Tag Archives: The Machine That Feels (tv programme)

UNESCO’s first global recommendations on the ethics of artificial intelligence (AI) announced

This makes a nice accompaniment to my commentary (December 3, 2021 posting) on the Nature of Things programme (telecast by the Canadian Broadcasting Corporation), The Machine That Feels.

Here’s UNESCO’s (United Nations Educational, Scientific and Cultural Organization) November 25, 2021 press release making the announcement (also received via email),

UNESCO member states adopt the first ever global agreement [recommendation] on the Ethics of Artificial Intelligence

Paris, 25 Nov [2021] – Audrey Azoulay, Director-General of UNESCO presented
Thursday the first ever global standard on the ethics of artificial
intelligence adopted by the member states of UNESCO at the General
Conference.

This historical text defines the common values and principles which will
guide the construction of the necessary legal infrastructure to ensure
the healthy development of AI.

AI is pervasive, and enables many of our daily routines – booking
flights, steering driverless cars, and personalising our morning news
feeds. AI also supports the decision-making of governments and the
private sector.

AI technologies are delivering remarkable results in highly specialized
fields such as cancer screening and building inclusive environments for
people with disabilities. They also help combat global problems like
climate change and world hunger, and help reduce poverty by optimizing
economic aid.

But the technology is also bringing new unprecedented challenges. We see
increased gender and ethnic bias, significant threats to privacy,
dignity and agency, dangers of mass surveillance, and increased use of
unreliable AI technologies in law enforcement, to name a few. Until now,
there were no universal standards to provide an answer to these issues.

In 2018, Audrey Azoulay, Director-General of UNESCO, launched an
ambitious project: to give the world an ethical framework for the use of
artificial intelligence. Three years later, thanks to the mobilization
of hundreds of experts from around the world and intense international
negotiations, the 193 UNESCO’s member states have just officially
adopted this ethical framework.

“The world needs rules for artificial intelligence to benefit
humanity. The Recommendation on the ethics of AI is a major answer. It
sets the first global normative framework while giving States the
responsibility to apply it at their level. UNESCO will support its 193
Member States in its implementation and ask them to report regularly on
their progress and practices”, said Audrey Azoulay, UNESCO Director-General.

The content of the recommendation

The Recommendation [emphasis mine] aims to realize the advantages AI brings to society and reduce the risks it entails. It ensures that digital transformations
promote human rights and contribute to the achievement of the
Sustainable Development Goals, addressing issues around transparency,
accountability and privacy, with action-oriented policy chapters on data
governance, education, culture, labour, healthcare and the economy.

*Protecting data

The Recommendation calls for action beyond what tech firms and
governments are doing to guarantee individuals more protection by
ensuring transparency, agency and control over their personal data. It
states that individuals should all be able to access or even erase
records of their personal data. It also includes actions to improve data
protection and an individual’s knowledge of, and right to control,
their own data. It also increases the ability of regulatory bodies
around the world to enforce this.

*Banning social scoring and mass surveillance

The Recommendation explicitly bans the use of AI systems for social
scoring and mass surveillance. These types of technologies are very
invasive, they infringe on human rights and fundamental freedoms, and
they are used in a broad way. The Recommendation stresses that when
developing regulatory frameworks, Member States should consider that
ultimate responsibility and accountability must always lie with humans
and that AI technologies should not be given legal personality
themselves.

*Helping to monitor and evalute

The Recommendation also sets the ground for tools that will assist in
its implementation. Ethical Impact Assessment is intended to help
countries and companies developing and deploying AI systems to assess
the impact of those systems on individuals, on society and on the
environment. Readiness Assessment Methodology helps Member States to
assess how ready they are in terms of legal and technical
infrastructure. This tool will assist in enhancing the institutional
capacity of countries and recommend appropriate measures to be taken in
order to ensure that ethics are implemented in practice. In addition,
the Recommendation encourages Member States to consider adding the role
of an independent AI Ethics Officer or some other mechanism to oversee
auditing and continuous monitoring efforts.

*Protecting the environment

The Recommendation emphasises that AI actors should favour data, energy
and resource-efficient AI methods that will help ensure that AI becomes
a more prominent tool in the fight against climate change and on
tackling environmental issues. The Recommendation asks governments to
assess the direct and indirect environmental impact throughout the AI
system life cycle. This includes its carbon footprint, energy
consumption and the environmental impact of raw material extraction for
supporting the manufacturing of AI technologies. It also aims at
reducing the environmental impact of AI systems and data
infrastructures. It incentivizes governments to invest in green tech,
and if there are disproportionate negative impact of AI systems on the
environment, the Recommendation instruct that they should not be used.

Decisions impacting millions of people should be fair, transparent and contestable. These new technologies must help us address the major challenges in our world today, such as increased inequalities and the environmental crisis, and not deepening them.” said Gabriela Ramos, UNESCO’s Assistant Director General for Social and Human Sciences.

Emerging technologies such as AI have proven their immense capacity to
deliver for good. However, its negative impacts that are exacerbating an
already divided and unequal world, should be controlled. AI developments
should abide by the rule of law, avoiding harm, and ensuring that when
harm happens, accountability and redressal mechanisms are at hand for
those affected.

If I read this properly (and it took me a little while), this is an agreement on the nature of the recommendations themselves and not an agreement to uphold them.

You can find more background information about the process for developing the framework outlined in the press release on the Recommendation on the ethics of artificial intelligence webpage. I was curious as to the composition of the Adhoc Expert Group (AHEG) for the Recommendation; they had varied representation from every continent. (FYI, The US and Mexico represented North America.)

True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read)

The Canadian Broadcasting Corporation’s (CBC) science television series,The Nature of Things, which has been broadcast since November 1960, explored the world of emotional, empathic and creative artificial intelligence (AI) in a Friday, November 19, 2021 telecast titled, The Machine That Feels,

The Machine That Feels explores how artificial intelligence (AI) is catching up to us in ways once thought to be uniquely human: empathy, emotional intelligence and creativity.

As AI moves closer to replicating humans, it has the potential to reshape every aspect of our world – but most of us are unaware of what looms on the horizon.

Scientists see AI technology as an opportunity to address inequities and make a better, more connected world. But it also has the capacity to do the opposite: to stoke division and inequality and disconnect us from fellow humans. The Machine That Feels, from The Nature of Things, shows viewers what they need to know about a field that is advancing at a dizzying pace, often away from the public eye.

What does it mean when AI makes art? Can AI interpret and understand human emotions? How is it possible that AI creates sophisticated neural networks that mimic the human brain? The Machine That Feels investigates these questions, and more.

In Vienna, composer Walter Werzowa has — with the help of AI — completed Beethoven’s previously unfinished 10th symphony. By feeding data about Beethoven, his music, his style and the original scribbles on the 10th symphony into an algorithm, AI has created an entirely new piece of art.

In Atlanta, Dr. Ayanna Howard and her robotics lab at Georgia Tech are teaching robots how to interpret human emotions. Where others see problems, Howard sees opportunity: how AI can help fill gaps in education and health care systems. She believes we need a fundamental shift in how we perceive robots: let’s get humans and robots to work together to help others.

At Tufts University in Boston, a new type of biological robot has been created: the xenobot. The size of a grain of sand, xenobots are grown from frog heart and skin cells, and combined with the “mind” of a computer. Programmed with a specific task, they can move together to complete it. In the future, they could be used for environmental cleanup, digesting microplastics and targeted drug delivery (like releasing chemotherapy compounds directly into tumours).

The film includes interviews with global leaders, commentators and innovators from the AI field, including Geoff Hinton, Yoshua Bengio, Ray Kurzweil and Douglas Coupland, who highlight some of the innovative and cutting-edge AI technologies that are changing our world.

The Machine That Feels focuses on one central question: in the flourishing age of artificial intelligence, what does it mean to be human?

I’ll get back to that last bit, “… what does it mean to be human?” later.

There’s a lot to appreciate in this 44 min. programme. As you’d expect, there was a significant chunk of time devoted to research being done in the US but Poland and Japan also featured and Canadian content was substantive. A number of tricky topics were covered and transitions from one topic to the next were smooth.

In the end credits, I counted over 40 source materials from Getty Images, Google Canada, Gatebox, amongst others. It would have been interesting to find out which segments were produced by CBC.

David Suzuki’s (programme host) script was well written and his narration was enjoyable, engaging, and non-intrusive. That last quality is not always true of CBC hosts who can fall into the trap of overdramatizing the text.

Drilling down

I have followed artificial intelligence stories in a passive way (i.e., I don’t seek them out) for many years. Even so, there was a lot of material in the programme that was new to me.

For example, there was this love story (from the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage on the CBC),

In the The Machine That Feels, a documentary from The Nature of Things, we meet Kondo Akihiko, a Tokyo resident who “married” a hologram of virtual pop singer Hatsune Miku using a certificate issued by Gatebox (the marriage isn’t recognized by the state, and Gatebox acknowledges the union goes “beyond dimensions”).

I found Akihiko to be quite moving when he described his relationship, which is not unique. It seems some 4,000 men have ‘wed’ their digital companions, you can read about that and more on the ‘I love her and see her as a real woman.’ Meet a man who ‘married’ an artificial intelligence hologram webpage.

What does it mean to be human?

Overall, this Nature of Things episode embraces certainty, which means the question of what it means to human is referenced rather than seriously discussed. An unanswerable philosophical question, the programme is ill-equipped to address it, especially since none of the commentators are philosophers or seem inclined to philosophize.

The programme presents AI as a juggernaut. Briefly mentioned is the notion that we need to make some decisions about how our juggernaut is developed and utilized. No one discusses how we go about making changes to systems that are already making critical decisions for us. (For more about AI and decision-making, see my February 28, 2017 posting and scroll down to the ‘Algorithms and big data’ subhead for Cathy O’Neil’s description of how important decisions that affect us are being made by AI systems. She is the author of the 2016 book, ‘Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy’; still a timely read.)

In fact, the programme’s tone is mostly one of breathless excitement. A few misgivings are expressed, e.g,, one woman who has an artificial ‘texting friend’ (Replika; a chatbot app) noted that it can ‘get into your head’ when she had a chat where her ‘friend’ told her that all of a woman’s worth is based on her body; she pushed back but intimated that someone more vulnerable could find that messaging difficult to deal with.

The sequence featuring Akihiko and his hologram ‘wife’ is followed by one suggesting that people might become more isolated and emotionally stunted as they interact with artificial friends. It should be noted, Akihiko’s wife is described as ‘perfect’. I gather perfection means that you are always understanding and have no needs of your own. She also seems to be about 18″ high.

Akihiko has obviously been asked about his ‘wife’ before as his answers are ready. They boil down to “there are many types of relationships” and there’s nothing wrong with that. It’s an intriguing thought which is not explored.

Also unexplored, these relationships could be said to resemble slavery. After all, you pay for these friends over which you have control. But perhaps that’s alright since AI friends don’t have consciousness. Or do they? In addition to not being able to answer the question, “what is it to be human?” we still can’t answer the question, “what is consciousness?”

AI and creativity

The Nature of Things team works fast. ‘Beethoven X – The AI Project’ had its first performance on October 9, 2021. (See my October 1, 2021 post ‘Finishing Beethoven’s unfinished 10th Symphony’ for more information from Ahmed Elgammal’s (Director of the Art & AI Lab at Rutgers University) technical perspective on the project.

Briefly, Beethoven died before completing his 10th symphony and a number of computer scientists, musicologists, AI, and musicians collaborated to finish the symphony.)

The one listener (Felix Mayer, music professor at the Technical University Munich) in the hall during a performance doesn’t consider the work to be a piece of music. He does have a point. Beethoven left some notes but this ’10th’ is at least partly mathematical guesswork. A set of probabilities where an algorithm chooses which note comes next based on probability.

There was another artist also represented in the programme. Puzzlingly, it was the still living Douglas Coupland. In my opinion, he’s better known as a visual artist than a writer (his Wikipedia entry lists him as a novelist first) but he has succeeded greatly in both fields.

What makes his inclusion in the Nature of Things ‘The Machine That Feels’ programme puzzling, is that it’s not clear how he worked with artificial intelligence in a collaborative fashion. Here’s a description of Coupland’s ‘AI’ project from a June 29, 2021 posting by Chris Henry on the Google Outreach blog (Note: Links have been removed),

… when the opportunity presented itself to explore how artificial intelligence (AI) inspires artistic expression — with the help of internationally renowned Canadian artist Douglas Coupland — the Google Research team jumped on it. This collaboration, with the support of Google Arts & Culture, culminated in a project called Slogans for the Class of 2030, which spotlights the experiences of the first generation of young people whose lives are fully intertwined with the existence of AI. 

This collaboration was brought to life by first introducing Coupland’s written work to a machine learning language model. Machine learning is a form of AI that provides computer systems the ability to automatically learn from data. In this case, Google research scientists tuned a machine learning algorithm with Coupland’s 30-year body of written work — more than a million words — so it would familiarize itself with the author’s unique style of writing. From there, curated general-public social media posts on selected topics were added to teach the algorithm how to craft short-form, topical statements. [emphases mine]

Once the algorithm was trained, the next step was to process and reassemble suggestions of text for Coupland to use as inspiration to create twenty-five Slogans for the Class of 2030. [emphasis mine]

I would comb through ‘data dumps’ where characters from one novel were speaking with those in other novels in ways that they might actually do. It felt like I was encountering a parallel universe Doug,” Coupland says. “And from these outputs, the statements you see here in this project appeared like gems. Did I write them? Yes. No. Could they have existed without me? No.” [emphases mine]

So, the algorithms crunched through Coupland’s word and social media texts to produce slogans, which Coupland then ‘combed through’ to pick out 25 slogans for the ‘Slogans For The Class of 2030’ project. (Note: In the programme, he says that he started a sentence and then the AI system completed that sentence with material gleaned from his own writings, which brings to Exquisite Corpse, a collaborative game for writers originated by the Surrealists, possibly as early as 1918.)

The ‘slogans’ project also reminds me of William S. Burroughs and the cut-up technique used in his work. From the William S. Burroughs Cut-up technique webpage on the Language is a Virus website (Thank you to Lake Rain Vajra for a very interesting website),

The cutup is a mechanical method of juxtaposition in which Burroughs literally cuts up passages of prose by himself and other writers and then pastes them back together at random. This literary version of the collage technique is also supplemented by literary use of other media. Burroughs transcribes taped cutups (several tapes spliced into each other), film cutups (montage), and mixed media experiments (results of combining tapes with television, movies, or actual events). Thus Burroughs’s use of cutups develops his juxtaposition technique to its logical conclusion as an experimental prose method, and he also makes use of all contemporary media, expanding his use of popular culture.

[Burroughs says] “All writing is in fact cut-ups. A collage of words read heard overheard. What else? Use of scissors renders the process explicit and subject to extension and variation. Clear classical prose can be composed entirely of rearranged cut-ups. Cutting and rearranging a page of written words introduces a new dimension into writing enabling the writer to turn images in cinematic variation. Images shift sense under the scissors smell images to sound sight to sound to kinesthetic. This is where Rimbaud was going with his color of vowels. And his “systematic derangement of the senses.” The place of mescaline hallucination: seeing colors tasting sounds smelling forms.

“The cut-ups can be applied to other fields than writing. Dr Neumann [emphasis mine] in his Theory of Games and Economic behavior introduces the cut-up method of random action into game and military strategy: assume that the worst has happened and act accordingly. … The cut-up method could be used to advantage in processing scientific data. [emphasis mine] How many discoveries have been made by accident? We cannot produce accidents to order. The cut-ups could add new dimension to films. Cut gambling scene in with a thousand gambling scenes all times and places. Cut back. Cut streets of the world. Cut and rearrange the word and image in films. There is no reason to accept a second-rate product when you can have the best. And the best is there for all. Poetry is for everyone . . .”

First, John von Neumann (1902 – 57) is a very important figure in the history of computing. From a February 25, 2017 John von Neumann and Modern Computer Architecture essay on the ncLab website, “… he invented the computer architecture that we use today.”

Here’s Burroughs on the history of writers and cutups (thank you to QUEDEAR for posting this clip),

You can hear Burroughs talk about the technique and how he started using it in 1959.

There is no explanation from Coupland as to how his project differs substantively from Burroughs’ cut-ups or a session of Exquisite Corpse. The use of a computer programme to crunch through data and give output doesn’t seem all that exciting. *(More about computers and chatbots at end of posting).* It’s hard to know if this was an interview situation where he wasn’t asked the question or if the editors decided against including it.

Kazuo Ishiguro?

Given that Ishiguro’s 2021 book (Klara and the Sun) is focused on an artificial friend and raises the question of ‘what does it mean to be human’, as well as the related question, ‘what is the nature of consciousness’, it would have been interesting to hear from him. He spent a fair amount of time looking into research on machine learning in preparation for his book. Maybe he was too busy?

AI and emotions

The work being done by Georgia Tech’s Dr. Ayanna Howard and her robotics lab is fascinating. They are teaching robots how to interpret human emotions. The segment which features researchers teaching and interacting with robots, Pepper and Salt, also touches on AI and bias.

Watching two African American researchers talk about the ways in which AI is unable to read emotions on ‘black’ faces as accurately as ‘white’ faces is quite compelling. It also reinforces the uneasiness you might feel after the ‘Replika’ segment where an artificial friend informs a woman that her only worth is her body.

(Interestingly, Pepper and Salt are produced by Softbank Robotics, part of Softbank, a multinational Japanese conglomerate, [see a June 28, 2021 article by Ian Carlos Campbell for The Verge] whose entire management team is male according to their About page.)

While Howard is very hopeful about the possibilities of a machine that can read emotions, she doesn’t explore (on camera) any means for pushing back against bias other than training AI by using more black faces to help them learn. Perhaps more representative management and coding teams in technology companies?

While the programme largely focused on AI as an algorithm on a computer, robots can be enabled by AI (as can be seen in the segment with Dr. Howard).

My February 14, 2019 posting features research with a completely different approach to emotions and machines,

“I’ve always felt that robots shouldn’t just be modeled after humans [emphasis mine] or be copies of humans,” he [Guy Hoffman, assistant professor at Cornell University)] said. “We have a lot of interesting relationships with other species. Robots could be thought of as one of those ‘other species,’ not trying to copy what we do but interacting with us with their own language, tapping into our own instincts.”

[from a July 16, 2018 Cornell University news release on EurekAlert]

This brings the question back to, what is consciousness?

What scientists aren’t taught

Dr. Howard notes that scientists are not taught to consider the implications of their work. Her comment reminded me of a question I was asked many years ago after a presentation, it concerned whether or not science had any morality. (I said, no.)

My reply angered an audience member (a visual artist who was working with scientists at the time) as she took it personally and started defending scientists as good people who care and have morals and values. She failed to understand that the way in which we teach science conforms to a notion that somewhere there are scientific facts which are neutral and objective. Society and its values are irrelevant in the face of the larger ‘scientific truth’ and, as a consequence, you don’t need to teach or discuss how your values or morals affect that truth or what the social implications of your work might be.

Science is practiced without much if any thought to values. By contrast, there is the medical injunction, “Do no harm,” which suggests to me that someone recognized competing values. E.g., If your important and worthwhile research is harming people, you should ‘do no harm’.

The experts, the connections, and the Canadian content

It’s been a while since I’ve seen Ray Kurzweil mentioned but he seems to be getting more attention these days. (See this November 16, 2021 posting by Jonny Thomson titled, “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” on The Big Think for more). Note: I will have a little more about evolution later in this post.

Interestingly, Kurzweil is employed by Google these days (see his Wikipedia entry, the column to the right). So is Geoffrey Hinton, another one of the experts in the programme (see Hinton’s Wikipedia entry, the column to the right, under Institutions).

I’m not sure about Yoshu Bengio’s relationship with Google but he’s a professor at the Université de Montréal, and he’s the Scientific Director for Mila ((Quebec’s Artificial Intelligence research institute)) & IVADO (Institut de valorisation des données), Note: IVADO is not particularly relevant to what’s being discussed in this post.

As for Mila, the Canada Google blog in a November 21, 2016 posting notes a $4.5M grant to the institution,

Google invests $4.5 Million in Montreal AI Research

A new grant from Google for the Montreal Institute for Learning Algorithms (MILA) will fund seven faculty across a number of Montreal institutions and will help tackle some of the biggest challenges in machine learning and AI, including applications in the realm of systems that can understand and generate natural language. In other words, better understand a fan’s enthusiasm for Les Canadien [sic].

Google is expanding its academic support of deep learning at MILA, renewing Yoshua Bengio’s Focused Research Award and offering Focused Research Awards to MILA faculty at University of Montreal and McGill University:

Google reaffirmed their commitment to Mila in 2020 with a grant worth almost $4M (from a November 13, 2020 posting on the Mila website, Note: A link has been removed),

Google Canada announced today [November 13, 2020] that it will be renewing its funding of Mila – Quebec Artificial Intelligence Institute, with a generous pledge of nearly $4M over a three-year period. Google previously invested $4.5M US in 2016, enabling Mila to grow from 25 to 519 researchers.

In a piece written for Google’s Official Canada Blog, Yoshua Bengio, Mila Scientific Director, says that this year marked a “watershed moment for the Canadian AI community,” as the COVID-19 pandemic created unprecedented challenges that demanded rapid innovation and increased interdisciplinary collaboration between researchers in Canada and around the world.

COVID-19 has changed the world forever and many industries, from healthcare to retail, will need to adapt to thrive in our ‘new normal.’ As we look to the future and how priorities will shift, it is clear that AI is no longer an emerging technology but a useful tool that can serve to solve world problems. Google Canada recognizes not only this opportunity but the important task at hand and I’m thrilled they have reconfirmed their support of Mila with an additional $3,95 million funding grant until 22.

– Yoshua Bengio, for Google’s Official Canada Blog

Interesting, eh? Of course, Douglas Coupland is working with Google, presumably for money, and that would connect over 50% of the Canadian content (Douglas Coupland, Yoshua Bengio, and Geoffrey Hinton; Kurzweil is an American) in the programme to Google.

My hat’s off to Google’s marketing communications and public relations teams.

Anthony Morgan of Science Everywhere also provided some Canadian content. His LinkedIn profile indicates that he’s working on a PhD in molecular science, which is described this way, “My work explores the characteristics of learning environments, that support critical thinking and the relationship between critical thinking and wisdom.”

Morgan is also the founder and creative director of Science Everywhere, from his LinkedIn profile, “An events & media company supporting knowledge mobilization, community engagement, entrepreneurship and critical thinking. We build social tools for better thinking.”

There is this from his LinkedIn profile,

I develop, create and host engaging live experiences & media to foster critical thinking.

I’ve spent my 15+ years studying and working in psychology and science communication, thinking deeply about the most common individual and societal barriers to critical thinking. As an entrepreneur, I lead a team to create, develop and deploy cultural tools designed to address those barriers. As a researcher I study what we can do to reduce polarization around science.

There’s a lot more to Morgan (do look him up; he has connections to the CBC and other media outlets). The difficulty is: why was he chosen to talk about artificial intelligence and emotions and creativity when he doesn’t seem to know much about the topic? He does mention GPT-3, an AI programming language. He seems to be acting as an advocate for AI although he offers this bit of almost cautionary wisdom, “… algorithms are sets of instructions.” (You can can find out more about it in my April 27, 2021 posting. There’s also this November 26, 2021 posting [The Inherent Limitations of GPT-3] by Andrey Kurenkov, a PhD student with the Stanford [University] Vision and Learning Lab.)

Most of the cautionary commentary comes from Luke Stark, assistant professor at Western [Ontario] University’s Faculty of Information and Media Studies. He’s the one who mentions stunted emotional growth.

Before moving on, there is another set of connections through the Pan-Canadian Artificial Intelligence Strategy, a Canadian government science funding initiative announced in the 2017 federal budget. The funds allocated to the strategy are administered by the Canadian Institute for Advanced Research (CIFAR). Yoshua Bengio through Mila is associated with the strategy and CIFAR, as is Geoffrey Hinton through his position as Chief Scientific Advisor for the Vector Institute.

Evolution

Getting back to “The Singularity: When will we all become super-humans? Are we really only a moment away from “The Singularity,” a technological epoch that will usher in a new era in human evolution?” Xenobots point in a disconcerting (for some of us) evolutionary direction.

I featured the work, which is being done at Tufts University in the US, in my June 21, 2021 posting, which includes an embedded video,

From a March 31, 2021 news item on ScienceDaily,

Last year, a team of biologists and computer scientists from Tufts University and the University of Vermont (UVM) created novel, tiny self-healing biological machines from frog cells called “Xenobots” that could move around, push a payload, and even exhibit collective behavior in the presence of a swarm of other Xenobots.

Get ready for Xenobots 2.0.

Also from an excerpt in the posting, the team has “created life forms that self-assemble a body from single cells, do not require muscle cells to move, and even demonstrate the capability of recordable memory.”

Memory is key to intelligence and this work introduces the notion of ‘living’ robots which leads to questioning what constitutes life. ‘The Machine That Feels’ is already grappling with far too many questions to address this development but introducing the research here might have laid the groundwork for the next episode, The New Human, telecast on November 26, 2021,

While no one can be certain what will happen, evolutionary biologists and statisticians are observing trends that could mean our future feet only have four toes (so long, pinky toe) or our faces may have new combinations of features. The new humans might be much taller than their parents or grandparents, or have darker hair and eyes.

And while evolution takes a lot of time, we might not have to wait too long for a new version of ourselves.

Technology is redesigning the way we look and function — at a much faster pace than evolution. We are merging with technology more than ever before: our bodies may now have implanted chips, smart limbs, exoskeletons and 3D-printed organs. A revolutionary gene editing technique has given us the power to take evolution into our own hands and alter our own DNA. How long will it be before we are designing our children?

As the story about the xenobots doesn’t say, we could also take the evolution of another species into our hands.

David Suzuki, where are you?

Our programme host, David Suzuki surprised me. I thought that as an environmentalist he’d point out that the huge amounts of computing power needed for artificial intelligence as mentioned in the programme, constitutes an environmental issue. I also would have expected a geneticist like Suzuki might have some concerns with regard to xenobots but perhaps that’s being saved for the next episode (The New Human) of the Nature of Things.

Artificial stupidity

Thanks to Will Knight for introducing me to the term ‘artificial stupidity’. Knight, a senior writer covers artificial intelligence for WIRED magazine. According to its Wikipedia entry,

Artificial stupidity is commonly used as a humorous opposite of the term artificial intelligence (AI), often as a derogatory reference to the inability of AI technology to adequately perform its tasks.[1] However, within the field of computer science, artificial stupidity is also used to refer to a technique of “dumbing down” computer programs in order to deliberately introduce errors in their responses.

Knight was using the term in its humorous, derogatory form.

Finally

The episode certainly got me thinking if not quite in the way producers might have hoped. ‘The Machine That Feels’ is a glossy, pretty well researched piece of infotainment.

To be blunt, I like and have no problems with infotainment but it can be seductive. I found it easier to remember the artificial friends, wife, xenobots, and symphony than the critiques and concerns.

Hopefully, ‘The Machine That Feels’ stimulates more interest in some very important topics. If you missed the telecast, you can catch the episode here.

For anyone curious about predictive policing, which was mentioned in the Ayanna Howard segment, see my November 23, 2017 posting about Vancouver’s plunge into AI and car theft.

*ETA December 6, 2021: One of the first ‘chatterbots’ was ELIZA, a computer programme developed from1964 to 1966. The most famous ELIZA script was DOCTOR, where the programme simulated a therapist. Many early users believed ELIZA understood and could respond as a human would despite Joseph Weizenbaum’s (creator of the programme) insistence otherwise.