Tag Archives: T-rays

Are we creating a Star Trek world? T-rays and tricorders

There’s been quite a flutter online (even the Huffington Post has published a piece) about ‘Star Trek-hand-held medical scanners’ becoming possible due to some recent work in the area of T-rays. From the Jan. 20, 2012 news item on Nanowerk,

Scientists who have developed a new way to create a type of radiation known as Terahertz (THz) or T-rays – the technology behind full-body security scanners – say their new, stronger and more efficient continuous wave T-rays could be used to make better medical scanning gadgets and may one day lead to innovations similar to the “tricorder” scanner used in Star Trek.

In a study published recently in Nature Photonics (“Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer” [behind a paywall]), researchers from the Institute of Materials Research and Engineering (IMRE), a research institute of the Agency for Science, Technology and Research (A*STAR) in Singapore and Imperial College London in the UK have made T-rays into a much stronger directional beam than was previously thought possible and have efficiently produced T-rays at room-temperature conditions. This breakthrough allows future T-ray systems to be smaller, more portable, easier to operate, and much cheaper.

For anyone who’s not familiar with ‘Star Trek world’ and tricorders, here’s a brief description from a Wikipedia essay about tricorders,

In the fictional Star Trek universe, a tricorder is a multifunction handheld device used for sensor scanning, data analysis, and recording data.

David Freeman in his Jan. 21, 2012 article for the Huffington Post about the research puts it this way,

Trekkies, take heart. A scientific breakthrough involving a form of infrared radiation known as terahertz (THz) waves could lead to handheld medical scanners reminiscent of the “tricorder” featured on the original Star Trek television series.

What’s the breakthrough? Using nanotechnology, physicists in London and Singapore found a way to make a beam of the”T-rays”–which are now used in full-body airport security scanners–stronger and more directional.

Here’s how the improved T-ray technology works (from the Jan. 20, 2012 news item on Nanowerk),

In the new technique, the researchers demonstrated that it is possible to produce a strong beam of T-rays by shining light of differing wavelengths on a pair of electrodes – two pointed strips of metal separated by a 100 nanometre gap on top of a semiconductor wafer. The unique tip-to-tip nano-sized gap electrode structure greatly enhances the THz field and acts like a nano-antenna that amplifies the THz wave generated. The waves are produced by an interaction between the electromagnetic waves of the light pulses and a powerful current passing between the semiconductor electrodes from the carriers generated in the underlying semiconductor. The scientists are able to tune the wavelength of the T-rays to create a beam that is useable in the scanning technology.

Lead author Dr Jing Hua Teng, from A*STAR’s IMRE, said: “The secret behind the innovation lies in the new nano-antenna that we had developed and integrated into the semiconductor chip.” ….

Research co-author Stefan Maier, a Visiting Scientist at A*STAR’s IMRE and Professor in the Department of Physics at Imperial College London, said: “T-rays promise to revolutionise medical scanning to make it faster and more convenient, potentially relieving patients from the inconvenience of complicated diagnostic procedures and the stress of waiting for accurate results. Thanks to modern nanotechnology and nanofabrication, we have made a real breakthrough in the generation of T-rays that takes us a step closer to these new scanning devices. …”

It’s another story about handheld (or point-of-care) diagnostic devices and I have posted on this topic previously:

  • Jan. 4, 2012 about work in Alberta;
  •  Dec. 22, 2011 on grants to scientists in the US and Canada working on these devices;
  •  Aug. 4, 2011 about a diagnostic device the size of a credit card;
  •  Mar. 1, 2011 about nanoLAB from Stanford University (my last sentence in that posting “It’s not quite Star Trek yet but we’re getting there.”); and,
  •  Feb. 5, 2011 about the Argento and PROOF initiatives.

I see I had four articles last year and this year (one month old), I already have two articles on these devices. It reflects my own interest, as well as, the amount work being done in this area.