Tag Archives: tears

Diagnosing diseases by using nanomembranes to isolate biomarkers in tears

How are they planning to make people cry on command or use a swab on your eyeball? In general, I like the idea of using tears instead of other bodily secretions but it’s the practicalities that have me questioning how this kind of diagnostic test could be implemented. In any event, here’s more from a July 20, 2022 news item on phys.org,

Going to the doctor might make you want to cry, and according to a new study, doctors could someday put those tears to good use. In ACS Nano, researchers report a nanomembrane system that harvests and purifies tiny blobs called exosomes from tears, allowing researchers to quickly analyze them for disease biomarkers. Dubbed iTEARS, the platform could enable more efficient and less invasive molecular diagnoses for many diseases and conditions, without relying solely on symptoms.

A July 20, 2022 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, explains the work in more detail,

Diagnosing diseases often hinges on assessing a patient’s symptoms, which can be unobservable at early stages, or unreliably reported. Identifying molecular clues in samples from patients, such as specific proteins or genes from vesicular structures called exosomes, could improve the accuracy of diagnoses. However, current methods for isolating exosomes from these samples require long, complicated processing steps or large sample volumes. Tears are well-suited for sample collection because the fluid can be collected quickly and non-invasively, though only tiny amounts can be harvested at a time. So, Luke Lee, Fei Liu and colleagues wondered if a nanomembrane system, which they originally developed for isolating exosomes from urine and plasma, could allow them to quickly obtain these vesicles from tears and then analyze them for disease biomarkers.

The team modified their original system to handle the low volume of tears. The new system, called “Incorporated Tear Exosomes Analysis via Rapid-isolation System” (iTEARS), separated out exosomes in just 5 minutes by filtering tear solutions over nanoporous membranes with an oscillating pressure flow to reduce clogging. Proteins from the exosomes could be tagged with fluorescent probes while they were still on the device and then transferred to other instruments for further analysis. Nucleic acids were also extracted from the exosomes and analyzed. The researchers successfully distinguished between healthy controls and patients with various types of dry eye disease based on a proteomic assessment of extracted proteins. Similarly, iTEARS enabled researchers to observe differences in microRNAs between patients with diabetic retinopathy and those that didn’t have the eye condition, suggesting that the system could help track disease progression. The team says that this work could lead to a more sensitive, faster and less invasive molecular diagnosis of various diseases — using only tears.

Here’s a link to and a citation for the paper,

Discovering the Secret of Diseases by Incorporated Tear Exosomes Analysis via Rapid-Isolation System: iTEARS by Liang Hu, Ting Zhang, Huixiang Ma, Youjin Pan, Siyao Wang, Xiaoling Liu, Xiaodan Dai, Yuyang Zheng, Luke P. Lee, and Fei Liu. ACS Nano 2022, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsnano.2c02531 Publication Date:July 20, 2022 © 2022 American Chemical Society

This paper appears to be open access.

Tracks of my tears could power smartphone?

So far the researchers aren’t trying to power anything with tears but they have discovered that tears could be used to generate electricity (from an Oct. 2, 2017 news item on phys.org),

A team of Irish scientists has discovered that applying pressure to a protein found in egg whites and tears can generate electricity. The researchers from the Bernal Institute, University of Limerick (UL), Ireland, observed that crystals of lysozyme, a model protein that is abundant in egg whites of birds as well as in the tears, saliva and milk of mammals can generate electricity when pressed. Their report is published today (October 2) in the journal, Applied Physics Letters.

An Oct. 2, 2017 University of Limerick press release (also on EurekAlert), which originated the news item, offers additional detail,

The ability to generate electricity by applying pressure, known as direct piezoelectricity, is a property of materials such as quartz that can convert mechanical energy into electrical energy and vice versa. Such materials are used in a variety of applications ranging from resonators and vibrators in mobile phones to deep ocean sonars and ultrasound imaging. Bone, tendon and wood are long known to possess piezoelectricity.

“While piezoelectricity is used all around us, the capacity to generate electricity from this particular protein had not been explored. The extent of the piezoelectricity in lysozyme crystals is significant. It is of the same order of magnitude found in quartz. However, because it is a biological material, it is non toxic so it could have many innovative applications such as electroactive anti-microbial coatings for medical implants,” explained Aimee Stapleton, the lead author and an Irish Research Council EMBARK Postgraduate Fellow in the Department of Physics and Bernal Institute of UL.

Crystals of lysozyme are easy to make from natural sources. “The high precision structure of lysozyme crystals has been known since 1965,” said structural biologist at UL and co-author Professor Tewfik Soulimane.
“In fact, it is the second protein structure and the first enzyme structure that was ever solved,” he added, “but we are the first to use these crystals to show the evidence of piezoelectricity”.

According to team leader Professor Tofail Syed of UL’s Department of Physics, “Crystals are the gold-standard for measuring piezoelectricity in non-biological materials. Our team has shown that the same approach can be taken in understanding this effect in biology. This is a new approach as scientists so far have tried to understand piezoelectricity in biology using complex hierarchical structures such as tissues, cells or polypeptides rather than investigating simpler fundamental building blocks”.

The discovery may have wide reaching applications and could lead to further research in the area of energy harvesting and flexible electronics for biomedical devices. Future applications of the discovery may include controlling the release of drugs in the body by using lysozyme as a physiologically mediated pump that scavenges energy from its surroundings. Being naturally biocompatible and piezoelectric, lysozyme may present an alternative to conventional piezoelectric energy harvesters, many of which contain toxic elements such as lead.

Professor Luuk van der Wielen, Director of Bernal Institute and Bernal Professor of Biosystems Engineering and Design expressed his delight at this breakthrough by UL scientists.

“The €109-million Bernal Institute has the ambition to impact the world on the basis of top science in an increasingly international context. The impact of this discovery in the field of biological piezoelectricity will be huge and Bernal scientists are leading from the front the progress in this field,” he said.

Here’s a link to and a citation for the paper,

The direct piezoelectric effect in the globular protein lysozyme featured by A. Stapleton, M. R. Noor, J. Sweeney, V. Casey, A. L. Kholkin, C. Silien, A. A. Gandhi, T. Soulimane, and S. A. M. Tofail. Appl. Phys. Lett. 111, 142902 (2017); doi: http://dx.doi.org/10.1063/1.4997446

This paper is open access.

As for Tracks of My Tears,