chaos Fungorum

In 1747, Carl Linnaeus, known as the “father of taxonomy”, observed
that the seeds of fungus moved in water like fish until “..by a law of
nature thus far unheard of and surpassing all human understanding..,”
they changed back to plant in their adult life.

He proceeded to include fungi in the new genus of “Chaos”. But why
delimiting fungi within categories and boundaries when it is exactly
their fluidity that make them so interesting?

Chaos Fungorum draws on the particular position occupied by fungi and
other hybrid organisms: neither plant nor animal, fungi extend across,
and can entertain, communications and collaborations between animal,
human and industrial realms.

Mixing different artistic practices and media, the artists featured in
this exhibition seek to move beyond rigid comprehensions of the living
by working with, rather than merely shaping, sculpting and manipulating
plants, microorganisms and fungi. Letting the non-human speak is to move
away from an anthropocentric approach to the world: it not only opens to
new rewarding artistic practices, but it also fosters new ideas of
sustainable coexistence, new unusual life collaborations and
adaptations, and new forms of communications and languages.

THE EXHIBITION
September 26 – October 7, 2018

Baba Yaga Collective 906 Queen Street West @Crawford, Toronto

info@babayagacollective.ca

FEATURING

BIO.CHROME COLLECTIVE
Robyn Crouch • Mellissa Fisher • Shavon Madden
Tracy Maurice • Tosca Teran • Alexis Williams

SPECIAL GUEST
Whitefeather Hunter

SPECIAL NUIT BLANCHE OPENING RECEPTION
September 29
6:00 – 9:00 pm

6:30pm: Artsci Salon introduction with Roberta Buiani and Stephen Morris
rethinking categories and the “non-human” in art and science

Followed by artist remarks.
Scientists from the University of Toronto will act as respondent.

9:30pm onward: Tosca Teran & Andrei Gravelle of Nanotopia [emphasis mine]

BIO-SONIFICATIONS: NON-HUMAN COLLABORATIONS Mycelium to MIDI •

Midnight Mushroom music live performance

This Special program is co-presented by The Baba Yaga Collective and
ArtSci Salon. For more information contact artscisalon@gmail.com
https://www.facebook.com/events/1763778620414561/

 All the Buzz on Wild Bee Club!
Summer Speaker Series

Wed Sept 19 at 7pm
High Park Nature Centre,
All the Buzz on Wild Bee Club! – Summer Speaker Series

The speaker series will feature the club’s biologist/leader SUSAN FRYE.
A major component of this club will use the SONIC SOLITARIES AUDIO BEE
CABINET  – an observable nest site for bees in OURSpace – to encompass a
sensory experience with stem nesting bees and wasps, and to record
weekly activity at the cabinet. Pairing magnified views in tandem with
amplified sound via headphones, the cabinet facilitates an enhanced
perception of its tiny inhabitants: solitary bees and wasps and other
nest biota in action, up close. As citizen scientists, we can gather and
record observations to compile them into a database that will contribute
to our growing understanding of native bees, the native (and non-native)
plants they use for food and nest material sources, their co-evolution,
and how pollination in a park and restored habitat setting is
facilitated by native bees.

Fri, Sept 21, 8pm
Music Gallery, 918 Bathurst (their new location) –
Trio Wow & Flutter
with Bea Labikova, fujara, saxophones,
Kayla Milmine-Abbott, soprano saxophone,
Sarah Peebles, shō, cracklebox, amplifiers.

Call for Participants: Art+Tech Jam

ChangeUp’s Art+Tech Jam
September 21-23

This three days event will unite a diverse group of artists and
technologists in an intensive, collaborative three-day creation period
and culminating showcase (public exhibition and interdisciplinary rave).

ChangeUo is currently accepting applicants from tech and arts/culture
spaces of all ages, backgrounds, and experience levels.
Limited spots available.
For more information and to apply
https://tinyurl.com/changeup-artsorg

I looked up Nanotopia and found it on SoundCloud. Happy listening!

Et Al III (the ultimate science bar night in Vancouver) and more

A September 12, 2018 Curiosity Collider announcement (received via email) reveals details about the latest cooperative event/bar night put on by three sciencish groups,

Curiosity Collider is bringing art + science to Vancouver’s Ultimate Bar Science Night with Nerd Nite & Science Slam

Do you enjoy learning about science in a casual environment? This is the third year that Curiosity Collider is part of Et al, the Ultimate Bar Science Night where we bring together awesome speakers and activities. Come and enjoy Curiosity Collider’s segment on quantum physics with Spoken Word Poet Angelica Poversky, Physicist James Day, and CC’s own Creative Director Char Hoyt.

When: Drinks and mingling start at 6:30pm. Presentations start at 7:30pm.
Where: Rio Theatre, 1660 E Broadway, Vancouver, BC V5N 1W1
Cost: $15-20 via Eventbrite and at the door. Proceeds will be used to cover the cost of running this event, and to fund future science bar events.

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is the writer and host of an online series based on her books which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Follow updates on twitter via @ccollider or #ColliderCafe. This event is part of the Science Literacy Week celebration across Canada.

Head to the Facebook event page – let us know you are coming and share this event with others!

Looking for more Art+Science in Vancouver?
For more Vancouver art+science events, visit the Curiosity Collider events calendar.

Devoted readers 🙂 will note that the Vancouver Biennale’s Curious Imaginings show was featured here in a June 18, 2018 post and mentioned more recently in the context of a September 11, 2018 post on xenotransplantation.

Finally for this section, special mention to whomever wrote up the ‘bar night’ description on Eventbrite,

Et Al III: The Ultimate Bar Science Night Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

POSTER BY: Armin Mortazavi IG:@Armin.Scientoonist

Et Al III: The Ultimate Bar Science Night

Curiosity Collider + Nerd Nite Vancouver + Science Slam Canada

Special Guest talk by Dr. Carin Bondar – Biologist with a Twist!

6:30pm – Doors open
6:30-7:30 Drinks, Socializing, Nerding
7:30pm-945pm Stage Show with two intermissions

You like science? You like drinking while sciencing? In Vancouver there are many options to get educated and inspired through science, art, and culture in a casual bar setting outside of universities. There’s Nerd Nite which focuses on nerdy lectures in the Fox Cabaret, Curiosity Collider which creates events that bring together artists and scientists, and Science Slam, a poetry-slam inspired science communication competition!

In this third installment of Et Al, we’re making the show bigger than ever. We want people to know all about the bar science nights in Vancouver, but we also want to connect all you nerds together as we build this community. We encourage you to COME DRESSED AS YOUR FAVOURITE SCIENTIST. We will give away prizes to the best costumes, plus it’s a great ice breaker. We’re also encouraging science based organizations to get involved in the show by promoting your institution. Contact Kaylee or Michael at vancouver@nerdnite.com if your science organization would like to contribute to the show with some giveaways, you will get a free ticket, if you don’t have anything to give away, contact us anyway, we want this to be a celebration of science nights in Vancouver!

BIOS

CARIN BONDAR
Dr. Carin Bondar is a biologist, author and philosopher. Bondar is author of the books Wild Sex and Wild Moms (Pegasus). She is writer and host of online series based on her books (Wild Sex and Wild Moms) which have garnered over 100,000,000 views. Her TED talk on the subject has nearly 3 million views. She is host of several TV series including Worlds Oddest Animal Couples (Animal Planet, Netflix), Stephen Hawking’s Brave New World (Discovery World HD, National Geographic) and Outrageous Acts of Science (The Science Channel). Bondar is an adventurer and explorer, having discovered 11 new species of beetles and snails in the remote jungles of Borneo. Bondar is also a mom of 4 kids, two boys and two girls.

Curiosity Collider Art Science Foundation promotes interdisciplinary collaborations that capture natural human curiosity. At the intersection of art, culture, technology, and humanity are innovative ways to communicate the daily relevance of science. Though exhibitions, performance events and our quarterly speaker event, the Collider Cafe we help create new ways to experience science.

NERD NITE
In our opinion, there has never been a better time to be a Nerd! Nerd Nite is an event which is currently held in over 60 cities worldwide! The formula for each Nerd Nite is pretty standard – 20 minute presentations from three presenters each night, in a laid-back environment with lots to learn, and lots to drink!

SCIENCE SLAM
Science Slam YVR is a community outreach organization committed to supporting and promoting science communication in Vancouver. Our Science Slams are informal competitions that bring together researchers, students, educators, and communicators to share interesting science in creative ways. Every event is different, with talks, poems, songs, dances, and unexpected surprises. Our only two rules? Each slammer has 5 minutes, and no slideshows are allowed! Slammers come to share their science, and the judges and audience decide their fate. Who will take away the title of Science Slam champion?

That’s a pretty lively description. You can get tickets here.

Calgary’s Beakerhead

An art, science, and engineering festival in Calgary, Alberta, Beakerhead opens on September 19, 2018 and runs until September 23, 2018. Here’s more from the 2018 online programme announcement made in late July (?) 2018,

Giant Dung Beetle, Zorb Ball Racers, Heart Powered Art and More Set to Explode on Calgary Streets!

Quirky, fun adventures result when art, science and engineering collide at Beakerhead September 19 – 23, 2018.

In just seven weeks, enormous electric bolts will light up the sky in downtown Calgary when a crazy cacophony of exhibits and events takes over the city. The Beakerhead crew is announcing the official program lineup with tickets now available online for all ticketed events. This year’s extravaganza will include remarkable spectacles of art and science, unique activities, and more than 50 distinct events – many of which are free, but still require registration to get tickets.

The Calgary-born smash up of art, science and engineering is in its sixth year. Last year, more than 145,000 people participated in Beakerhead and organizers are planning to top that number in 2018.

“Expect conversations that start with “wow!” says Mary Anne Moser, President and Co-founder of Beakerhead. “This year’s lineup includes a lot of original concepts, special culinary events, dozens of workshops, shows and and tours.”

Beakerhead events take place indoors and out. Beakernight is science’s biggest ticketed street party and tickets are now on sale.

Highlights of Beakerhead 2018:

  • Light up the Night: Giant electric bolts will light up the night sky thanks to two 10-metre Tesla Coils built by a team of artists and engineers.
  • Lunch Without Light: This special Dark Table dining experience is led by a famous broadcaster and an esteemed neuroscientist.
  • Beakereats and Beakerbar: Dining is a whole new experience when chef and bartender become scientist! Creative Calgary chefs and mixologists experiment with a new theme in 2018: canola.
  • Four to Six on Fourth: Blocks of open-air experimentation including a human-sized hamster wheel, artists, performers, and hands-on or feet-on experiences like walking on liquid.
  • Beacons: This series of free neighbourhood installations is completely wild! There’s everything from a giant dung beetle to a 3.5 metre lotus that lights up with your heart beat.
  • Workshops: Learn the art of animation, understand cryptocurrency, meet famous scientists and broadcasters, make organic facial oil or a vegan carrot cake and much more.
  • Zorbathon: Get inside a zorb and cavort with family and friends in an oversized playground. Participate in rolling races, bump-a-thons, obstacle courses. Make a day of it.

Beakerhead takes place September 19 – 23, 2018 with the ticketed Beakernight on Saturday, September 22 at Fort Calgary.

Here’s a special shout out to Shaskatchewan`s Jean-Sébastien Gauthier and Brian F. Eames (featured here in a February 16, 2018 posting) and their free ‘Within Measure’ Sept. 19 – 23, 2018 event at Beakerhead.

That’s all folks! For now, that is.

The secret behind the world’s lightest chronograph watch (whisper: it’s graphene)

This latest watch from the Richard Mille company by way of the University of Manchester isn’t the lightest watch the company has ever made but it is their lightest, most complex watch yet at less than 1.5 oz. It also has a breathtaking price tag. More about that later.

An August 29, 2018 news item on Nanowerk announces the publication of research related to the graphene-enhanced watch,

In January 2017 the world’s lightest mechanical chronograph watch was unveiled in Geneva, Switzerland, showcasing innovative composite development by using graphene. Now the research behind the project has been published. The unique precision-engineered watch was a result of collaboration between The University of Manchester [UK], Richard Mille Watches and McLaren Applied Technologies.

An August 29, 2018 University of Manchester press release, which originated the news item, gives further detail,

The RM 50-03 watch was made using a unique composite incorporating graphene to manufacture a strong but lightweight new case to house the watch mechanism which weighed just 40 grams in total, including the strap.

The collaboration was an exercise in engineering excellence, exploring the methods of correctly aligning graphene within a composite to make the most of the two-dimensional materials superlative properties of mechanical stiffness and strength whilst negating the need for the addition of other, weightier materials.

Now the research behind this unique watch has been published in the journal, Composites Part A: Applied Science and Manufacturing. The work was primarily carried out by a group of researchers at The University of Manchester’s National Graphene Institute.

Leading the research Professor Robert Young said: “In this work, through the addition of only a small amount of graphene into the matrix, the mechanical properties of a unidirectionally-reinforced carbon fibre composite have been significantly enhanced.

“This could have future impact on precision-engineering industries where strength, stiffness and product weight are key concerns such in as aerospace and automotive.”

The small amount of graphene used was added to a carbon fibre composite with the goal of improving stiffness and reducing weight by requiring the use of less overall material. Since graphene has high levels of stiffness and strength, its use as a reinforcement

in polymer composites shows huge potential of further enhancing the mechanical properties of composites.

The final results were achieved with only a 2% weight fraction of graphene added to the epoxy resin. The resulting composite with graphene and carbon fibre was then analysed by tensile testing and the mechanisms were revealed primarily by using Raman spectroscopy and X-ray CT scans.

The benefits of this research demonstrate a simple method which can be incorporated into existing industrial processes, allowing for engineering industries to benefit from graphene mechanical properties, such as the manufacture of airplane wings or the body work of high-performance cars.

The research group discovered that when comparing with a carbon fibre equivalent specimen, the addition of graphene significantly improved the tensile stiffness and strength. This occurred when the graphene was dispersed through the material and aligned in in the fibre direction.

Dr Zheling Li, a University of Manchester Research Associate said: “This study presents a way of increasing the axial stiffness and strength of composites by simple conventional processing methods, and clarifying the mechanisms that lead to this reinforcement.”

Aurèle Vuilleumier R&D Manager at Richard Mille said: “This project is a perfect example of technology transfer from the university to the product. The partnership with McLaren Applied Technologies allows a broad diffusion of graphene-enhanced composites in the industry. As a tangible result, a world record light and strong watch was available for our customers: the RM 50-03.”

Dr Broderick Coburn, Senior Mechanical Design Engineer at McLaren Applied Technologies said: “The potential of graphene to enhance composites’ structural properties has been known and demonstrated at a lab-scale for some time now. This application, although niche, is a great example of those structural benefits making it through to a prepreg material, and then into an actual product.”

The University of Manchester will soon be celebrating the opening of its second world-class graphene facility, the Graphene Engineering Innovation Centre (GEIC), set-to open later this year. The GEIC will allow industry to work alongside academic expertise to translate research into prototypes and pilot production and accelerate the commercialisation of graphene.

Here’s a link to and a citation for the paper,

Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers by Jingwen Chu, Robert J.Young, Thomas J.A.Slater, Timothy L.Burnett, Broderick Coburn, Ludovic Chichignoud, Aurèle Vuilleumier, Zheling Li. Composites Part A: Applied Science and Manufacturing Volume 113, October 2018, Pages 311-317 DOI: https://doi.org/10.1016/j.compositesa.2018.07.032

This paper is open access.

Price tag?

There’s an old saying, ‘if you have to ask, you can’t afford it’. It sprang to mind as I checked out the luxury Swiss watch company’s, Richard MIlle, products. You won’t find a price tag on the company’s RM 50-03’s product page but you will get lots of pictures of the watch mixed in with sports car images alongside chunks of text exhorting the watch and invoking sports car racing, a very expensive sport. And, the sports car images make even more sense when you know that the one of other partners in this academic/commercial venture is a UK leader in the field of motorsport. More from the About page on the McLaren website,

Whatever we apply ourselves to at McLaren, whether in the fields of racing, supercars or technology; we are committed to a journey of relentless improvement that challenges convention, disrupts markets and delivers powerful competitive advantage.

I was not able to find a price list on the Mille or McLaren sites. In fact, the watch does not seem to be mentioned at all on the McLaren website.

Happily, there’s a January 17, 2017 posting by Zach Pina for A Blog To Watch, which kind of reveals the price (Note: Links have been removed),

Forty grams [less than 1.5 oz.]. That’s the total weight, including the strap, of the new Richard Mille RM 50-03 McLaren F1 watch, making it the lightest split-second chronograph with a tourbillon the world has ever seen. Ok, yes – this isn’t exactly an ultra-competitive category – hell, the RM 50-03 is a veritable boat-anchor when compared to the groundbreaking 19-gram [less that .75 oz.] RM 027 Tourbillon Richard Mille built for Rafael Nadal, but that was, by comparison, a much less complicated watch. A mere 40 grams is still an impressive technical feat when you look at just how much is packed into the latest marvel from Richard Mille. The cost for the 40-gram horological wonder? It’ll be seven figures. [The blog post’s title has the price as $1Million.]

Sports cars are expensive and, I guess, so is the technology when it’s adapted to watches. If you’re at all interested, watches, luxury products, and/or the latest high technology, I recommend reading Pina’s entire posting for a lively read,

Richard Mille is no slouch when it comes to passionately creative design and materials (possible understatement of the year, though the year [2017] is still young). However, in breaking new ground for this particular watch, it took a partnership between the Swiss watchmaker, famed British Formula 1 automaker McLaren, and Nobel Prize-winning scientists from the University of Manchester. The product of their collaboration is a case that marries titanium, carbon TPT (thin-ply technology), and a Richard Mille exclusive and apparent watchmaking first: Graph TPT, better known as graphene, that is six times lighter than steel and 200 times as strong. It’s on the cutting edge of materials research and sets the bar for lightweight strength in timepieces.

Should you be hoping for a bargain, I don’t expect they’ve dropped the price in an effort to move product as it reaches its second anniversary since part of the appeal of a luxury product is the cost. In fact, luxury brands destroy product rather than lower the price,

Published on Jul 19, 2018

Burberry is amongst some luxury brands that are burning their stock. Millions of pounds of waste being incinerated to retain exclusivity.

 

Since media have started reporting on this practice, it seems luxury brands are reconsidering their practices.

Better motor control for prosthetic hands (the illusion of feeling) and a discussion of superprostheses and reality

I have two bits about prosthetics, one which focuses on how most of us think of them and another about science fiction fantasies.

Better motor control

This new technology comes via a collaboration between the University of Alberta, the University of New Brunswick (UNB) and Ohio’s Cleveland Clinic, from a March 18, 2018 article by Nicole Ireland for the Canadian Broadcasting Corporation’s (CBC) news online,

Rob Anderson was fighting wildfires in Alberta when the helicopter he was in crashed into the side of a mountain. He survived, but lost his left arm and left leg.

More than 10 years after that accident, Anderson, now 39, says prosthetic limb technology has come a long way, and he feels fortunate to be using “top of the line stuff” to help him function as normally as possible. In fact, he continues to work for the Alberta government’s wildfire fighting service.

His powered prosthetic hand can do basic functions like opening and closing, but he doesn’t feel connected to it — and has limited ability to perform more intricate movements with it, such as shaking hands or holding a glass.

Anderson, who lives in Grande Prairie, Alta., compares its function to “doing things with a long pair of pliers.”

“There’s a disconnect between what you’re physically touching and what your body is doing,” he told CBC News.

Anderson is one of four Canadian participants in a study that suggests there’s a way to change that. …

Six people, all of whom had arm amputations from below the elbow or higher, took part in the research. It found that strategically placed vibrating “robots” made them “feel” the movements of their prosthetic hands, allowing them to grasp and grip objects with much more control and accuracy.

All of the participants had all previously undergone a specialized surgical procedure called “targeted re-innervation.” The nerves that had connected to their hands before they were amputated were rewired to link instead to muscles (including the biceps and triceps) in their remaining upper arms and in their chests.

For the study, researchers placed the robotic devices on the skin over those re-innervated muscles and vibrated them as the participants opened, closed, grasped or pinched with their prosthetic hands.

While the vibration was turned on, the participants “felt” their artificial hands moving and could adjust their grip based on the sensation. …

I have an April 24, 2017 posting about a tetraplegic patient who had a number of electrodes implanted in his arms and hands linked to a brain-machine interface and which allowed him to move his hands and arms; the implants were later removed. It is a different problem with a correspondingly different technological solution but there does seem to be increased interest in implanting sensors and electrodes into the human body to increase mobility and/or sensation.

Anderson describes how it ‘feels,

“It was kind of surreal,” Anderson said. “I could visually see the hand go out, I would touch something, I would squeeze it and my phantom hand felt like it was being closed and squeezing on something and it was sending the message back to my brain.

“It was a very strange sensation to actually be able to feel that feedback because I hadn’t in 10 years.”

The feeling of movement in the prosthetic hand is an illusion, the researchers say, since the vibration is actually happening to a muscle elsewhere in the body. But the sensation appeared to have a real effect on the participants.

“They were able to control their grasp function and how much they were opening the hand, to the same degree that someone with an intact hand would,” said study co-author Dr. Jacqueline Hebert, an associate professor in the Faculty of Rehabilitation Medicine at the University of Alberta.

Although the researchers are encouraged by the study findings, they acknowledge that there was a small number of participants, who all had access to the specialized re-innervation surgery to redirect the nerves from their amputated hands to other parts of their body.

The next step, they say, is to see if they can also simulate the feeling of movement in a broader range of people who have had other types of amputations, including legs, and have not had the re-innervation surgery.

Here’s a March 15, 2018  CBC New Brunswick radio interview about the work,

This is a bit longer than most of the embedded audio pieces that I have here but it’s worth it. Sadly, I can’t identify the interviewer who did a very good job with Jon Sensinger, associate director of UNB’s Institute of Biomedical Engineering. One more thing, I noticed that the interviewer made no mention of the University of Alberta in her introduction or in the subsequent interview. I gather regionalism reigns supreme everywhere in Canada. Or, maybe she and Sensinger just forgot. It happens when you’re excited. Also, there were US institutions in Ohio and Virginia that participated in this work.

Here’s a link to and a citation for the team’s paper,

Illusory movement perception improves motor control for prosthetic hands by Paul D. Marasco, Jacqueline S. Hebert, Jon W. Sensinger, Courtney E. Shell, Jonathon S. Schofield, Zachary C. Thumser, Raviraj Nataraj, Dylan T. Beckler, Michael R. Dawson, Dan H. Blustein, Satinder Gill, Brett D. Mensh, Rafael Granja-Vazquez, Madeline D. Newcomb, Jason P. Carey, and Beth M. Orzell. Science Translational Medicine 14 Mar 2018: Vol. 10, Issue 432, eaao6990 DOI: 10.1126/scitranslmed.aao6990

This paper is open access.

Superprostheses and our science fiction future

A March 20, 2018 news item on phys.org features an essay on about superprostheses and/or assistive devices,

Assistive devices may soon allow people to perform virtually superhuman feats. According to Robert Riener, however, there are more pressing goals than developing superhumans.

What had until recently been described as a futuristic vision has become a reality: the first self-declared “cyborgs” have had chips implanted in their bodies so that they can open doors and make cashless payments. The latest robotic hand prostheses succeed in performing all kinds of grips and tasks requiring dexterity. Parathletes fitted with running and spring prostheses compete – and win – against the best, non-impaired athletes. Then there are robotic pets and talking humanoid robots adding a bit of excitement to nursing homes.

Some media are even predicting that these high-tech creations will bring about forms of physiological augmentation overshadowing humans’ physical capabilities in ways never seen before. For instance, hearing aids are eventually expected to offer the ultimate in hearing; retinal implants will enable vision with a sharpness rivalling that of any eagle; motorised exoskeletons will transform soldiers into tireless fighting machines.

Visions of the future: the video game Deus Ex: Human Revolution highlights the emergence of physiological augmentation. (Visualisations: Square Enix) Courtesy: ETH Zurich

Professor Robert Riener uses the image above to illustrate the notion of superprosthese in his March 20, 2018 essay on the ETH Zurich website,

All of these prophecies notwithstanding, our robotic transformation into superheroes will not be happening in the immediate future and can still be filed under Hollywood hero myths. Compared to the technology available today, our bodies are a true marvel whose complexity and performance allows us to perform an extremely wide spectrum of tasks. Hundreds of efficient muscles, thousands of independently operating motor units along with millions of sensory receptors and billions of nerve cells allow us to perform delicate and detailed tasks with tweezers or lift heavy loads. Added to this, our musculoskeletal system is highly adaptable, can partly repair itself and requires only minimal amounts of energy in the form of relatively small amounts of food consumed.

Machines will not be able to match this any time soon. Today’s assistive devices are still laboratory experiments or niche products designed for very specific tasks. Markus Rehm, an athlete with a disability, does not use his innovative spring prosthesis to go for walks or drive a car. Nor can today’s conventional arm prostheses help a person tie their shoes or button up their shirt. Lifting devices used for nursing care are not suitable for helping with personal hygiene tasks or in psychotherapy. And robotic pets quickly lose their charm the moment their batteries die.

Solving real problems

There is no denying that advances continue to be made. Since the scientific and industrial revolutions, we have become dependent on relentless progress and growth, and we can no longer separate today’s world from this development. There are, however, more pressing issues to be solved than creating superhumans.

On the one hand, engineers need to dedicate their efforts to solving the real problems of patients, the elderly and people with disabilities. Better technical solutions are needed to help them lead normal lives and assist them in their work. We need motorised prostheses that also work in the rain and wheelchairs that can manoeuvre even with snow on the ground. Talking robotic nurses also need to be understood by hard-of-hearing pensioners as well as offer simple and dependable interactivity. Their batteries need to last at least one full day to be recharged overnight.

In addition, financial resources need to be available so that all people have access to the latest technologies, such as a high-quality household prosthesis for the family man, an extra prosthesis for the avid athlete or a prosthesis for the pensioner. [emphasis mine]

Breaking down barriers

What is just as important as the ongoing development of prostheses and assistive devices is the ability to minimise or eliminate physical barriers. Where there are no stairs, there is no need for elaborate special solutions like stair lifts or stairclimbing wheelchairs – or, presumably, fully motorised exoskeletons.

Efforts also need to be made to transform the way society thinks about people with disabilities. More acknowledgement of the day-to-day challenges facing patients with disabilities is needed, which requires that people be confronted with the topic of disability when they are still children. Such projects must be promoted at home and in schools so that living with impairments can also attain a state of normality and all people can partake in society. It is therefore also necessary to break down mental barriers.

The road to a virtually superhuman existence is still far and long. Anyone reading this text will not live to see it. In the meantime, the task at hand is to tackle the mundane challenges in order to simplify people’s daily lives in ways that do not require technology, that allow people to be active participants and improve their quality of life – instead of wasting our time getting caught up in cyborg euphoria and digital mania.

I’m struck by Riener’s reference to financial resources and access. Sensinger mentions financial resources in his CBC radio interview although his concern is with convincing funders that prostheses that mimic ‘feeling’ are needed.

I’m also struck by Riener’s discussion about nontechnological solutions for including people with all kinds of abilities and disabilities.

There was no grand plan for combining these two news bits; I just thought they were interesting together.

AI (artificial intelligence) for Good Global Summit from May 15 – 17, 2018 in Geneva, Switzerland: details and an interview with Frederic Werner

With all the talk about artificial intelligence (AI), a lot more attention seems to be paid to apocalyptic scenarios: loss of jobs, financial hardship, loss of personal agency and privacy, and more with all of these impacts being described as global. Still, there are some folks who are considering and working on ‘AI for good’.

If you’d asked me, the International Telecommunications Union (ITU) would not have been my first guess (my choice would have been United Nations Educational, Scientific and Cultural Organization [UNESCO]) as an agency likely to host the 2018 AI for Good Global Summit. But, it turns out the ITU is a UN (United Nations agency) and, according to its Wikipedia entry, it’s an intergovernmental public-private partnership, which may explain the nature of the participants in the upcoming summit.

The news

First, there’s a May 4, 2018 ITU media advisory (received via email or you can find the full media advisory here) about the upcoming summit,

Artificial Intelligence (AI) is now widely identified as being able to address the greatest challenges facing humanity – supporting innovation in fields ranging from crisis management and healthcare to smart cities and communications networking.

The second annual ‘AI for Good Global Summit’ will take place 15-17 May [2018] in Geneva, and seeks to leverage AI to accelerate progress towards the United Nations’ Sustainable Development Goals and ultimately benefit humanity.

WHAT: Global event to advance ‘AI for Good’ with the participation of internationally recognized AI experts. The programme will include interactive high-level panels, while ‘AI Breakthrough Teams’ will propose AI strategies able to create impact in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society – through interactive sessions. The summit will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

A special demo & exhibit track will feature innovative applications of AI designed to: protect women from sexual violence, avoid infant crib deaths, end child abuse, predict oral cancer, and improve mental health treatments for depression – as well as interactive robots including: Alice, a Dutch invention designed to support the aged; iCub, an open-source robot; and Sophia, the humanoid AI robot.

WHEN: 15-17 May 2018, beginning daily at 9 AM

WHERE: ITU Headquarters, 2 Rue de Varembé, Geneva, Switzerland (Please note: entrance to ITU is now limited for all visitors to the Montbrillant building entrance only on rue Varembé).

WHO: Confirmed participants to date include expert representatives from: Association for Computing Machinery, Bill and Melinda Gates Foundation, Cambridge University, Carnegie Mellon, Chan Zuckerberg Initiative, Consumer Trade Association, Facebook, Fraunhofer, Google, Harvard University, IBM Watson, IEEE, Intellectual Ventures, ITU, Microsoft, Massachusetts Institute of Technology (MIT), Partnership on AI, Planet Labs, Shenzhen Open Innovation Lab, University of California at Berkeley, University of Tokyo, XPRIZE Foundation, Yale University – and the participation of “Sophia” the humanoid robot and “iCub” the EU open source robotcub.

The interview

Frederic Werner, Senior Communications Officer at the International Telecommunication Union and** one of the organizers of the AI for Good Global Summit 2018 kindly took the time to speak to me and provide a few more details about the upcoming event.

Werner noted that the 2018 event grew out of a much smaller 2017 ‘workshop’ and first of its kind, about beneficial AI which this year has ballooned in size to 91 countries (about 15 participants are expected from Canada), 32 UN agencies, and substantive representation from the private sector. The 2017 event featured Dr. Yoshua Bengio of the University of Montreal  (Université de Montréal) was a featured speaker.

“This year, we’re focused on action-oriented projects that will help us reach our Sustainable Development Goals (SDGs) by 2030. We’re looking at near-term practical AI applications,” says Werner. “We’re matchmaking problem-owners and solution-owners.”

Academics, industry professionals, government officials, and representatives from UN agencies are gathering  to work on four tracks/themes:

In advance of this meeting, the group launched an AI repository (an action item from the 2017 meeting) on April 25, 2018 inviting people to list their AI projects (from the ITU’s April 25, 2018? AI repository news announcement),

ITU has just launched an AI Repository where anyone working in the field of artificial intelligence (AI) can contribute key information about how to leverage AI to help solve humanity’s greatest challenges.

This is the only global repository that identifies AI-related projects, research initiatives, think-tanks and organizations that aim to accelerate progress on the 17 United Nations’ Sustainable Development Goals (SDGs).

To submit a project, just press ‘Submit’ on the AI Repository site and fill in the online questionnaire, providing all relevant details of your project. You will also be asked to map your project to the relevant World Summit on the Information Society (WSIS) action lines and the SDGs. Approved projects will be officially registered in the repository database.

Benefits of participation on the AI Repository include:

WSIS Prizes recognize individuals, governments, civil society, local, regional and international agencies, research institutions and private-sector companies for outstanding success in implementing development oriented strategies that leverage the power of AI and ICTs.

Creating the AI Repository was one of the action items of last year’s AI for Good Global Summit.

We are looking forward to your submissions.

If you have any questions, please send an email to: ai@itu.int

“Your project won’t be visible immediately as we have to vet the submissions to weed out spam-type material and projects that are not in line with our goals,” says Werner. That said, there are already 29 projects in the repository. As you might expect, the UK, China, and US are in the repository but also represented are Egypt, Uganda, Belarus, Serbia, Peru, Italy, and other countries not commonly cited when discussing AI research.

Werner also pointed out in response to my surprise over the ITU’s role with regard to this AI initiative that the ITU is the only UN agency which has 192* member states (countries), 150 universities, and over 700 industry members as well as other member entities, which gives them tremendous breadth of reach. As well, the organization, founded originally in 1865 as the International Telegraph Convention, has extensive experience with global standardization in the information technology and telecommunications industries. (See more in their Wikipedia entry.)

Finally

There is a bit more about the summit on the ITU’s AI for Good Global Summit 2018 webpage,

The 2nd edition of the AI for Good Global Summit will be organized by ITU in Geneva on 15-17 May 2018, in partnership with XPRIZE Foundation, the global leader in incentivized prize competitions, the Association for Computing Machinery (ACM) and sister United Nations agencies including UNESCO, UNICEF, UNCTAD, UNIDO, Global Pulse, UNICRI, UNODA, UNIDIR, UNODC, WFP, IFAD, UNAIDS, WIPO, ILO, UNITAR, UNOPS, OHCHR, UN UniversityWHO, UNEP, ICAO, UNDP, The World Bank, UN DESA, CTBTOUNISDRUNOG, UNOOSAUNFPAUNECE, UNDPA, and UNHCR.

The AI for Good series is the leading United Nations platform for dialogue on AI. The action​​-oriented 2018 summit will identify practical applications of AI and supporting strategies to improve the quality and sustainability of life on our planet. The summit will continue to formulate strategies to ensure trusted, safe and inclusive development of AI technologies and equitable access to their benefits.

While the 2017 summit sparked the first ever inclusive global dialogue on beneficial AI, the action-oriented 2018 summit will focus on impactful AI solutions able to yield long-term benefits and help achieve the Sustainable Development Goals. ‘Breakthrough teams’ will demonstrate the potential of AI to map poverty and aid with natural disasters using satellite imagery, how AI could assist the delivery of citizen-centric services in smart cities, and new opportunities for AI to help achieve Universal Health Coverage, and finally to help achieve transparency and explainability in AI algorithms.

Teams will propose impactful AI strategies able to be enacted in the near term, guided by an expert audience of mentors representing government, industry, academia and civil society. Strategies will be evaluated by the mentors according to their feasibility and scalability, potential to address truly global challenges, degree of supporting advocacy, and applicability to market failures beyond the scope of government and industry. The exercise will connect AI innovators with public and private-sector decision-makers, building collaboration to take promising strategies forward.

“As the UN specialized agency for information and communication technologies, ITU is well placed to guide AI innovation towards the achievement of the UN Sustainable Development ​Goals. We are providing a neutral close quotation markplatform for international dialogue aimed at ​building a ​common understanding of the capabilities of emerging AI technologies.​​” Houlin Zhao, Secretary General ​of ITU​

Should you be close to Geneva, it seems that registration is still open. Just go to the ITU’s AI for Good Global Summit 2018 webpage, scroll the page down to ‘Documentation’ and you will find a link to the invitation and a link to online registration. Participation is free but I expect that you are responsible for your travel and accommodation costs.

For anyone unable to attend in person, the summit will be livestreamed (webcast in real time) and you can watch the sessions by following the link below,

https://www.itu.int/en/ITU-T/AI/2018/Pages/webcast.aspx

For those of us on the West Coast of Canada and other parts distant to Geneva, you will want to take the nine hour difference between Geneva (Switzerland) and here into account when viewing the proceedings. If you can’t manage the time difference, the sessions are being recorded and will be posted at a later date.

*’132 member states’ corrected to ‘192 member states’ on May 11, 2018 at 1500 hours PDT.

*Redundant ‘and’ removed on July 19, 2018.

World heritage music stored in DNA

It seems a Swiss team from the École Polytechnique de Lausanne (EPFL) have collaborated with American companies Twist Bioscience and Microsoft, as well as, the University of Washington (state) to preserve two iconic jazz pieces on DNA (deoxyribonucleic acid) according to a Sept. 29, 2017 news item on phys.org,,

Thanks to an innovative technology for encoding data in DNA strands, two items of world heritage – songs recorded at the Montreux Jazz Festival [held in Switzerland] and digitized by EPFL – have been safeguarded for eternity. This marks the first time that cultural artifacts granted UNESCO heritage status have been saved in such a manner, ensuring they are preserved for thousands of years. The method was developed by US company Twist Bioscience and is being unveiled today in a demonstrator created at the EPFL+ECAL Lab.

“Tutu” by Miles Davis and “Smoke on the Water” by Deep Purple have already made their mark on music history. Now they have entered the annals of science, for eternity. Recordings of these two legendary songs were digitized by the Ecole Polytechnique Fédérale de Lausanne (EPFL) as part of the Montreux Jazz Digital Project, and they are the first to be stored in the form of a DNA sequence that can be subsequently decoded and listened to without any reduction in quality.

A Sept. 29, 2017 EPFL press release by Emmanuel Barraud, which originated the news item, provides more details,

This feat was achieved by US company Twist Bioscience working in association with Microsoft Research and the University of Washington. The pioneering technology is actually based on a mechanism that has been at work on Earth for billions of years: storing information in the form of DNA strands. This fundamental process is what has allowed all living species, plants and animals alike, to live on from generation to generation.

The entire world wide web in a shoe box

All electronic data storage involves encoding data in binary format – a series of zeros and ones – and then recording it on a physical medium. DNA works in a similar way, but is composed of long strands of series of four nucleotides (A, T, C and G) that make up a “code.” While the basic principle may be the same, the two methods differ greatly in terms of efficiency: if all the information currently on the internet was stored in the form of DNA, it would fit in a shoe box!

Recent advances in biotechnology now make it possible for humans to do what Mother Nature has always done. Today’s scientists can create artificial DNA strands, “record” any kind of genetic code on them and then analyze them using a sequencer to reconstruct the original data. What’s more, DNA is extraordinarily stable, as evidenced by prehistoric fragments that have been preserved in amber. Artificial strands created by scientists and carefully encapsulated should likewise last for millennia.

To help demonstrate the feasibility of this new method, EPFL’s Metamedia Center provided recordings of two famous songs played at the Montreux Jazz Festival: “Tutu” by Miles Davis, and “Smoke on the Water” by Deep Purple. Twist Bioscience and its research partners encoded the recordings, transformed them into DNA strands and then sequenced and decoded them and played them again – without any reduction in quality.

The amount of artificial DNA strands needed to record the two songs is invisible to the naked eye, and the amount needed to record all 50 years of the Festival’s archives, which have been included in UNESCO’s [United Nations Educational, Scientific and Cultural Organization] Memory of the World Register, would be equal in size to a grain of sand. “Our partnership with EPFL in digitizing our archives aims not only at their positive exploration, but also at their preservation for the next generations,” says Thierry Amsallem, president of the Claude Nobs Foundation. “By taking part in this pioneering experiment which writes the songs into DNA strands, we can be certain that they will be saved on a medium that will never become obsolete!”

A new concept of time

At EPFL’s first-ever ArtTech forum, attendees got to hear the two songs played after being stored in DNA, using a demonstrator developed at the EPFL+ECAL Lab. The system shows that being able to store data for thousands of years is a revolutionary breakthrough that can completely change our relationship with data, memory and time. “For us, it means looking into radically new ways of interacting with cultural heritage that can potentially cut across civilizations,” says Nicolas Henchoz, head of the EPFL+ECAL Lab.

Quincy Jones, a longstanding Festival supporter, is particularly enthusiastic about this technological breakthrough: “With advancements in nanotechnology, I believe we can expect to see people living prolonged lives, and with that, we can also expect to see more developments in the enhancement of how we live. For me, life is all about learning where you came from in order to get where you want to go, but in order to do so, you need access to history! And with the unreliability of how archives are often stored, I sometimes worry that our future generations will be left without such access… So, it absolutely makes my soul smile to know that EPFL, Twist Bioscience and their partners are coming together to preserve the beauty and history of the Montreux Jazz Festival for our future generations, on DNA! I’ve been a part of this festival for decades and it truly is a magnificent representation of what happens when different cultures unite for the sake of music. Absolute magic. And I’m proud to know that the memory of this special place will never be lost.

A Sept. 29, 2017 Twist Bioscience news release is repetitive in some ways but interesting nonetheless,

Twist Bioscience, a company accelerating science and innovation through rapid, high-quality DNA synthesis, today announced that, working with Microsoft and University of Washington researchers, they have successfully stored archival-quality audio recordings of two important music performances from the archives of the world-renowned Montreux Jazz Festival.
These selections are encoded and stored in nature’s preferred storage medium, DNA, for the first time. These tiny specks of DNA will preserve a part of UNESCO’s Memory of the World Archive, where valuable cultural heritage collections are recorded. This is the first time DNA has been used as a long-term archival-quality storage medium.
Quincy Jones, world-renowned Entertainment Executive, Music Composer and Arranger, Musician and Music Producer said, “With advancements in nanotechnology, I believe we can expect to see people living prolonged lives, and with that, we can also expect to see more developments in the enhancement of how we live. For me, life is all about learning where you came from in order to get where you want to go, but in order to do so, you need access to history! And with the unreliability of how archives are often stored, I sometimes worry that our future generations will be left without such access…So, it absolutely makes my soul smile to know that EPFL, Twist Bioscience and others are coming together to preserve the beauty and history of the Montreux Jazz Festival for our future generations, on DNA!…I’ve been a part of this festival for decades and it truly is a magnificent representation of what happens when different cultures unite for the sake of music. Absolute magic. And I’m proud to know that the memory of this special place will never be lost.”
“Our partnership with EPFL in digitizing our archives aims not only at their positive exploration, but also at their preservation for the next generations,” says Thierry Amsallem, president of the Claude Nobs Foundation. “By taking part in this pioneering experiment which writes the songs into DNA strands, we can be certain that they will be saved on a medium that will never become obsolete!”
The Montreux Jazz Digital Project is a collaboration between the Claude Nobs Foundation, curator of the Montreux Jazz Festival audio-visual collection and the École Polytechnique Fédérale de Lausanne (EPFL) to digitize, enrich, store, show, and preserve this notable legacy created by Claude Nobs, the Festival’s founder.
In this proof-of-principle project, two quintessential music performances from the Montreux Jazz Festival – Smoke on the Water, performed by Deep Purple and Tutu, performed by Miles Davis – have been encoded onto DNA and read back with 100 percent accuracy. After being decoded, the songs were played on September 29th [2017] at the ArtTech Forum (see below) in Lausanne, Switzerland. Smoke on the Water was selected as a tribute to Claude Nobs, the Montreux Jazz Festival’s founder. The song memorializes a fire and Funky Claude’s rescue efforts at the Casino Barrière de Montreux during a Frank Zappa concert promoted by Claude Nobs. Miles Davis’ Tutu was selected for the role he played in music history and the Montreux Jazz Festival’s success. Miles Davis died in 1991.
“We archived two magical musical pieces on DNA of this historic collection, equating to 140MB of stored data in DNA,” said Karin Strauss, Ph.D., a Senior Researcher at Microsoft, and one of the project’s leaders.  “The amount of DNA used to store these songs is much smaller than one grain of sand. Amazingly, storing the entire six petabyte Montreux Jazz Festival’s collection would result in DNA smaller than one grain of rice.”
Luis Ceze, Ph.D., a professor in the Paul G. Allen School of Computer Science & Engineering at the University of Washington, said, “DNA, nature’s preferred information storage medium, is an ideal fit for digital archives because of its durability, density and eternal relevance. Storing items from the Montreux Jazz Festival is a perfect way to show how fast DNA digital data storage is becoming real.”
Nature’s Preferred Storage Medium
Nature selected DNA as its hard drive billions of years ago to encode all the genetic instructions necessary for life. These instructions include all the information necessary for survival. DNA molecules encode information with sequences of discrete units. In computers, these discrete units are the 0s and 1s of “binary code,” whereas in DNA molecules, the units are the four distinct nucleotide bases: adenine (A), cytosine (C), guanine (G) and thymine (T).
“DNA is a remarkably efficient molecule that can remain stable for millennia,” said Bill Peck, Ph.D., chief technology officer of Twist Bioscience.  “This is a very exciting project: we are now in an age where we can use the remarkable efficiencies of nature to archive master copies of our cultural heritage in DNA.   As we develop the economies of this process new performances can be added any time.  Unlike current storage technologies, nature’s media will not change and will remain readable through time. There will be no new technology to replace DNA, nature has already optimized the format.”
DNA: Far More Efficient Than a Computer 
Each cell within the human body contains approximately three billion base pairs of DNA. With 75 trillion cells in the human body, this equates to the storage of 150 zettabytes (1021) of information within each body. By comparison, the largest data centers can be hundreds of thousands to even millions of square feet to hold a comparable amount of stored data.
The Elegance of DNA as a Storage Medium
Like music, which can be widely varied with a finite number of notes, DNA encodes individuality with only four different letters in varied combinations. When using DNA as a storage medium, there are several advantages in addition to the universality of the format and incredible storage density. DNA can be stable for thousands of years when stored in a cool dry place and is easy to copy using polymerase chain reaction to create back-up copies of archived material. In addition, because of PCR, small data sets can be targeted and recovered quickly from a large dataset without needing to read the entire file.
How to Store Digital Data in DNA
To encode the music performances into archival storage copies in DNA, Twist Bioscience worked with Microsoft and University of Washington researchers to complete four steps: Coding, synthesis/storage, retrieval and decoding. First, the digital files were converted from the binary code using 0s and 1s into sequences of A, C, T and G. For purposes of the example, 00 represents A, 10 represents C, 01 represents G and 11 represents T. Twist Bioscience then synthesizes the DNA in short segments in the sequence order provided. The short DNA segments each contain about 12 bytes of data as well as a sequence number to indicate their place within the overall sequence. This is the process of storage. And finally, to ensure that the file is stored accurately, the sequence is read back to ensure 100 percent accuracy, and then decoded from A, C, T or G into a two-digit binary representation.
Importantly, to encapsulate and preserve encoded DNA, the collaborators are working with Professor Dr. Robert Grass of ETH Zurich. Grass has developed an innovative technology inspired by preservation of DNA within prehistoric fossils.  With this technology, digital data encoded in DNA remains preserved for millennia.
About UNESCO’s Memory of the World Register
UNESCO established the Memory of the World Register in 1992 in response to a growing awareness of the perilous state of preservation of, and access to, documentary heritage in various parts of the world.  Through its National Commissions, UNESCO prepared a list of endangered library and archive holdings and a world list of national cinematic heritage.
A range of pilot projects employing contemporary technology to reproduce original documentary heritage on other media began. These included, for example, a CD-ROM of the 13th Century Radzivill Chronicle, tracing the origins of the peoples of Europe, and Memoria de Iberoamerica, a joint newspaper microfilming project involving seven Latin American countries. These projects enhanced access to this documentary heritage and contributed to its preservation.
“We are incredibly proud to be a part of this momentous event, with the first archived songs placed into the UNESCO Memory of the World Register,” said Emily Leproust, Ph.D., CEO of Twist Bioscience.
About ArtTech
The ArtTech Foundation, created by renowned scientists and dignitaries from Crans-Montana, Switzerland, wishes to stimulate reflection and support pioneering and innovative projects beyond the known boundaries of culture and science.
Benefitting from the establishment of a favorable environment for the creation of technology companies, the Foundation aims to position itself as key promoter of ideas and innovative endeavors within a landscape of “Culture and Science” that is still being shaped.
Several initiatives, including our annual global platform launched in the spring of 2017, are helping to create a community that brings together researchers, celebrities in the world of culture and the arts, as well as investors and entrepreneurs from Switzerland and across the globe.
 
About EPFL
EPFL, one of the two Swiss Federal Institutes of Technology, based in Lausanne, is Europe’s most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society.
About Twist Bioscience
At Twist Bioscience, our expertise is accelerating science and innovation by leveraging the power of scale. We have developed a proprietary semiconductor-based synthetic DNA manufacturing process featuring a high throughput silicon platform capable of producing synthetic biology tools, including genes, oligonucleotide pools and variant libraries. By synthesizing DNA on silicon instead of on traditional 96-well plastic plates, our platform overcomes the current inefficiencies of synthetic DNA production, and enables cost-effective, rapid, high-quality and high throughput synthetic gene production, which in turn, expedites the design, build and test cycle to enable personalized medicines, pharmaceuticals, sustainable chemical production, improved agriculture production, diagnostics and biodetection. We are also developing new technologies to address large scale data storage. For more information, please visit www.twistbioscience.com. Twist Bioscience is on Twitter. Sign up to follow our Twitter feed @TwistBioscience at https://twitter.com/TwistBioscience.

If you hadn’t read the EPFL press release first, it might have taken a minute to figure out why EPFL is being mentioned in the Twist Bioscience news release. Presumably someone was rushing to make a deadline. Ah well, I’ve seen and written worse.

I haven’t been able to find any video or audio recordings of the DNA-preserved performances but there is an informational video (originally published July 7, 2016) from Microsoft and the University of Washington describing the DNA-based technology,

I also found this description of listening to the DNA-preserved music in an Oct. 6, 2017 blog posting for the Canadian Broadcasting Corporation’s (CBC) Day 6 radio programme,

To listen to them, one must first suspend the DNA holding the songs in a solution. Next, one can use a DNA sequencer to read the letters of the bases forming the molecules. Then, algorithms can determine the digital code those letters form. From that code, comes the music.

It’s complicated but Ceze says his team performed this process without error.

You can find out more about UNESCO’s Memory of the World and its register here , more about the EPFL+ECAL Lab here, and more about Twist Bioscience here.

Hallucinogenic molecules and the brain

Psychedelic drugs seems to be enjoying a ‘moment’. After decades of being vilified and  declared illegal (in many jurisdictions), psychedelic (or hallucinogenic) drugs are once again being tested for use in therapy. A Sept. 1, 2017 article by Diana Kwon for The Scientist describes some of the latest research (I’ve excerpted the section on molecules; Note: Links have been removed),

Mind-bending molecules

© SEAN MCCABE

All the classic psychedelic drugs—psilocybin, LSD, and N,N-dimethyltryptamine (DMT), the active component in ayahuasca—activate serotonin 2A (5-HT2A) receptors, which are distributed throughout the brain. In all likelihood, this receptor plays a key role in the drugs’ effects. Krähenmann [Rainer Krähenmann, a psychiatrist and researcher at the University of Zurich]] and his colleagues in Zurich have discovered that ketanserin, a 5-HT2A receptor antagonist, blocks LSD’s hallucinogenic properties and prevents individuals from entering a dreamlike state or attributing personal relevance to the experience.12,13

Other research groups have found that, in rodent brains, 2,5-dimethoxy-4-iodoamphetamine (DOI), a highly potent and selective 5-HT2A receptor agonist, can modify the expression of brain-derived neurotrophic factor (BDNF)—a protein that, among other things, regulates neuronal survival, differentiation, and synaptic plasticity. This has led some scientists to hypothesize that, through this pathway, psychedelics may enhance neuroplasticity, the ability to form new neuronal connections in the brain.14 “We’re still working on that and trying to figure out what is so special about the receptor and where it is involved,” says Katrin Preller, a postdoc studying psychedelics at the University of Zurich. “But it seems like this combination of serotonin 2A receptors and BDNF leads to a kind of different organizational state in the brain that leads to what people experience under the influence of psychedelics.”

This serotonin receptor isn’t limited to the central nervous system. Work by Charles Nichols, a pharmacology professor at Louisiana State University, has revealed that 5-HT2A receptor agonists can reduce inflammation throughout the body. Nichols and his former postdoc Bangning Yu stumbled upon this discovery by accident, while testing the effects of DOI on smooth muscle cells from rat aortas. When they added this drug to the rodent cells in culture, it blocked the effects of tumor necrosis factor-alpha (TNF-α), a key inflammatory cytokine.

“It was completely unexpected,” Nichols recalls. The effects were so bewildering, he says, that they repeated the experiment twice to convince themselves that the results were correct. Before publishing the findings in 2008,15 they tested a few other 5-HT2A receptor agonists, including LSD, and found consistent anti-inflammatory effects, though none of the drugs’ effects were as strong as DOI’s. “Most of the psychedelics I have tested are about as potent as a corticosteroid at their target, but there’s something very unique about DOI that makes it much more potent,” Nichols says. “That’s one of the mysteries I’m trying to solve.”

After seeing the effect these drugs could have in cells, Nichols and his team moved on to whole animals. When they treated mouse models of system-wide inflammation with DOI, they found potent anti-inflammatory effects throughout the rodents’ bodies, with the strongest effects in the small intestine and a section of the main cardiac artery known as the aortic arch.16 “I think that’s really when it felt that we were onto something big, when we saw it in the whole animal,” Nichols says.

The group is now focused on testing DOI as a potential therapeutic for inflammatory diseases. In a 2015 study, they reported that DOI could block the development of asthma in a mouse model of the condition,17 and last December, the team received a patent to use DOI for four indications: asthma, Crohn’s disease, rheumatoid arthritis, and irritable bowel syndrome. They are now working to move the treatment into clinical trials. The benefit of using DOI for these conditions, Nichols says, is that because of its potency, only small amounts will be required—far below the amounts required to produce hallucinogenic effects.

In addition to opening the door to a new class of diseases that could benefit from psychedelics-inspired therapy, Nichols’s work suggests “that there may be some enduring changes that are mediated through anti-inflammatory effects,” Griffiths [Roland Griffiths, a psychiatry professor at Johns Hopkins University] says. Recent studies suggest that inflammation may play a role in a number of psychological disorders, including depression18 and addiction.19

“If somebody has neuroinflammation and that’s causing depression, and something like psilocybin makes it better through the subjective experience but the brain is still inflamed, it’s going to fall back into the depressed rut,” Nichols says. But if psilocybin is also treating the inflammation, he adds, “it won’t have that rut to fall back into.”

If it turns out that psychedelics do have anti-inflammatory effects in the brain, the drugs’ therapeutic uses could be even broader than scientists now envision. “In terms of neurodegenerative disease, every one of these disorders is mediated by inflammatory cytokines,” says Juan Sanchez-Ramos, a neuroscientist at the University of South Florida who in 2013 reported that small doses of psilocybin could promote neurogenesis in the mouse hippocampus.20 “That’s why I think, with Alzheimer’s, for example, if you attenuate the inflammation, it could help slow the progression of the disease.”

For anyone who was never exposed to the anti-hallucinogenic drug campaigns, this turn of events is mindboggling. There was a great deal of concern especially with LSD in the 1960s and it was not entirely unfounded. In my own family, a distant cousin, while under the influence of the drug, jumped off a building believing he could fly.  So, Kwon’s story opening with a story about someone being treated successfully for depression with a psychedelic drug was surprising to me . Why these drugs are being used successfully for psychiatric conditions when so much damage was apparently done under the influence in decades past may have something to do with taking the drugs in a controlled environment and, possibly, smaller dosages.

Congratulate China on the world’s first quantum communication network

China has some exciting news about the world’s first quantum network; it’s due to open in late August 2017 so you may want to have your congratulations in order for later this month.

An Aug. 4, 2017 news item on phys.org makes the announcement,

As malicious hackers find ever more sophisticated ways to launch attacks, China is about to launch the Jinan Project, the world’s first unhackable computer network, and a major milestone in the development of quantum technology.

Named after the eastern Chinese city where the technology was developed, the network is planned to be fully operational by the end of August 2017. Jinan is the hub of the Beijing-Shanghai quantum network due to its strategic location between the two principal Chinese metropolises.

“We plan to use the network for national defence, finance and other fields, and hope to spread it out as a pilot that if successful can be used across China and the whole world,” commented Zhou Fei, assistant director of the Jinan Institute of Quantum Technology, who was speaking to Britain’s Financial Times.

An Aug. 3, 2017 CORDIS (Community Research and Development Research Information Service [for the European Commission]) press release, which originated the news item, provides more detail about the technology,

By launching the network, China will become the first country worldwide to implement quantum technology for a real life, commercial end. It also highlights that China is a key global player in the rush to develop technologies based on quantum principles, with the EU and the United States also vying for world leadership in the field.

The network, known as a Quantum Key Distribution (QKD) network, is more secure than widely used electronic communication equivalents. Unlike a conventional telephone or internet cable, which can be tapped without the sender or recipient being aware, a QKD network alerts both users to any tampering with the system as soon as it occurs. This is because tampering immediately alters the information being relayed, with the disturbance being instantly recognisable. Once fully implemented, it will make it almost impossible for other governments to listen in on Chinese communications.

In the Jinan network, some 200 users from China’s military, government, finance and electricity sectors will be able to send messages safe in the knowledge that only they are reading them. It will be the world’s longest land-based quantum communications network, stretching over 2 000 km.

Also speaking to the ‘Financial Times’, quantum physicist Tim Byrnes, based at New York University’s (NYU) Shanghai campus commented: ‘China has achieved staggering things with quantum research… It’s amazing how quickly China has gotten on with quantum research projects that would be too expensive to do elsewhere… quantum communication has been taken up by the commercial sector much more in China compared to other countries, which means it is likely to pull ahead of Europe and US in the field of quantum communication.’

However, Europe is also determined to also be at the forefront of the ‘quantum revolution’ which promises to be one of the major defining technological phenomena of the twenty-first century. The EU has invested EUR 550 million into quantum technologies and has provided policy support to researchers through the 2016 Quantum Manifesto.

Moreover, with China’s latest achievement (and a previous one already notched up from July 2017 when its quantum satellite – the world’s first – sent a message to Earth on a quantum communication channel), it looks like the race to be crowned the world’s foremost quantum power is well and truly underway…

Prior to this latest announcement, Chinese scientists had published work about quantum satellite communications, a development that makes their imminent terrestrial quantum network possible. Gabriel Popkin wrote about the quantum satellite in a June 15, 2017 article Science magazine,

Quantum entanglement—physics at its strangest—has moved out of this world and into space. In a study that shows China’s growing mastery of both the quantum world and space science, a team of physicists reports that it sent eerily intertwined quantum particles from a satellite to ground stations separated by 1200 kilometers, smashing the previous world record. The result is a stepping stone to ultrasecure communication networks and, eventually, a space-based quantum internet.

“It’s a huge, major achievement,” says Thomas Jennewein, a physicist at the University of Waterloo in Canada. “They started with this bold idea and managed to do it.”

Entanglement involves putting objects in the peculiar limbo of quantum superposition, in which an object’s quantum properties occupy multiple states at once: like Schrödinger’s cat, dead and alive at the same time. Then those quantum states are shared among multiple objects. Physicists have entangled particles such as electrons and photons, as well as larger objects such as superconducting electric circuits.

Theoretically, even if entangled objects are separated, their precarious quantum states should remain linked until one of them is measured or disturbed. That measurement instantly determines the state of the other object, no matter how far away. The idea is so counterintuitive that Albert Einstein mocked it as “spooky action at a distance.”

Starting in the 1970s, however, physicists began testing the effect over increasing distances. In 2015, the most sophisticated of these tests, which involved measuring entangled electrons 1.3 kilometers apart, showed once again that spooky action is real.

Beyond the fundamental result, such experiments also point to the possibility of hack-proof communications. Long strings of entangled photons, shared between distant locations, can be “quantum keys” that secure communications. Anyone trying to eavesdrop on a quantum-encrypted message would disrupt the shared key, alerting everyone to a compromised channel.

But entangled photons degrade rapidly as they pass through the air or optical fibers. So far, the farthest anyone has sent a quantum key is a few hundred kilometers. “Quantum repeaters” that rebroadcast quantum information could extend a network’s reach, but they aren’t yet mature. Many physicists have dreamed instead of using satellites to send quantum information through the near-vacuum of space. “Once you have satellites distributing your quantum signals throughout the globe, you’ve done it,” says Verónica Fernández Mármol, a physicist at the Spanish National Research Council in Madrid. …

Popkin goes on to detail the process for making the discovery in easily accessible (for the most part) writing and in a video and a graphic.

Russell Brandom writing for The Verge in a June 15, 2017 article about the Chinese quantum satellite adds detail about previous work and teams in other countries also working on the challenge (Note: Links have been removed),

Quantum networking has already shown promise in terrestrial fiber networks, where specialized routing equipment can perform the same trick over conventional fiber-optic cable. The first such network was a DARPA-funded connection established in 2003 between Harvard, Boston University, and a private lab. In the years since, a number of companies have tried to build more ambitious connections. The Swiss company ID Quantique has mapped out a quantum network that would connect many of North America’s largest data centers; in China, a separate team is working on a 2,000-kilometer quantum link between Beijing and Shanghai, which would rely on fiber to span an even greater distance than the satellite link. Still, the nature of fiber places strict limits on how far a single photon can travel.

According to ID Quantique, a reliable satellite link could connect the existing fiber networks into a single globe-spanning quantum network. “This proves the feasibility of quantum communications from space,” ID Quantique CEO Gregoire Ribordy tells The Verge. “The vision is that you have regional quantum key distribution networks over fiber, which can connect to each other through the satellite link.”

China isn’t the only country working on bringing quantum networks to space. A collaboration between the UK’s University of Strathclyde and the National University of Singapore is hoping to produce the same entanglement in cheap, readymade satellites called Cubesats. A Canadian team is also developing a method of producing entangled photons on the ground before sending them into space.

I wonder if there’s going to be an invitational event for scientists around the world to celebrate the launch.

Bandage with a voice (sort of)

Researchers at Empa (Swiss Federal Laboratories for Materials Testing and Research) have not developed a talking bandage despite the title (Bandage with a Voice) for a July 4, 2017 Empa press release  (also a July 4, 2017 news item on Nanowerk),

A novel bandage alerts the nursing staff as soon as a wound starts healing badly. Sensors incorporated into the base material glow with a different intensity if the wound’s pH level changes. This way even chronic wounds could be monitored at home.

/documents/56164/1274117/bild1-CSEM-Bild-quer.jpg/a6a827b3-c7e7-49a4-86f2-73c2c7b15ce1?t=1499165473227

Using a UV lamp, the pH level in the wound can be verified without removing the bandage and the healing process can continue unimpeded. Image: Empa / CSEM

All too often, changing bandages is extremely unpleasant, even for smaller, everyday injuries. It stings and pulls, and sometimes a scab will even start bleeding again. And so we prefer to wait until the bandage drops off by itself.

It’s a different story with chronic wounds, though: normally, the nursing staff has to change the dressing regularly – not just for reasons of hygiene, but also to examine the wound, take swabs and clean it. Not only does this irritate the skin unnecessarily; bacteria can also get in, the risk of infection soars. It would be much better to leave the bandage on for longer and have the nursing staff “read” the condition of the wound from outside.

The idea of being able to see through a wound dressing gave rise to the project Flusitex (Fluorescence sensing integrated into medical textiles), which is being funded by the Swiss initiative Nano-Tera. Researchers from Empa teamed up with ETH Zurich, Centre Suisse d’Electronique et de Microtechnique (CSEM) and University Hospital Zurich to develop a high-tech system that is supposed to supply the nursing staff with relevant data about the condition of a wound. As Luciano Boesel from Empa’s Laboratory for Biomimetic Membranes and Textiles, who is coordinating the project at Empa, explains: “The idea of a smart wound dressing with integrated sensors is to provide continuous information on the state of the healing process without the bandages having to be changed any more frequently than necessary.” This would mean a gentler treatment for patients, less work for the nursing staff and, therefore, lower costs: globally, around 17 billion $ were spent on treating wounds last year.

When wounds heal, the body produces specific substances in a complex sequence of biochemical processes, which leads to a significant variation in a number of metabolic parameters. For instance, the amount of glucose and oxygen rises and falls depending on the phase of the healing process; likewise does the pH level change. All these variations can be detected with specialized sensors. With this in mind, Empa teamed up with project partner CSEM to develop a portable, cheap and easy-to-use device for measuring fluorescence that is capable of monitoring several parameters at once. It should enable nursing staff to keep tabs on the pH as well as on glucose and oxygen levels while the wound heals. If these change, conclusions about other key biochemical processes involved in wound healing can be drawn.

/documents/56164/1274117/bild2-Guido%26Alina_0788.jpg/6024b368-b367-42e1-a6d9-d376c27e179a?t=1499165473430
The bandage reveals ist measurings in UV light.
A high pH signals chronic wounds

The pH level is particularly useful for chronic wounds. If the wound heals normally, the pH rises to 8 before falling to 5 or 6. If a wound fails to close and becomes chronic, however, the pH level fluctuates between 7 and 8. Therefore, it would be helpful if a signal on the bandage could inform the nursing staff that the wound pH is permanently high. If the bandage does not need changing for reasons of hygiene and pH levels are low, on the other hand, they could afford to wait.

But how do the sensors work? The idea: if certain substances appear in the wound fluid, “customized” fluorescent sensor molecules respond with a physical signal. They start glowing and some even change color in the visible or ultra-violet (UV) range. Thanks to a color scale, weaker and stronger changes in color can be detected and the quantity of the emitted substance be deduced.

Empa chemist Guido Panzarasa from the Laboratory for Biomimetic Membranes and Textiles vividly demonstrates how a sample containing sensor molecules begins to fluoresce in the lab. He carefully drips a solution with a pH level of 7.5 into a dish. Under a UV light, the change is plain to see. He adds another solution and the luminescence fades. A glance at the little bottle confirms it: the pH level of the second solution is lower.

Luminous molecules under UV

The Empa team designed a molecule composed of benzalkonium chloride and pyranine. While benzalkonium chloride is a substance also used for conventional medical soap to combat bacteria, fungi and other microorganisms, pyranine is a dye found in highlighters that glows under UV light. “This biomarker works really well,” says Panzarasa; “especially at pH levels between 5.5 and 7.5. The colors can be visualized with simple UV lamps available in electronics stores.” The Empa team recently published their results in the journal “Sensors and Actuators”.

The designer molecule has another advantage: thanks to the benzalkonium chloride, it has an antimicrobial effect, as researchers from Empa’s Laboratory for Biointerfaces confirmed for the bacteria strain Staphylococcus aureus. Unwelcome bacteria might potentially also be combatted by selecting the right bandage material in future. As further investigations, such as on the chemical’s compatibility with cells and tissues, are currently lacking, however, the researchers do not yet know how their sensor works in a complex wound.

Keen interest from industry

In order to illustrate what a smart wound dressing might actually look like in future, Boesel places a prototype on the lab bench. “You don’t have to cover the entire surface of wound dressings with sensors,” he explains. “It’s enough for a few small areas to be impregnated with the pyranine benzalkonium molecules and integrated into the base material. This means the industrial wound dressings won’t be much pricier than they are now – only up to 20% more expensive.” Empa scientists are currently working on this in the follow-up project FlusiTex-Gateway in cooperation with industrial partners Flawa, Schöller, Kenzen and Theranoptics.
Panzarasa now drips various liquids with different pH levels onto all the little cylinders on the wound pad prototype. Sure enough, the lighter and darker dots are also clearly discernible as soon as the UV lamp is switched on. They are even visible to the naked eye and glow in bright yellow if liquids with a high pH come into contact with the sensor. The scientists are convinced: since the pH level is so easy to read and provides precise information about the acidic or alkaline state of the sample, this kind of wound dressing is just the ticket as a diagnostic tool. Using the fluorescence meter developed by CSEM, more accurate, quantitative measure-ments of the pH level can be accomplished for medical purposes.

According to Boesel, it might one day even be possible to read the signals with the aid of a smartphone camera. Combined with a simple app, nursing staff and doctors would have a tool that enables them to easily and conveniently read the wound status “from outside”, even without a UV lamp. And patients would then also have the possibility of detecting the early onset of a chronic wound at home.

I wonder how long or even if this innovation will ever make its way into medical practice. I’m guessing this stage would be described as ‘proof of concept’ and that clinical testing is still many years away.

The metaphor in the press release’s title helped to wake me up. Thank you to whoever wrote it.

Brain stuff: quantum entanglement and a multi-dimensional universe

I have two brain news bits, one about neural networks and quantum entanglement and another about how the brain operates in* more than three dimensions.

Quantum entanglement and neural networks

A June 13, 2017 news item on phys.org describes how machine learning can be used to solve problems in physics (Note: Links have been removed),

Machine learning, the field that’s driving a revolution in artificial intelligence, has cemented its role in modern technology. Its tools and techniques have led to rapid improvements in everything from self-driving cars and speech recognition to the digital mastery of an ancient board game.

Now, physicists are beginning to use machine learning tools to tackle a different kind of problem, one at the heart of quantum physics. In a paper published recently in Physical Review X, researchers from JQI [Joint Quantum Institute] and the Condensed Matter Theory Center (CMTC) at the University of Maryland showed that certain neural networks—abstract webs that pass information from node to node like neurons in the brain—can succinctly describe wide swathes of quantum systems.

An artist’s rendering of a neural network with two layers. At the top is a real quantum system, like atoms in an optical lattice. Below is a network of hidden neurons that capture their interactions (Credit: E. Edwards/JQI)

A June 12, 2017 JQI news release by Chris Cesare, which originated the news item, describes how neural networks can represent quantum entanglement,

Dongling Deng, a JQI Postdoctoral Fellow who is a member of CMTC and the paper’s first author, says that researchers who use computers to study quantum systems might benefit from the simple descriptions that neural networks provide. “If we want to numerically tackle some quantum problem,” Deng says, “we first need to find an efficient representation.”

On paper and, more importantly, on computers, physicists have many ways of representing quantum systems. Typically these representations comprise lists of numbers describing the likelihood that a system will be found in different quantum states. But it becomes difficult to extract properties or predictions from a digital description as the number of quantum particles grows, and the prevailing wisdom has been that entanglement—an exotic quantum connection between particles—plays a key role in thwarting simple representations.

The neural networks used by Deng and his collaborators—CMTC Director and JQI Fellow Sankar Das Sarma and Fudan University physicist and former JQI Postdoctoral Fellow Xiaopeng Li—can efficiently represent quantum systems that harbor lots of entanglement, a surprising improvement over prior methods.

What’s more, the new results go beyond mere representation. “This research is unique in that it does not just provide an efficient representation of highly entangled quantum states,” Das Sarma says. “It is a new way of solving intractable, interacting quantum many-body problems that uses machine learning tools to find exact solutions.”

Neural networks and their accompanying learning techniques powered AlphaGo, the computer program that beat some of the world’s best Go players last year (link is external) (and the top player this year (link is external)). The news excited Deng, an avid fan of the board game. Last year, around the same time as AlphaGo’s triumphs, a paper appeared that introduced the idea of using neural networks to represent quantum states (link is external), although it gave no indication of exactly how wide the tool’s reach might be. “We immediately recognized that this should be a very important paper,” Deng says, “so we put all our energy and time into studying the problem more.”

The result was a more complete account of the capabilities of certain neural networks to represent quantum states. In particular, the team studied neural networks that use two distinct groups of neurons. The first group, called the visible neurons, represents real quantum particles, like atoms in an optical lattice or ions in a chain. To account for interactions between particles, the researchers employed a second group of neurons—the hidden neurons—which link up with visible neurons. These links capture the physical interactions between real particles, and as long as the number of connections stays relatively small, the neural network description remains simple.

Specifying a number for each connection and mathematically forgetting the hidden neurons can produce a compact representation of many interesting quantum states, including states with topological characteristics and some with surprising amounts of entanglement.

Beyond its potential as a tool in numerical simulations, the new framework allowed Deng and collaborators to prove some mathematical facts about the families of quantum states represented by neural networks. For instance, neural networks with only short-range interactions—those in which each hidden neuron is only connected to a small cluster of visible neurons—have a strict limit on their total entanglement. This technical result, known as an area law, is a research pursuit of many condensed matter physicists.

These neural networks can’t capture everything, though. “They are a very restricted regime,” Deng says, adding that they don’t offer an efficient universal representation. If they did, they could be used to simulate a quantum computer with an ordinary computer, something physicists and computer scientists think is very unlikely. Still, the collection of states that they do represent efficiently, and the overlap of that collection with other representation methods, is an open problem that Deng says is ripe for further exploration.

Here’s a link to and a citation for the paper,

Quantum Entanglement in Neural Network States by Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Phys. Rev. X 7, 021021 – Published 11 May 2017

This paper is open access.

Blue Brain and the multidimensional universe

Blue Brain is a Swiss government brain research initiative which officially came to life in 2006 although the initial agreement between the École Politechnique Fédérale de Lausanne (EPFL) and IBM was signed in 2005 (according to the project’s Timeline page). Moving on, the project’s latest research reveals something astounding (from a June 12, 2017 Frontiers Publishing press release on EurekAlert),

For most people, it is a stretch of the imagination to understand the world in four dimensions but a new study has discovered structures in the brain with up to eleven dimensions – ground-breaking work that is beginning to reveal the brain’s deepest architectural secrets.

Using algebraic topology in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.

The research, published today in Frontiers in Computational Neuroscience, shows that these structures arise when a group of neurons forms a clique: each neuron connects to every other neuron in the group in a very specific way that generates a precise geometric object. The more neurons there are in a clique, the higher the dimension of the geometric object.

“We found a world that we had never imagined,” says neuroscientist Henry Markram, director of Blue Brain Project and professor at the EPFL in Lausanne, Switzerland, “there are tens of millions of these objects even in a small speck of the brain, up through seven dimensions. In some networks, we even found structures with up to eleven dimensions.”

Markram suggests this may explain why it has been so hard to understand the brain. “The mathematics usually applied to study networks cannot detect the high-dimensional structures and spaces that we now see clearly.”

If 4D worlds stretch our imagination, worlds with 5, 6 or more dimensions are too complex for most of us to comprehend. This is where algebraic topology comes in: a branch of mathematics that can describe systems with any number of dimensions. The mathematicians who brought algebraic topology to the study of brain networks in the Blue Brain Project were Kathryn Hess from EPFL and Ran Levi from Aberdeen University.

“Algebraic topology is like a telescope and microscope at the same time. It can zoom into networks to find hidden structures – the trees in the forest – and see the empty spaces – the clearings – all at the same time,” explains Hess.

In 2015, Blue Brain published the first digital copy of a piece of the neocortex – the most evolved part of the brain and the seat of our sensations, actions, and consciousness. In this latest research, using algebraic topology, multiple tests were performed on the virtual brain tissue to show that the multi-dimensional brain structures discovered could never be produced by chance. Experiments were then performed on real brain tissue in the Blue Brain’s wet lab in Lausanne confirming that the earlier discoveries in the virtual tissue are biologically relevant and also suggesting that the brain constantly rewires during development to build a network with as many high-dimensional structures as possible.

When the researchers presented the virtual brain tissue with a stimulus, cliques of progressively higher dimensions assembled momentarily to enclose high-dimensional holes, that the researchers refer to as cavities. “The appearance of high-dimensional cavities when the brain is processing information means that the neurons in the network react to stimuli in an extremely organized manner,” says Levi. “It is as if the brain reacts to a stimulus by building then razing a tower of multi-dimensional blocks, starting with rods (1D), then planks (2D), then cubes (3D), and then more complex geometries with 4D, 5D, etc. The progression of activity through the brain resembles a multi-dimensional sandcastle that materializes out of the sand and then disintegrates.”

The big question these researchers are asking now is whether the intricacy of tasks we can perform depends on the complexity of the multi-dimensional “sandcastles” the brain can build. Neuroscience has also been struggling to find where the brain stores its memories. “They may be ‘hiding’ in high-dimensional cavities,” Markram speculates.

###

About Blue Brain

The aim of the Blue Brain Project, a Swiss brain initiative founded and directed by Professor Henry Markram, is to build accurate, biologically detailed digital reconstructions and simulations of the rodent brain, and ultimately, the human brain. The supercomputer-based reconstructions and simulations built by Blue Brain offer a radically new approach for understanding the multilevel structure and function of the brain. http://bluebrain.epfl.ch

About Frontiers

Frontiers is a leading community-driven open-access publisher. By taking publishing entirely online, we drive innovation with new technologies to make peer review more efficient and transparent. We provide impact metrics for articles and researchers, and merge open access publishing with a research network platform – Loop – to catalyse research dissemination, and popularize research to the public, including children. Our goal is to increase the reach and impact of research articles and their authors. Frontiers has received the ALPSP Gold Award for Innovation in Publishing in 2014. http://www.frontiersin.org.

Here’s a link to and a citation for the paper,

Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function by Michael W. Reimann, Max Nolte, Martina Scolamiero, Katharine Turner, Rodrigo Perin, Giuseppe Chindemi, Paweł Dłotko, Ran Levi, Kathryn Hess, and Henry Markram. Front. Comput. Neurosci., 12 June 2017 | https://doi.org/10.3389/fncom.2017.00048

This paper is open access.

*Feb. 3, 2021: ‘on’ changed to ‘in’