Tag Archives: Sylvia Hui

Nanotechnology at the movies: Transcendence opens April 18, 2014 in the US & Canada

Screenwriter Jack Paglen has an intriguing interpretation of nanotechnology, one he (along with the director) shares in an April 13, 2014 article by Larry Getlen for the NY Post and in his movie, Transcendence. which is opening in the US and Canada on April 18, 2014. First, here are a few of the more general ideas underlying his screenplay,

In “Transcendence” — out Friday [April 18, 2014] and directed by Oscar-winning cinematographer Wally Pfister (“Inception,” “The Dark Knight”) — Johnny Depp plays Dr. Will Caster, an artificial-intelligence researcher who has spent his career trying to design a sentient computer that can hold, and even exceed, the world’s collective intelligence.

After he’s shot by antitechnology activists, his consciousness is uploaded to a computer network just before his body dies.

“The theories associated with the film say that when a strong artificial intelligence wakes up, it will quickly become more intelligent than a human being,” screenwriter Jack Paglen says, referring to a concept known as “the singularity.”

It should be noted that there are anti-technology terrorists. I don’t think I’ve covered that topic in a while so an Aug. 31, 2012 posting is the most recent and, despite the title, “In depth and one year later—the nanotechnology bombings in Mexico” provides an overview of sorts. For a more up-to-date view, you can read Eric Markowitz’s April 9, 2014 article for Vocative.com. I do have one observation about the article where Markowitz has linked some recent protests in San Francisco to the bombings in Mexico. Those protests in San Francisco seem more like a ‘poor vs. the rich’ situation where the rich happen to come from the technology sector.

Getting back to “Transcendence” and singularity, there’s a good Wikipedia entry describing the ideas and some of the thinkers behind the notion of a singularity or technological singularity, as it’s sometimes called (Note: Links have been removed),

The technological singularity, or simply the singularity, is a hypothetical moment in time when artificial intelligence will have progressed to the point of a greater-than-human intelligence, radically changing civilization, and perhaps human nature.[1] Because the capabilities of such an intelligence may be difficult for a human to comprehend, the technological singularity is often seen as an occurrence (akin to a gravitational singularity) beyond which the future course of human history is unpredictable or even unfathomable.

The first use of the term “singularity” in this context was by mathematician John von Neumann. In 1958, regarding a summary of a conversation with von Neumann, Stanislaw Ulam described “ever accelerating progress of technology and changes in the mode of human life, which gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue”.[2] The term was popularized by science fiction writer Vernor Vinge, who argues that artificial intelligence, human biological enhancement, or brain-computer interfaces could be possible causes of the singularity.[3] Futurist Ray Kurzweil cited von Neumann’s use of the term in a foreword to von Neumann’s classic The Computer and the Brain.

Proponents of the singularity typically postulate an “intelligence explosion”,[4][5] where superintelligences design successive generations of increasingly powerful minds, that might occur very quickly and might not stop until the agent’s cognitive abilities greatly surpass that of any human.

Kurzweil predicts the singularity to occur around 2045[6] whereas Vinge predicts some time before 2030.[7] At the 2012 Singularity Summit, Stuart Armstrong did a study of artificial generalized intelligence (AGI) predictions by experts and found a wide range of predicted dates, with a median value of 2040. His own prediction on reviewing the data is that there is an 80% probability that the singularity will occur between 2017 and 2112.[8]

The ‘technological singularity’ is controversial and contested (from the Wikipedia entry).

In addition to general criticisms of the singularity concept, several critics have raised issues with Kurzweil’s iconic chart. One line of criticism is that a log-log chart of this nature is inherently biased toward a straight-line result. Others identify selection bias in the points that Kurzweil chooses to use. For example, biologist PZ Myers points out that many of the early evolutionary “events” were picked arbitrarily.[104] Kurzweil has rebutted this by charting evolutionary events from 15 neutral sources, and showing that they fit a straight line on a log-log chart. The Economist mocked the concept with a graph extrapolating that the number of blades on a razor, which has increased over the years from one to as many as five, will increase ever-faster to infinity.[105]

By the way, this movie is mentioned briefly in the pop culture portion of the Wikipedia entry.

Getting back to Paglen and his screenplay, here’s more from Getlen’s article,

… as Will’s powers grow, he begins to pull off fantastic achievements, including giving a blind man sight, regenerating his own body and spreading his power to the water and the air.

This conjecture was influenced by nanotechnology, the field of manipulating matter at the scale of a nanometer, or one-billionth of a meter. (By comparison, a human hair is around 70,000-100,000 nanometers wide.)

“In some circles, nanotechnology is the holy grail,” says Paglen, “where we could have microscopic, networked machines [emphasis mine] that would be capable of miracles.”

The potential uses of, and implications for, nanotechnology are vast and widely debated, but many believe the effects could be life-changing.

“When I visited MIT,” says Pfister, “I visited a cancer research institute. They’re talking about the ability of nanotechnology to be injected inside a human body, travel immediately to a cancer cell, and deliver a payload of medicine directly to that cell, eliminating [the need to] poison the whole body with chemo.”

“Nanotechnology could help us live longer, move faster and be stronger. It can possibly cure cancer, and help with all human ailments.”

I find the ‘golly gee wizness’ of Paglen’s and Pfister’s take on nanotechnology disconcerting but they can’t be dismissed. There are projects where people are testing retinal implants which allow them to see again. There is a lot of work in the field of medicine designed to make therapeutic procedures that are gentler on the body by making their actions specific to diseased tissue while ignoring healthy tissue (sadly, this is still not possible). As for human enhancement, I have so many pieces that it has its own category on this blog. I first wrote about it in a four-part series starting with this one: Nanotechnology enables robots and human enhancement: part 1, (You can read the series by scrolling past the end of the posting and clicking on the next part or search the category and pick through the more recent pieces.)

I’m not sure if this error is Paglen’s or Getlen’s but nanotechnology is not “microscopic, networked machines” as Paglen’s quote strongly suggests. Some nanoscale devices could be described as machines (often called nanobots) but there are also nanoparticles, nanotubes, nanowires, and more that cannot be described as machines or devices, for that matter. More importantly, it seems Paglen’s main concern is this,

“One of [science-fiction author] Arthur C. Clarke’s laws is that any sufficiently advanced technology is indistinguishable from magic. That very quickly would become the case if this happened, because this artificial intelligence would be evolving technologies that we do not understand, and it would be capable of miracles by that definition,” says Paglen. [emphasis mine]

This notion of “evolving technologies that we do not understand” brings to mind a  project that was announced at the University of Cambridge (from my Nov. 26, 2012 posting),

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

While I do have some reservations about how Paglen and Pfister describe the science, I appreciate their interest in communicating the scientific ideas, particularly those underlying Paglen’s screenplay.

For anyone who may be concerned about the likelihood of emulating  a human brain and uploading it to a computer, there’s an April 13, 2014 article by Luke Muehlhauser and Stuart Armstrong for Slate discussing that very possibility (Note 1: Links have been removed; Note 2: Armstrong is mentioned in this posting’s excerpt from the Wikipedia entry on Technological Singularity),

Today scientists can’t even emulate the brain of a tiny worm called C. elegans, which has 302 neurons, compared with the human brain’s 86 billion neurons. Using models of expected technological progress on the three key problems, we’d estimate that we wouldn’t be able to emulate human brains until at least 2070 (though this estimate is very uncertain).

But would an emulation of your brain be you, and would it be conscious? Such questions quickly get us into thorny philosophical territory, so we’ll sidestep them for now. For many purposes—estimating the economic impact of brain emulations, for instance—it suffices to know that the brain emulations would have humanlike functionality, regardless of whether the brain emulation would also be conscious.

Paglen/Pfister seem to be equating intelligence (brain power) with consciousness while Muehlhauser/Armstrong simply sidestep the issue. As they (Muehlhauser/Armstrong) note, it’s “thorny.”

If you consider thinkers like David Chalmers who suggest everything has consciousness, then it follows that computers/robots/etc. may not appreciate having a human brain emulation which takes us back into Battlestar Galactica territory. From my March 19, 2014 posting (one of the postings where I recounted various TED 2014 talks in Vancouver), here’s more about David Chalmers,

Finally, I wasn’t expecting to write about David Chalmers so my notes aren’t very good. A philosopher, here’s an excerpt from Chalmers’ TED biography,

In his work, David Chalmers explores the “hard problem of consciousness” — the idea that science can’t ever explain our subjective experience.

David Chalmers is a philosopher at the Australian National University and New York University. He works in philosophy of mind and in related areas of philosophy and cognitive science. While he’s especially known for his theories on consciousness, he’s also interested (and has extensively published) in all sorts of other issues in the foundations of cognitive science, the philosophy of language, metaphysics and epistemology.

Chalmers provided an interesting bookend to a session started with a brain researcher (Nancy Kanwisher) who breaks the brain down into various processing regions (vastly oversimplified but the easiest way to summarize her work in this context). Chalmers reviewed the ‘science of consciousness’ and noted that current work in science tends to be reductionist, i.e., examining parts of things such as brains and that same reductionism has been brought to the question of consciousness.

Rather than trying to prove consciousness, Chalmers proposes that we consider it a fundamental in the same way that we consider time, space, and mass to be fundamental. He noted that there’s precedence for additions and gave the example of James Clerk Maxwell and his proposal to consider electricity and magnetism as fundamental.

Chalmers next suggestion is a little more outré and based on some thinking (sorry I didn’t catch the theorist’s name) that suggests everything, including photons, has a type of consciousness (but not intelligence).

Have a great time at the movie!

Existential risk

The idea that robots of one kind or another (e.g. nanobots eating up the world and leaving grey goo, Cylons in both versions of Battlestar Galactica trying to exterminate humans, etc.) will take over the world and find humans unnecessary  isn’t especially new in works of fiction. It’s not always mentioned directly but the underlying anxiety often has to do with intelligence and concerns over an ‘explosion of intelligence’. The question it raises,’ what if our machines/creations become more intelligent than humans?’ has been described as existential risk. According to a Nov. 25, 2012 article by Sylvia Hui for Huffington Post, a group of eminent philosophers and scientists at the University of Cambridge are proposing to found a Centre for the Study of Existential Risk,

Could computers become cleverer than humans and take over the world? Or is that just the stuff of science fiction?

Philosophers and scientists at Britain’s Cambridge University think the question deserves serious study. A proposed Center for the Study of Existential Risk will bring together experts to consider the ways in which super intelligent technology, including artificial intelligence, could “threaten our own existence,” the institution said Sunday.

“In the case of artificial intelligence, it seems a reasonable prediction that some time in this or the next century intelligence will escape from the constraints of biology,” Cambridge philosophy professor Huw Price said.

When that happens, “we’re no longer the smartest things around,” he said, and will risk being at the mercy of “machines that are not malicious, but machines whose interests don’t include us.”

Price along with Martin Rees, Emeritus Professor of Cosmology and Astrophysics, and Jaan Tallinn, Co-Founder of Skype, are the driving forces behind this proposed new centre at Cambridge University. From the Cambridge Project for Existential Risk webpage,

Many scientists are concerned that developments in human technology may soon pose new, extinction-level risks to our species as a whole. Such dangers have been suggested from progress in AI, from developments in biotechnology and artificial life, from nanotechnology, and from possible extreme effects of anthropogenic climate change. The seriousness of these risks is difficult to assess, but that in itself seems a cause for concern, given how much is at stake. …

The Cambridge Project for Existential Risk — a joint initiative between a philosopher, a scientist, and a software entrepreneur — begins with the conviction that these issues require a great deal more scientific investigation than they presently receive. Our aim is to establish within the University of Cambridge a multidisciplinary research centre dedicated to the study and mitigation of risks of this kind.

Price and Tallinn co-wrote an Aug. 6, 2012 article for the Australia-based, The Conversation website, about their concerns,

We know how to deal with suspicious packages – as carefully as possible! These days, we let robots take the risk. But what if the robots are the risk? Some commentators argue we should be treating AI (artificial intelligence) as a suspicious package, because it might eventually blow up in our faces. Should we be worried?

Asked whether there will ever be computers as smart as people, the US mathematician and sci-fi author Vernor Vinge replied: “Yes, but only briefly”.

He meant that once computers get to this level, there’s nothing to prevent them getting a lot further very rapidly. Vinge christened this sudden explosion of intelligence the “technological singularity”, and thought that it was unlikely to be good news, from a human point of view.

Was Vinge right, and if so what should we do about it? Unlike typical suspicious parcels, after all, what the future of AI holds is up to us, at least to some extent. Are there things we can do now to make sure it’s not a bomb (or a good bomb rather than a bad bomb, perhaps)?

It appears Price, Rees, and Tallinn are not the only concerned parties, from the Nov. 25, 2012 research news piece on the Cambridge University website,

With luminaries in science, policy, law, risk and computing from across the University and beyond signing up to become advisors, the project is, even in its earliest days, gathering momentum. “The basic philosophy is that we should be taking seriously the fact that we are getting to the point where our technologies have the potential to threaten our own existence – in a way that they simply haven’t up to now, in human history,” says Price. “We should be investing a little of our intellectual resources in shifting some probability from bad outcomes to good ones.”

Price acknowledges that some of these ideas can seem far-fetched, the stuff of science fiction, but insists that that’s part of the point.

According to the Huffington Post article by Lui, they expect to launch the centre next year (2013). In the meantime, for anyone who’s looking for more information about the ‘intelligence explosion’ or  ‘singularity’ as it’s also known, there’s a Wikipedia essay on the topic.  Also, you may want to stay tuned to this channel (blog) as I expect to have some news about an artificial intelligence project based at the University of Waterloo (Ontario, Canada) and headed by Chris Eliasmith at the university’s Centre for Theoretical Neuroscience, later this week.

London’s Poetry Parnassus helps set the stage for 2012 Olympics

The world’s largest poetry event is over. The Poetry Parnassus, organized as part of London’s 2012 Cultural Olympiad celebrating the Olympics, took place from June 26 – July 1, 2012. (I first wrote about it in my April 20, 2012 posting when they were asking for more poet nominations as the organizers wanted to have a poet from each nation represented at the Olympics as part of the Poetry Parnassus.)

By all accounts this was as extraordinary gathering. Alice Gribbin in her July 3, 2012 article for the New Statesman provides some context for along with some details about the actual event,

Poetry Parnassus, the “back of an envelope” idea of Simon Armitage, artist-in-residence of the Southbank Centre, saw 204 poets from as many countries come together to represent their nation’s poetic tradition at the many-venued culture complex on the Thames. Readings and workshops, parties and debates filled six days and nights.

Did you know Somalia is possibly the world’s most poetry-loving nation? Such takeaways about the global poetry scene were easy to come by over the week, but far more interesting was the demonstration of how many various ways people of countries around the world relate to poems. Take Somalia again: while poetic expression there is the base from which almost all other creative outlets develop – and most people can recite many poems – the tradition is entirely aural.

At dusk over Jubilee Gardens, behind the London Eye, a helicopter dropped 100,000 cards printed with poems by 300 contemporary poets. The “aeronautical display” by Chilean collective Casagrande had adults and children jumping for poetry, or merely gazing at the “Rain of Poems” that gently fell against the city skyline. Later, crossing Waterloo Bridge, I read the first I had caught …

I have a very short video clip featuring the “Rain of Poems”,

As for anyone who might find the notion of a poetry event as part of the Olympic Games somewhat odd, Tony Perrottet in a June 29, 2012 article for The New York Times Sunday Book Review discusses the London Poetry Parnassus and poetry’s history as part of the original Olympics,

… the relationship between poetry and the Olympics goes back to the very origins of the Games. In ancient Greece, literary events were an indispensable part of athletic festivals, where fully clothed writers could be as popular with the crowd as the buff athletes who strutted about in the nude, gleaming with olive oil. Spectators packing the sanctuary of Zeus sought perfection in both body and mind. Champion athletes commissioned great poets like Pindar to compose their victory odes, which were sung at lavish banquets by choruses of boys. (The refined cultural ambience could put contemporary opening ceremonies, with their parade of pop stars, to shame.) Philosophers and historians introduced cutting-edge work, while lesser-known poets set up stalls or orated from soapboxes.

Criticism could be meted out brutally: when the Sicilian dictator Dionysius presented subpar poems in 384 B.C., disgusted sports fans beat him up and trashed his tent. At other Greek athletic festivals, like those at Delphi, dedicated to Apollo, the god of poetry and music, verse recital was featured as a competitive event, along with contests for the lyre and choral dancing.

For much of the 20th century, poetry was an official, medal-winning competition in the Games. …

According to Perrottet’s article, 1948 was the last year that poetry was a medal event at the modern Olympics.

The July 1, 2012 article by Sylvia Hui for the Huffington Post offers another perspective on the recent event,

He says he was one of late North Korean leader Kim Jong Il’s favorite propaganda artists, singing the praises of the Dear Leader in dozens of poems. But these days Jang Jin-sung says he prefers to tell the truth about North Korea.

“North Korea has nuclear programs, but South Korea has the media,” said Jang, who is in London for a global poetry festival involving poets from countries competing in the July 27 to Aug. 12 London Olympics. “Truth is the strongest weapon.”

Jang’s poems now tell of public executions, hunger and desperate lives. He said that the piece he chose to submit to London’s Poetry Parnassus festival, “I Sell My Daughter for 100 Won,” is based on one of his worst memories in North Korea – recollections of a mother trying to sell her daughter in the market place.

For anyone who might like to read Jang’s poem or any of the others that were part of the Poetry Parnassus, the UK”s Guardian newspaper has an interactive map here.