Tag Archives: Technical University of Liberec

Combine a nonwoven nanotextile and unique compounds to treat skin infections

A September 30, 2021 news item on Nanowerk a new material for treating skin infections (Note: A link has been removed),

Researchers at the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague) and the Technical University of Liberec in collaboration with researchers from the Institute of Microbiology of the CAS, the Department of Burns Medicine of the Third Faculty of Medicine at Charles University (Czech Republic), and P. J. Šafárik University in Košice (Slovakia) have developed a novel antibacterial material combining nonwoven nanotextile and unique compounds with antibacterial properties (Scientific Reports, “Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice”).

A September 30, 2021 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) press release (also on EurekAlert), which originated the news item, describes the work in more detail,

Because the number of bacterial strains resistant to common antibiotics is steadily increasing, there is a growing need for new substances with antibacterial properties. A very promising class of substances are the so-called lipophosphonoxins (LPPO) developed by the team of Dominik Rejman of IOCB Prague in collaboration with Libor Krásný of the Institute of Microbiology of the CAS.

“Lipophosphonoxins hold considerable promise as a new generation of antibiotics. They don’t have to penetrate the bacteria but instead act on the surface, where they disrupt the bacterial cell membrane. That makes them very efficient at destroying bacteria,” says Rejman.

“A big advantage of LPPO is the limited ability of bacteria to develop resistance to them. In an experiment lasting several weeks, we failed to find a bacteria resistant to these substances, while resistance to well-known antibiotics developed relatively easily,” explains Krásný.

The potential of LPPO is especially evident in situations requiring immediate targeted intervention, such as skin infections. Here, however, the substances must be combined with a suitable material that ensures their topical efficacy without the need to enter the circulatory system. This reduces the burden to the body and facilitates use.

One such suitable material is a polymer nanofiber developed by the team of David Lukáš of the Faculty of Science, Humanities and Education at the Technical University of Liberec. The researchers combined it with LPPO to prepare a new type of dressing material for bacteria-infected skin wounds. The material’s main benefit is that the antibacterial LPPO are released from it gradually and in relation to the presence and extent of infection.

“The research and development of the material NANO-LPPO is a continuation of the work carried out in a clinical trial on the NANOTARDIS medical device, which we recently successfully completed in collaboration with Regional Hospital Liberec, University Hospital Královské Vinohrady, and Bulovka University Hospital. With its morphological and physical-chemical properties, the device promotes the healing of clean acute wounds,” says Lukáš. “This collaboration with colleagues from IOCB Prague is really advancing the possibilities for use of functionalized nanofiber materials in the areas of chronic and infected wounds.”

“Enzymes decompose the nanomaterial into harmless molecules. The LPPO are an integral component of the material and are primarily released from it during this decomposition. Moreover, the process is greatly accelerated by the presence of bacteria, which produce lytic enzymes. This means that the more bacteria there are in the wound, the faster the material decomposes, which in turn releases more of the active substances into the affected site to promote healing and regeneration of soft tissues,” says Rejman in describing the action of the material.  

“Our experiments on mice confirmed the ability of NANO-LPPO to prevent infection in the wound and thus accelerate healing and regeneration. There was practically no spread of infection where we used the material. If clinical trials go well, this could be a breakthrough in the treatment of burns and other serious injuries where infection poses an acute threat and complication to treatment,” explains wound care specialist Peter Gál of the Department of Burns Medicine at Charles University’s Third Faculty of Medicine, the Faculty of Medicine at P. J. Šafárik University in Košice, and the East Slovak Institute for Cardiovascular Diseases.  

In terms of applications, NANO-LPPO is an interesting material for manufacturers of medicinal products and medical devices. Its commercialization is being coordinated through a collaborative effort between IOCB TECH, a subsidiary of IOCB Prague, and Charles University Innovations Prague, a subsidiary of Charles University, both of which were created for the purpose of transferring results of academic research to practice. The companies are currently seeking a suitable commercial partner.

Here’s a link to and a citation for the paper,

Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice by Duy Dinh Do Pham, Věra Jenčová, Miriam Kaňuchová, Jan Bayram, Ivana Grossová, Hubert Šuca, Lukáš Urban, Kristýna Havlíčková, Vít Novotný, Petr Mikeš, Viktor Mojr, Nikifor Asatiani, Eva Kuželová Košťáková, Martina Maixnerová, Alena Vlková, Dragana Vítovská, Hana Šanderová, Alexandr Nemec, Libor Krásný, Robert Zajíček, David Lukáš, Dominik Rejman & Peter Gál. Scientific Reports volume 11, Article number: 17688 (2021) DOI: https://doi.org/10.1038/s41598-021-96980-7 Published: 03 September 2021

This paper is open access.

Czech nanotechnology efforts in China

There’s a Sept. 27, 2013 news item about the Czech Republic’s latest technology mission to China on the Nanowerk website,

This week [Sept.  23 – 27, 2013], the representatives of Czech nanotechnology firms, two famous technical universities and CzechInvest took part in a technology mission to China, where they met Chinese counterparts and discussed the further strengthening of cooperation in the field of nanotechnology. This technology mission to China, together with activities of some Czech nanotechnology companies, which have also been extensively supported by the Czech embassy in Beijing in recent months, has brought new opportunities for investment and the further collaboration of highly innovative technologies originated in the Czech Republic.

The Sept. 25, 2013 Czechinvest news release, which originated the news item,  offers more details about the mission,

“The Czech Republic is a world leader in the field of nanotechnology, which has an impact on numerous industrial sectors and places major demands on research. Czech nanotechnology firms are highly respected on the Chinese market,” says Marian Piecha, CEO of CzechInvest.

Representatives of CzechInvest, the Technical University of Liberec, Brno University of Technology and the Czech nanotechnology firms NAFIGATE Corporation, Elmarco, ACT Nami and Noen are taking part in CHINanoForum 2013, which is being held from 24 to 27 September in Jiangsu province. Within the forum’s accompanying programme, CzechInvest and NAFIGATE Corporation conducted a seminar title Nanosolutions for Green Economy – Investment Opportunity in China on 24 September. On 27 September the Czech delegates and their Chinese counterparts will be at the Czech embassy in Beijing to discuss the topic of using nanotechnologies in water treatment, among other things.

“China offers tremendous space for introducing new high-tech products to the market,” says Ladislav Mareš, chairman of the board of directors of NAFIGATE Corporation. “This technology mission therefore has major significance for supporting Czech exports to the Chinese market. Presentation of the potential of Czech nanotechnologies is also a signal for Chinese investors.”

According to the news release, a memorandum of understanding will be signed,

Technological cooperation between the two countries will also be supported by the signing of a Memorandum of Understanding between the Technology Agency of the Czech Republic and the Suzhou Industrial Park Administrative Committee. The signing of the memorandum, which will facilitate cooperation between Czech and Chinese firms with a high technological profile, will be attended by representatives of CzechInvest and His Excellency Libor Sečka, the Czech ambassador in China.

Earlier this years,  in June 2013, Nafigate signed a letter of intent with its Chinese partner, Guodian Technology & Environment Group Corporation Limited, regarding the development of a green nanotechnology centre. From a June 21, 2013 news release on PR newswire,

In the last few days, Czech nanotechnology pioneers have been presenting possible ways of utilizing Czech nanotechnology with specific examples taken from the Clean Air Nanosolution and Clean Water Nanosolution projects to representatives of the most significant Chinese companies at the Embassy of the Czech Republic in Beijing. “There is a lot of interest in the new technology because it solves fundamental problems in air and water cleaning. At the same time the Czech Republic is the world leader in the field of nanofibers and has much to offer China, from cooperation in research and development to putting specific innovative approaches into practice. Cooperation in this field could become an important new branch of mutual trade and scientific and technological exchanges and bring qualitative changes in the life of Chinese society,” said H. E. Mr. Libor Secka, Ambassador of the Czech Republic to the People’s Republic of China.

The signing of the Letter of Intent between NAFIGATE China (a subsidiary of the Czech company NAFIGATE Corporation JSC) and their Chinese partner Guodian Technology & Environment Group Corporation Limited (a subsidiary of one of the most prominent Chinese energy companies) is a significant milestone in Czech-Chinese cooperation in nanotechnology sector. Since January 2013 both companies have been preparing the foundation of the NANODEC (Nanofiber Development Center) project for the development of final applications for water and air cleaning.

The establishment of the center will be a major breakthrough with a global impact in the field of nanofiber applications. The aim of this initiative is to build a center of excellence which will utilize the best available worldwide know-how, the technological and infrastructural potential of one of the most significant Chinese companies and the potential of the market for new low carbon and green technologies. The Letter of Intent specifies the steps required to open the center according to the schedule in the last quarter of 2013.

For those interested in the overall nanotechnology scene in the Czech Republic, I found a 2012 article in the New York Times and a paper (2009?)  written for the National Information Centre For European Research (NICER) and located on the Organization of Economic Cooperation and Development.

Here’s some of what Jacy Meyer wrote for the New York Times in a May 22, 2012 article,

Industries based on nanotechnology are a rapidly growing niche in the economy of the Czech Republic, which, although small, is widely respected for its technical prowess. In February, the country had its own pavilion at the International Nanotechnology Trade Fair, Nanotech 2012, in Tokyo. Ten Czech companies took part.

One was Advanced Materials-JTJ, which produces photocatalytic coating materials incorporating titanium dioxide nanoparticles, known as FN coatings. The semi-transparent, odorless coatings have the unusual property of purifying the air around them — removing viruses, bacteria, toxins, cigarette smoke and more through a light-activated catalytic process.

Over the course of a year, “one square meter of FN-painted facade will clean and decontaminate over three million cubic meters of air,” or 106 million cubic feet, removing several kilograms of pollution, Mr. Prochazka [Jan Prochazka, Advanced Materials-JTJ’s chief executive] said.

As well as cleaning the air, the coating protects the painted surfaces from mold, fungus and the slow accumulation of dirt deposits that cause erosion and discoloring, he said.

The process, activated by ultraviolet light — that is, sunshine — is both environmentally friendly and cost-effective.

“For many people nano is a question mark, but really, everything is nano, except for gravel, sand and a few other materials,” Mr. Prochazka said in an interview in Prague. “Take a cup of water; you can’t imagine how many nanoparticles are inside.”

The National Information Centre For European Research (NICER) report titled, Czech Experience in the International Nanotechnology Cooperation, by Jitka Kubatova on the OECD website offers an overview of the public funding of R&D and much more,

the total (public + private) expenditure on R&D:

in 2005
42,2 billion CZK(€1,58 billion)
1,41% GDP (gross domestic product)

in 2006
49,9 billion CZK (€1,87 billion)
1,55% GDP

in 2007
54,3 billion CZK, (€2,03 billion)
1,53% GDP (p. 3 of the PDF)