Tag Archives: thermal conductivity

Unleashing graphene electronics potential with a trio of 2D nanomaterials

Graphene has excited a great deal of interest, especially with regard to its application in the field of electronics. However, it seems that graphene may need a little help from its friends, tantalum sulfide and boron nitride, according to a July 6, 2016 news item on ScienceDaily,

Graphene has emerged as one of the most promising two-dimensional crystals, but the future of electronics may include two other nanomaterials, according to a new study by researchers at the University of California, Riverside and the University of Georgia.

In research published Monday (July 4 [2016]) in the journal Nature Nanotechnology, the researchers described the integration of three very different two-dimensional (2D) materials to yield a simple, compact, and fast voltage-controlled oscillator (VCO) device. A VCO is an electronic oscillator whose oscillation frequency is controlled by a voltage input.

Titled “An integrated Tantalum Sulfide–Boron Nitride–Graphene Oscillator: A Charge-Density-Wave Device Operating at Room Temperature,” the paper describes the development of the first useful device that exploits the potential of charge-density waves to modulate an electrical current through a 2D material. The new technology could become an ultralow power alternative to conventional silicon-based devices, which are used in thousands of applications from computers to clocks to radios. The thin, flexible nature of the device would make it ideal for use in wearable technologies.

A July 5, 2016 University of California at Riverside (UCR) news release (also on EurekAlert) by Sarah Nightingale, which originated the news item, expands on the theme,

Graphene, a single layer of carbon atoms that exhibits exceptional electrical and thermal conductivities, shows promise as a successor to silicon-based transistors. However, its application has been limited by its inability to function as a semiconductor, which is critical for the ‘on-off’ switching operations performed by electronic components.

To overcome this shortfall, the researchers turned to another 2D nanomaterial, Tantalum Sulfide (TaS2). They showed that voltage-induced changes in the atomic structure of the ‘1T prototype’ of TaS2 enable it to function as an electrical switch at room temperature–a requirement for practical applications.

“There are many charge-density wave materials that have interesting electrical switching properties. However, most of them reveal these properties at very low temperature only. The particular polytype of TaS2 that we used can have abrupt changes in resistance above room temperature. That made a crucial difference,” said Alexander Balandin, UC presidential chair professor of electrical and computer engineering in UCR’s Bourns College of Engineering, who led the research team.

To protect the TaS2 from environmental damage, the researchers coated it with another 2D material, hexagonal boron nitrate, to prevent oxidation. By pairing the boron nitride-capped TaS2 with graphene, the team constructed a three-layer VCO that could pave the way for post-silicon electronics. In the proposed design, graphene functions as an integrated tunable load resistor, which enables precise voltage control of the current and VCO frequency. The prototype UCR devices operated at MHz frequency used in radios, and the extremely fast physical processes that define the device functionality allow for the operation frequency to increase all the way to THz.

Balandin said the integrated system is the first example of a functional voltage-controlled oscillator device comprising 2D materials that operates at room temperature.

“It is difficult to compete with silicon, which has been used and improved for the past 50 years. However, we believe our device shows a unique integration of three very different 2D materials, which utilizes the intrinsic properties of each of these materials. The device can potentially become a low-power alternative to conventional silicon technologies in many different applications,” Balandin said.

The electronic function of graphene envisioned in the proposed 2D device overcomes the problem associated with the absence of the energy band gap, which so far prevented graphene’s use as the transistor channel material. The extremely high thermal conductivity of graphene comes as an additional benefit in the device structure, by facilitating heat removal. The unique heat conduction properties of graphene were experimentally discovered and theoretically explained in 2008 by Balandin’s group at UCR. The Materials Research Society recognized this groundbreaking achievement by awarding Balandin the MRS Medal in 2013.

The Balandin group also demonstrated the first integrated graphene heat spreaders for high-power transistors and light-emitting diodes. “In those applications, graphene was used exclusively as heat conducting material. Its thermal conductivity was the main property. In the present device, we utilize both electrical and thermal conductivity of graphene,” Balandin added.

Here’s a link to and a citation for the paper,

A charge-density-wave oscillator based on an integrated tantalum disulfide–boron nitride–graphene device operating at room temperature by Guanxiong Liu, Bishwajit Debnath, Timothy R. Pope, Tina T. Salguero, Roger K. Lake, & Alexander A. Balandin. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.108 Published online 04 July 2016

This paper is behind a paywall.

Learn to love spiders and their silk as they may help you beat global warming

Most of the research I’ve seen on spider silk has focused on its strength not its thermal conductivity. From the March 5, 2012 news item on Nanowerk,

Xinwei Wang had a hunch that spider webs were worth a much closer look. So he ordered eight spiders – Nephila clavipes, golden silk orbweavers – and put them to work eating crickets and spinning webs in the cages he set up in an Iowa State University greenhouse.

Wang, an associate professor of mechanical engineering at Iowa State, studies thermal conductivity, the ability of materials to conduct heat. He’s been looking for organic materials that can effectively transfer heat. It’s something diamonds, copper and aluminum are very good at; most materials from living things aren’t very good at all. …

What Wang and his research team found was that spider silks – particularly the draglines that anchor webs in place – conduct heat better than most materials, including very good conductors such as silicon, aluminum and pure iron. Spider silk also conducts heat 1,000 times better than woven silkworm silk and 800 times better than other organic tissues.

The March 5, 2012 news release from Iowa State University provides this detail,

The paper [about the discovery,  “New Secrets of Spider Silk: Exceptionally High Thermal Conductivity and its Abnormal Change under Stretching” – has just been published online by the journal Advanced Materials] reports that using laboratory techniques developed by Wang – “this takes time and patience” – spider silk conducts heat at the rate of 416 watts per meter Kelvin. Copper measures 401. And skin tissues measure .6.

“This is very surprising because spider silk is organic material,” Wang said. “For organic material, this is the highest ever. There are only a few materials higher – silver and diamond.”

Even more surprising, he said, is when spider silk is stretched, thermal conductivity also goes up. Wang said stretching spider silk to its 20 percent limit also increases conductivity by 20 percent. Most materials lose thermal conductivity when they’re stretched.

That discovery “opens a door for soft materials to be another option for thermal conductivity tuning,” Wang wrote in the paper.

And that could lead to spider silk helping to create flexible, heat-dissipating parts for electronics, better clothes for hot weather, bandages that don’t trap heat and many other everyday applications.

Here’s a look at one of Wang’s Golden Silk Orbweavers,

Photo courtesy of the Xinwei Wang research group.

Given that global warming is increasingly described as a certainty, (Simon Fraser University [located in Vancouver, Canada] March 4, 2012 news release,

Warming of 2 degrees inevitable over Canada

Even if zero emissions of greenhouse gases were to be achieved, the world’s temperature would continue to rise by about a quarter of a degree over a decade. That’s a best-case scenario, according to a paper co-written by a Simon Fraser University researcher.

New climate change research – Climate response to zeroed emissions of greenhouse gases and aerosols — published in Nature’s online journal, urges the public, governments and industries to wake up to a harsh new reality.

“Let’s be honest, it’s totally unrealistic to believe that we can stop all emissions now,” says Kirsten Zickfeld, an assistant professor of geography at SFU. “Even with aggressive greenhouse gas mitigation, it will be a challenge to keep the projected global rise in temperature under 2 degrees Celsius,” emphasizes Zickfeld.

The geographer wrote the paper with Damon Matthews, a University of Concordia associate professor at the Department of Geography, Planning and Environment.

This discovery about spider silk and its possible applications is very welcome.