Tag Archives: The Guardian science blogs

The UK’s Guardian newspaper science blogs go nano and experiment with editorial/advertorial

Small World, a nanotechnology blog, was launched today (Tuesday, Apr. 23, 2013)  on the UK’s Guardian newspaper science blogs network. Here’s more from the Introductory page,

Small World is a blog about new developments in nanotechnology funded by Nanopinion, a European Commission project. All the posts are commissioned by the Guardian, which has complete editorial control over the blog’s contents. The views expressed are those of the authors and not the EC

Essentially, Nanopinion is paying for this ‘space’ in much the same way one would pay for advertising but the posts will be written in an editorial style. In practice, this is usually called an ‘advertorial’. The difference between this blog and the usual advertorial is that the buyer (Nanopinion) is not producing or editing the content. By implication, this means that Nanopinion is not controlling the content. Getting back to practice, I would imagine that the Guardian editors are conscious that is an ethically complicated situation. It would be interesting to see what will happen to this paid-for-blog if ‘too many’ posts are negative or if their readership should decide this setup is so ethically questionable that they no longer trust or read the newspaper and/or its blogs.

The first posting on this blog by Kostas Kostarelos, professor of nanomedicine at University College London, on Apr. 23, 2013 is thoughtful (Note: Links have been removed),

There is beauty in exploring the nanoscale. But the idea gets more tainted the more we learn about it, like a young love affair full of expectation of the endless possibilities, which gradually becomes a dysfunctional relationship the more the partners learn about each other. One day we read about wonderful nanomaterials with exotic names such as zinc oxide nanowires, say, or silver nanocubes used to make ultra-efficient solar panels, and the next we read about shoebox bomb attacks against labs and researchers by anti-nanotechnology terrorist groups. It makes me wonder: is there a particular problem with nanotechnology?

As with all human relationships, we run the risk of raising expectations too high, too soon.

He goes on to discuss the dualistic nanotechnology discourse (good vs bad) and expresses his hope that the discourse will not degenerate into a ceaseless battle and says this,

… We should not allow vigilance, critical thinking and scientific rigor to transmute into polemic.

As someone who lives and breathes exploration on the nanoscale – which aims to create tools for doctors and other health professionals against some of our most debilitating diseases – I hope that this blog will offer an everyday insight into this journey and its great promises, flaws, highs and lows. We want to offer you a transparent and honest view of nanotechnology’s superhuman feats and its very human limitations.

I have mentioned Kostarelos in past postings, most recently in a Jan. 16, 2013 posting with regard to his involvement in a study on carbon nanotubes and toxicity.

As for Nanopinion, it put me in mind of another European Commission project, Nanochannels, mentioned in my Jan. 27, 2011 posting,

From the Jan. 17, 2011 news item on Nanowerk,

Nanotechnology issues are about to hit the mass media in a big way. The new EC-funded NANOCHANNELS project was launched last week with a two-day kick-off meeting that led to the planning of a dynamic programme of communication, dialogue, and engagement in issues of nanotechnology aimed at European citizens.

Here’s how they describe Nanopinion (from the About Nanopinion page),

Nanopinion is an EC-funded project bringing together 17 partners from 11 countries with the aim of monitoring public opinion on what we hope for from innovation with nanotechnologies. The project is aimed citizens with a special focus on hard-to-reach target groups, which are people who do not normally encounter and give their opinion nanotechnologies at first hand.

Dialogue is facilitated online and in outreach events in 30 countries presenting different participatory formats.

To promote an informed debate, we also run a strong press & social media campaign and offer a repository with more than 150 resources.

Finally, nanOpinion offers an innovative educational programme for schools.

There are differences but they do have a very strong emphasis on communication, dialogue, and outreach both for the public and for schools. Although how a blog in the Guardian science blogs network will help Nanopinion contact ‘hard-to-reach’ target groups is a bit of a mystery to me but perhaps the blog is intended to somehow help them ‘monitor public opinion’? In any event, they sure seem to have a lot of these ‘nano’ dialogues in Europe.

The title of this new Guardian science blog (Small World) reminded me of an old Disney tune, ‘It’s a small world.’ I refuse to embed it here but if you are feeling curious or nostalgic, here’s the link: http://youtu.be/nxvlKp-76io.

Elemental difference: a bacterium that lives on arsenic

[ETA Dec. 8, 2010: The ‘arsenic bacterium’ story noted has been corrected in my Dec. 8, 2010 posting. The conclusions first reported do not seem to be supported by the evidence in the article.] There’s a podcast over at The Guardian science blogs that features last week’s story from NASA (US National Aeronautics and Space Administration) about a bacterium, living deep in a California Lake, that uses arsenic instead of phosphorus in its molecular makeup. From the Dec. 2, 2010 article by Alok Jha for The Guardian newspaper,

A bacterium discovered in a Californian lake appears to be able to use arsenic in its molecular make-up instead of phosphorus – even incorporating the toxic chemical into its DNA. That’s significant because it goes against the general rule that all terrestrial life depends on six elements: oxygen, hydrogen, carbon, nitrogen, sulphur and phosphorus.  These are needed to build DNA, proteins and fats and are some of the biological signatures of life that scientists look for on other planets. [emphases mine]

Christened GFAJ-1, the microbe lends weight to the notion held by some astrobiologists that there might be “weird” forms of life on Earth, as yet undiscovered, that use elements other than the basic six in their metabolism. Among those who have speculated is Prof Paul Davies, a cosmologist at Arizona State University and an author on the latest research.

“This organism has dual capability – it can grow with either phosphorus or arsenic,” said Davies. “That makes it very peculiar, though it falls short of being some form of truly ‘alien’ life belonging to a different tree of life with a separate origin. However, GFAJ-1 may be a pointer to even weirder organisms. The holy grail would be a microbe that contained no phosphorus at all.”

As the pundits note, this changes some fundamental ideas we have about life on this planet and elsewhere.

Getting back to the podcast, the hosts also cover stories about the neanderthals and the [UK] Natural History Museum’s new approach to telling the story of evolution using a ‘kid-proof iPad’.

Inside story on stained glass

I mentioned it on Twitter (http://twitter.com/frogheart) and now I’m going to highlight Andy Connelly’s delightful article on stained glass windows here. From the Guardian’s Science Desk blog posting of Oct. 29, 2010,

The history of stained glass dates back to the middle ages [emphasis mine] and is an often underestimated technical and artistic achievement.

Glass itself is one of the fruits of the art of fire. It is a fusion of the Earth’s rocks: a mixture of sand (silicon oxide), soda (sodium oxide) and lime (calcium oxide) melted at high temperatures. Glass is an enabling material used for more than just drinking vessels and windows. It also allows scientists to observe distant stars and the smallest biological cells, and colourful chemical reactions in test tubes.

I’ve read a number of times that the deep reds in the stained glass windows in medieval cathedrals are due to gold nanoparticles. According to a 2007 article about the Lycurgus Cup by Ian Freestone, Nigel Meeks, Margaret Sax and Catherine Higgitt for the Gold Bulletin, Vol. 40:4, 2007, this is not the case. (I featured the Lycurgus Cup and ancient Roman nanotechnology in my Sept. 21, 2010 posting.) From the Freestone, et. al. article,

Although the red “stained” glass of medieval church windows is sometimes suggested to be gold ruby, the colourant has been found to be copper in all cases so far analysed. The production of gold ruby on anything like a routine basis does not appear to have taken place until the seventeenth century in Europe, a discovery often credited to Johann Kunckel, a German glassmaker and chemist. (p. 275)

One of these days I should do some more checking about nanoparticles and stained glass, in the meantime, Connelly notes that humans have had a longstanding contact with glass,

The earliest evidence of human interaction with glass was the discovery of flaked obsidian tools and arrow heads dating from more than 200,000 years ago. Obsidian is a volcanic glass formed when hot volcanic lava is rapidly cooled.

Sheets of glass both blown and cast have been used architecturally since Roman times. Writers as early as the fifth century mention coloured glass in windows. Around AD 1000 Europe became less war-like, and church building and stained glass production began to flourish. However, these churches were Romanesque in style with massive walls and pillars to bear their weight and so had only relatively small windows.

But by the 12th century the pointed arch and flying buttresses of the Gothic style were allowing builders to insert “walls of light”, giant windows that filled the church interior with the perfect light of God.

Connelly also covers the chemistry,

So what is a glass? Why can we see through it when other materials are opaque? Glasses exist in a poorly understood state somewhere between solids and liquids. [If I ever knew that interesting fact, I’ve long since forgotten it.] In general, when a liquid is cooled there is a temperature at which it will “freeze”, becoming a crystalline solid (eg. water into ice at 0C). Most solid inorganic materials are crystalline and are made up of many millions of crystals, each having an atomic structure which is highly ordered, with atomic units tessellating throughout. The shape of these units can be observed in the shape of single crystals (eg. hexagonal quartz crystals).

Glass is different: it is not crystalline but made up of a continuous network of atoms that are not ordered but irregular and liquid-like. This difference in atomic structure occurs because the liquid glass is cooled so quickly that the atoms do not have time to arrange themselves into regular, crystal-like patterns.

If cooled fast enough almost any liquid can form glass, even water. However, the rate of cooling must be very fast. Fortunately for us, liquids composed primarily of silicon oxide can be cooled slowly and still form a glass. They get gradually stiffer during cooling until they reach the “glass transition temperature” below which they are effectively solid.

This transparent silicate material is what we know as glass, and despite its liquid-like atomic structure it is to all intents and purposes solid, only flowing over billions of years – much too slowly to be noticed in the hundreds of years cathedral windows have been in place.

There’s a lot more to the article including a description of three different processes that result in what we (uninformed individuals) call stained glass. Connelly, a cookery writer and former researcher in glass science who’s training to be a science teacher,  explains (in addition to the history and the chemistry) how the windows were constructed so that they convey stories and display figures with expressive features. Do go and read this article if the subject interests you at all.