Tag Archives: System and Method for Transforming a Coordinate System to Simulate an Anisotropic Medium

Vancouver (Canada)-based company, Lumerical Solutions, files patent on new optoelectronic simulation software

I’m not a huge *fan of patents as per various postings (my Oct. 31, 2011 posting is probably my most overt statement) so I’m not entirely thrilled about this news from Lumerical Solutions, Inc. According to the June 14, 2012 news item on Nanowerk,

Lumerical Solutions, Inc., a global provider of optoelectronic design software, announced the filing of a provisional patent application titled, “System and Method for Transforming a Coordinate System to Simulate an Anisotropic Medium.” The patent application, filed with the US Patent and Trademark Office, describes how the optical response of dispersive, spatially varying anisotropic media can be efficiently simulated on a discretized grid like that employed by finite-difference time-domain (FDTD) or finite-element method (FEM) simulators. The invention disclosed is relevant to a wide array of applications including liquid crystal display (LCD) panels, microdisplays, spatial light modulators, integrated components using liquid crystal on silicon (LCOS) technology like LCOS optical switches, and magneto-optical elements in optical communication and sensing systems.

The company’s June 14, 2012 news release includes this comment from the founder and Chief Technical Office (CTO),

According to Dr. James Pond, the inventor and Lumerical’s Chief Technology Officer, “many next generation opto-electronic products combine complicated materials and nano-scale structure, which is beyond the capabilities of existing simulation tools. Lumerical’s enhanced framework allows designers to accurately simulate everything from liquid crystal displays to OLEDs, and silicon photonics to integrated quantum computing components.”

Lumerical’s new methodology for efficiently simulating anisotropic media is part of a larger effort to allow designers the ability to model the optical response of many different types of materials.  In addition to the disclosed invention, Lumerical has added a material plugin capability which will enable external parties to include complicated material models, such as those required for modelling semiconductor lasers or non-linear optical devices, into FDTD-based simulation projects.

…  According to Chris Koo, an engineer with Samsung, “Lumerical’s latest innovation has established them as the clear leader in the field of optoelectronic device modeling.  Their comprehensive material modeling capabilities paves the way for the development of exciting new technologies.”

I wish the company good luck. Despite my reservations about current patent regimes, I do appreciate that in some situations, it’s best to apply for a patent.

For the curious, here’s a little more (from the company’s About Lumerical page),

By empowering research and product development professionals with high performance optical design software that leverages recent advances in computing technology, Lumerical helps optical designers tackle challenging design goals and meet strict deadlines. Lumerical’s design software solutions are employed in more than 30 countries by global technology leaders like Agilent, ASML, Bosch, Canon, Harris, Northrop Grumman, Olympus, Philips, Samsung, and STMicroelectronics, and prominent research institutions including Caltech, Harvard, Max Planck Institute, MIT, NIST and the Chinese Academy of Sciences.

Our Name

Lu.min.ous (loo’me-nes) adj., full of light, illuminated

Nu.mer.i.cal (noo-mer’i-kel) adj., of or relating to a number or series of numbers

Lu.mer.i.cal (loo-mer’i-kel) – A company that delivers inventive, highly accurate and cost effective design solutions resulting in significant improvements in product development costs and speed-to-market.

* June 15, 2012: I found the error this morning (9:20 am PDT) and added the word ‘fan’.