Tag Archives: tin

Substituting graphene and other carbon materials for scarce metals

A Sept. 19, 2017 news item on Nanowerk announces a new paper from the Chalmers University of Technology (Sweden), the lead institution for the Graphene Flagship (a 1B Euro 10 year European Commission programme), Note: A link has been removed,

Scarce metals are found in a wide range of everyday objects around us. They are complicated to extract, difficult to recycle and so rare that several of them have become “conflict minerals” which can promote conflicts and oppression. A survey at Chalmers University of Technology now shows that there are potential technology-based solutions that can replace many of the metals with carbon nanomaterials, such as graphene (Journal of Cleaner Production, “Carbon nanomaterials as potential substitutes for scarce metals”).

They can be found in your computer, in your mobile phone, in almost all other electronic equipment and in many of the plastics around you. Society is highly dependent on scarce metals, and this dependence has many disadvantages.

A Sept. 19, 2017 Chalmers University of Technology press release by Ulrika Ernstrom,, which originated the news item, provides more detail about the possibilities,

They can be found in your computer, in your mobile phone, in many of the plastics around you and in almost all electronic equipment. Society is highly dependent on scarce metals, and this dependence has many disadvantages.
Scarce metals such as tin, silver, tungsten and indium are both rare and difficult to extract since the workable concentrations are very small. This ensures the metals are highly sought after – and their extraction is a breeding ground for conflicts, such as in the Democratic Republic of the Congo where they fund armed conflicts.
In addition, they are difficult to recycle profitably since they are often present in small quantities in various components such as electronics.
Rickard Arvidsson and Björn Sandén, researchers in environmental systems analysis at Chalmers University of Technology, have now examined an alternative solution: substituting carbon nanomaterials for the scarce metals. These substances – the best known of which is graphene – are strong materials with good conductivity, like scarce metals.
“Now technology development has allowed us to make greater use of the common element carbon,” says Sandén. “Today there are many new carbon nanomaterials with similar properties to metals. It’s a welcome new track, and it’s important to invest in both the recycling and substitution of scarce metalsfrom now on.”
The Chalmers researchers have studied  the main applications of 14 different metals, and by reviewing patents and scientific literature have investigated the potential for replacing them by carbon nanomaterials. The results provide a unique overview of research and technology development in the field.
According to Arvidsson and Sandén the summary shows that a shift away from the use of scarce metals to carbon nanomaterials is already taking place.
….
“There are potential technology-based solutions for replacing 13 out of the 14 metals by carbon nanomaterials in their most common applications. The technology development is at different stages for different metals and applications, but in some cases such as indium and gallium, the results are very promising,” Arvidsson says.
“This offers hope,” says Sandén. “In the debate on resource constraints, circular economy and society’s handling of materials, the focus has long been on recycling and reuse. Substitution is a potential alternative that has not been explored to the same extent and as the resource issues become more pressing, we now have more tools to work with.”
The research findings were recently published in the Journal of Cleaner Production. Arvidsson and Sandén stress that there are significant potential benefits from reducing the use of scarce metals, and they hope to be able to strengthen the case for more research and development in the field.
“Imagine being able to replace scarce metals with carbon,” Sandén says. “Extracting the carbon from biomass would create a natural cycle.”
“Since carbon is such a common and readily available material, it would also be possible to reduce the conflicts and geopolitical problems associated with these metals,” Arvidsson says.
At the same time they point out that more research is needed in the field in order to deal with any new problems that may arise if the scarce metals are replaced.
“Carbon nanomaterials are only a relatively recent discovery, and so far knowledge is limited about their environmental impact from a life-cycle perspective. But generally there seems to be a potential for a low environmental impact,” Arvidsson says.

FACTS AND MORE INFORMATION

Carbon nanomaterials consist solely or mainly of carbon, and are strong materials with good conductivity. Several scarce metals have similar properties. The metals are found, for example, in cables, thin screens, flame-retardants, corrosion protection and capacitors.
Rickard Arvidsson and Björn Sandén at Chalmers University of Technology have investigated whether the carbon nanomaterials graphene, fullerenes and carbon nanotubes have the potential to replace 14 scarce metals in their main areas of application (see table). They found potential technology-based solutions to replace the metals with carbon nanomaterials for all applications except for gold in jewellery. The metals which we are closest to being able to substitute are indium, gallium, beryllium and silver.

Here’s a link to and a citation for the paper,

Carbon nanomaterials as potential substitutes for scarce metals by Rickard Arvidsson, Björn A. Sandén. Journal of Cleaner Production (0959-6526). Vol. 156 (2017), p. 253-261. DOI: https://doi.org/10.1016/j.jclepro.2017.04.048

This paper appears to be open access.

Scant detail about Sandia Labs’ nanoscientist and federal fraud charges

In US law (which is based on English common law), there is a presumption of innocence and, so far, there is no information about the Jianyu Huang situation other than a listing of the charges against him and a description of his firing from Sandia National Labs in April 2012.

Here’s some information, from the June 6, 2012 article on the Huffington Post,

A former scientist at Sandia National Labs in New Mexico has pleaded not guilty to charges of stealing research to share with China.

Jianyu Huang was arraigned Tuesday on five counts of federal program fraud and one count of false statements. He is accused of embezzling and sharing information from his position with the lab’s Center for Integrated Nanotechnologies since 2009, according to a federal indictment.

While these are serious charges being laid by the government I want to note that governments don’t always get it right. In my May 18, 2012 posting about an upcoming UNESCO meeting in Vancouver, Canada, Memory of the World, I mentioned a rather extraordinary article written by US law professor, Eric Goldman, where he outlines his indictment of the US government case presented against Megaupload and Kim Dotcom. I gather that there are, at the least, irregularities. I should also note that the Canadian government cooperated and participated in this massive ongoing legal action.

Getting back to the Sandia National Labs situation, Lee Rannals at Red Orbit wrote in his (hers?) June 6, 2012 posting,

Sandia National Labs said that he did not have access to classified national security information.The lab said that Huang was fired in April for removing a company-owned laptop from the facility.

Sandia is known for its nuclear research, as well as the disposal of the U.S. nuclear weapons program’s hazardous waste. The company is a subsidiary of Lockheed Martin Corporation.

Huang started working on nanotechnology at a Sandia Labs research center that focuses on nanotechnology five years ago.

Alexander Besant’s June 5, 2012 posting on Global Post adds these details,

The Associated Press reported that Huang claimed that nanotechnology belonging to the United States, which funds the Sandia Labs, was his own and that he shared data with state-run schools in China.

He is also being accused of lying about the fact that he brought a lab-owned laptop to China, KRQE reported.

So if I read this correctly, he was fired for bringing the lab-owned laptop to Chine and now he’s being prosecuted for lying about it (the one count of false statements). Meanwhile, he’s charged with five counts of federal program fraud (sharing research data with colleagues in Chinese state-run schools or saying that it was his own and then sharing the data?).

One note, Huang does have a blog on the iMechanica website. His last post was made on March 25, 2012 where he discussed tin and tin dioxide nanowires.