Tag Archives: transparent wood

Enabling a transparent wood battery that stores heat and regulates indoor temperature with lemons and coconuts

i’ve had transparent wood stories here before but this time it was the lemons and coconuts which captured my attention.

Peter Olsén and Céline Montanari, researchers in the Department of Biocomposites at KTH Royal Institute of Technology in Stockholm, say the new wood composite uses components of lemon and coconuts to both heat and cool homes. (Photo: David Callahan) Courtesy: KTH Royal Institute of Technology

From a March 30, 2023 news item on Nanowerk,

A building material that combines coconuts, lemons and modified wood could one day be enough to heat and cool your home. The three renewable sources provide the key components of a wood composite thermal battery, which was developed by researchers at KTH Royal Institute of Technology in Stockholm.

Researchers reported the development in the scientific journal, Small (“Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood”). Peter Olsén, researcher in the Department of Biocomposites at KTH, says the material is capable of storing both heat and cold. If used in housing construction, the researchers say that 100 kilos of the material can save about 2.5 kWh per day in heating or cooling—given an ambient temperature of 24 °C.

KTH researcher Céline Montanari says that besides sunlight, any heat source can charge the battery. “The key is that the temperature fluctuates around the transition temperature, 24 °C, which can of course be tailored depending on the application and location,” she says.

A March 30, 2023 KTH Royal Institute of Technology press release, which originated the news item, describes the roles that lemons and coconuts play,

The process starts with removing lignin from wood, which creates open pores in the wood cells walls, and removes color. Later the wood structure is filled with a citrus-based molecule—limonene acrylate—and coconut based molecule. Limonene acrylate transforms into a bio-based polymer when heated, restoring the wood’s strength and allowing light to permeate. When this happens the coconut molecule are trapped within the material, enabling the storage and release of energy.

“The elegance is that the coconut molecules can transition from a solid-to-liquid which absorbs energy; or from liquid-to-solid which releases energy, in much the same way that water freezes and melts,” Montanari says. But in the transparent wood, that transition happens at a more comfortable 24C

“Through this transition, we can heat or cool our surroundings, whichever is needed,” Olsén says

Olsén says that potential uses include exterior and interior building material for both transparency and energy saving – in exteriors and interiors. The first application of the product would be for interior spaces to regulate temperatures around the 24C mark to cool and to heat. More study is needed to develop it for exterior use.

And it’s not just for homes or buildings. “Why not as a future material in greenhouses?” he says. “When the sun shines, the wood becomes transparent and stores more energy, while at night it becomes cloudy and releases the heat stored during the day. That would help reduce energy consumption for heating and at the same time provide improved growth.”

A close-up look at the material produced in the study. Courtesy: KTH Royal Institute of Technology

Here’s a link to and a citation for the paper,

Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood by Céline Montanari, Hui Chen, Matilda Lidfeldt, Josefin Gunnarsson, Peter Olsén, Lars A. Berglund. Small Online Version of Record before inclusion in an issue 2301262 DOI: https://doi.org/10.1002/smll.202301262 First published online: 27 March 2023

This paper is open access.

Sunlight makes transparent wood even lighter and stronger

Researchers at the University of Maryland (US) have found a way to make their wood transparent by using sunlight. From a February 2, 2021 news article by Bob Yirka on phys.org (Note: Links have been removed),

A team of researchers at the University of Maryland, has found a new way to make wood transparent. In their paper published in the journal Science Advances, the group describes their process and why they believe it is better than the old process.

The conventional method for making wood transparent involves using chemicals to remove the lignin—a process that takes a long time, produces a lot of liquid waste and results in weaker wood. In this new effort, the researchers have found a way to make wood transparent without having to remove the lignin.

The process involved changing the lignin rather than removing it. The researchers removed lignin molecules that are involved in producing wood color. First, they applied hydrogen peroxide to the wood surface and then exposed the treated wood to UV light (or natural sunlight). The wood was then soaked in ethanol to further clean it. Next, they filled in the pores with clear epoxy to make the wood smooth.

Caption: Solar-assisted large-scale fabrication of transparent wood. (A) Schematic showing the potential large-scale fabrication of transparent wood based on the rotary wood cutting method and the solar-assisted chemical brushing process. (B) The outdoor fabrication of lignin-modified wood with a length of 1 m [9 August 2019 (the summer months) at 13:00 p.m. (solar noon), the Global Solar UV Index (UVI): 7 to 8]. (C) Digital photo of a piece of large transparent wood (400 mm by 110 mm by 1 mm). (D) The energy consumption, chemical cost, and waste emission for the solar-assisted chemical brushing process and NaClO2 solution–based delignification process. (E) A radar plot showing a comparison of the fabrication process for transparent wood. Photo credit: Qinqin Xia, University of Maryland, College Park. [downloaded from https://advances.sciencemag.org/content/7/5/eabd7342]

Bob McDonald in a February 5, 2021 posting on his Canadian Broadcasting Corporation (CBC) Quirks & Quarks blog provides a more detailed description of the new ‘solar-based transparency process’,

Early attempts to make transparent wood involved removing the lignin, but this involved hazardous chemicals, high temperatures and a lot of time, making the product expensive and somewhat brittle. The new technique is so cheap and easy it could literally be done in a backyard.

Starting with planks of wood a metre long and one millimetre thick, the scientists simply brushed on a solution of hydrogen peroxide using an ordinary paint brush. When left in the sun, or under a UV lamp for an hour or so, the peroxide bleached out the brown chromophores but left the lignin intact, so the wood turned white.

Next, they infused the wood with a tough transparent epoxy designed for marine use, which filled in the spaces and pores in the wood and then hardened. This made the white wood transparent.

As window material, it would be much more resistant to accidental breakage. The clear wood is lighter than glass, with better insulating properties, which is important because windows are a major source of heat loss in buildings. It also might take less energy to manufacture clear wood because there are no high temperatures involved.

Many different types of wood, from balsa to oak, can be made transparent, and it doesn’t matter if it is cut along the grain or against it. If the transparent wood is made a little thicker, it would be strong enough to become part of the structure of a building, so there could be entire transparent wooden walls.

Adele Peters in her February 2, 2021 article for Fast Company describes the work in Maryland and includes some information about other innovative and possibly sustainable uses of wood (Note: Links have been removed),

It’s [transparent wood] just one of a number of ways scientists and engineers are rethinking how we can use this renewable resource in construction. Skyscrapers made entirely out of wood are gaining popularity in cities around the world. And scientists recently discovered a technique to grow wood in a lab, opening up the possibility of using wood without having to chop down a forest.

There were three previous posts here about this work at the University of Maryland,

University of Maryland looks into transparent wood May 11, 2016 posting

Transparent wood more efficient than glass in windows? Sept, 8, 2016 posting

Glass-like wood windows protect against UV rays and insulate heat October 21, 2020 posting

I have this posting, which is also from 2016 but features work in Sweden,

Transparent wood instead of glass for window panes? April 1, 2016 posting

Getting back to the latest work from the University of Maryland, here’s a link to and a citation for the paper,

Solar-assisted fabrication of large-scale, patternable transparent wood by Qinqin Xia, Chaoji Chen, Tian Li, Shuaiming He, Jinlong Gao, Xizheng Wang and Liangbing Hu. Science Advances Vol. 7, no. 5, eabd7342 DOI: 10.1126/sciadv.abd7342 Published: 27 Jan 2021

This paper is open access.

One last item, Liangbing Hu has founded a company InventWood for commercializing the work he and his colleagues have done at the University of Maryland.

Glass-like wood windows protect against UV rays and insulate heat

Engineers at the University of Maryland designed a transparent ceiling made of wood that highlights the natural woodgrain pattern. Credit: A. James Clark School of Engineering, University of Maryland [downloaded from https://phys.org/news/2020-08-glass-like-wood-insulates-tough-blocks.html]

An August 7, 2020 news item by Martha Hell on phys.org announces the latest research (links to previous posts about this research at the end of this post) on ‘transparent’ wood from the University of Maryland,

Need light but want privacy? A new type of wood that’s transparent, tough, and beautiful could be the solution. This nature-inspired building material allows light to come through (at about 80%) to fill the room but the material itself is naturally hazy (93%), preventing others from seeing inside.

An August 16, 2020 University of Maryland news release (also on EurekAlert) describes the work in more detail,

Engineers at the A. James Clark School of Engineering at the University of Maryland (UMD) demonstrate in a new study that windows made of transparent wood could provide more even and consistent natural lighting and better energy efficiency than glass

In a paper just published [July 31, 20202] in the peer-reviewed journal Advanced Energy Materials [this seems to be an incorrectly cited journal; I believe it should be Nature Communications as indicated in the phys.org news item], the team, headed by Liangbing Hu of UMD’s Department of Materials Science and Engineering and the Energy Research Center lay out research showing that their transparent wood provides better thermal insulation and lets in nearly as much light as glass, while eliminating glare and providing uniform and consistent indoor lighting. The findings advance earlier published work on their development of transparent wood.

The transparent wood lets through just a little bit less light than glass, but a lot less heat, said Tian Li, the lead author of the new study. “It is very transparent, but still allows for a little bit of privacy because it is not completely see-through. We also learned that the channels in the wood transmit light with wavelengths around the range of the wavelengths of visible light, but that it blocks the wavelengths that carry mostly heat,” said Li.

The team’s findings were derived, in part, from tests on tiny model house with a transparent wood panel in the ceiling that the team built. The tests showed that the light was more evenly distributed around a space with a transparent wood roof than a glass roof.

The channels in the wood direct visible light straight through the material, but the cell structure that still remains bounces the light around just a little bit, a property called haze. This means the light does not shine directly into your eyes, making it more comfortable to look at. The team photographed the transparent wood’s cell structure in the University of Maryland’s Advanced Imaging and Microscopy (AIM) Lab.

Transparent wood still has all the cell structures that comprised the original piece of wood. The wood is cut against the grain, so that the channels that drew water and nutrients up from the roots lie along the shortest dimension of the window. The new transparent wood uses theses natural channels in wood to guide the sunlight through the wood.

As the sun passes over a house with glass windows, the angle at which light shines through the glass changes as the sun moves. With windows or panels made of transparent wood instead of glass, as the sun moves across the sky, the channels in the wood direct the sunlight in the same way every time.

“This means your cat would not have to get up out of its nice patch of sunlight every few minutes and move over,” Li said. “The sunlight would stay in the same place. Also, the room would be more equally lighted at all times.”

Working with transparent wood is similar to working with natural wood, the researchers said. However, their transparent wood is waterproof due to its polymer component. It also is much less breakable than glass because the cell structure inside resists shattering.

The research team has recently patented their process for making transparent wood. The process starts with bleaching from the wood all of the lignin, which is a component in the wood that makes it both brown and strong. The wood is then soaked in epoxy, which adds strength back in and also makes the wood clearer. The team has used tiny squares of linden wood about 2 cm x 2 cm, but the wood can be any size, the researchers said.

Here’s a link to and a citation for the July 31, 2020 paper,

Scalable aesthetic transparent wood for energy efficient buildings by Ruiyu Mi, Chaoji Chen, Tobias Keplinger, Yong Pei, Shuaiming He, Dapeng Liu, Jianguo Li, Jiaqi Dai, Emily Hitz, Bao Yang, Ingo Burgert & Liangbing Hu. Nature Communications volume 11, Article number: 3836 (2020) DOI: https://doi.org/10.1038/s41467-020-17513-w Published 31 July 2020

This paper is open access.

There were two previous posts about this work at the University of Maryland,

University of Maryland looks into transparent wood May 11, 2016 posting

Transparent wood more efficient than glass in windows? Sept, 8, 2016 posting

I also have this posting, which is also from 2016 but features work in Sweden,

Transparent wood instead of glass for window panes? April 1, 2016 posting

I seem to have stumbled across a number of transparent wood stories in 2016. Hmm I think I need to spend more time searching previous titles for my postings so I didn’t end up with too many that sound similar.

Transparent wood more efficient than glass in windows?

University of Maryland researchers are suggesting that transparent wood could be more energy efficient than glass. An Aug. 16, 2016 news item on ScienceDaily describes the research,

Engineers at the A. James Clark School of Engineering at the University of Maryland (UMD) demonstrate in a new study that windows made of transparent wood could provide more even and consistent natural lighting and better energy efficiency than glass.

An Aug. 16, 2016 University of Maryland news release (also on EurekAlert) which originated the news item, explains further,

In a paper just published in the peer-reviewed journal Advanced Energy Materials, the team, headed by Liangbing Hu of UMD’s Department of Materials Science and Engineering and the Energy Research Center lay out research showing that their transparent wood provides better thermal insulation and lets in nearly as much light as glass, while eliminating glare and providing uniform and consistent indoor lighting. The findings advance earlier published work on their development of transparent wood.

The transparent wood lets through just a little bit less light than glass, but a lot less heat, said Tian Li, the lead author of the new study. “It is very transparent, but still allows for a little bit of privacy because it is not completely see-through. We also learned that the channels in the wood transmit light with wavelengths around the range of the wavelengths of visible light, but that it blocks the wavelengths that carry mostly heat,” said Li.

The team’s findings were derived, in part, from tests on tiny model house with a transparent wood panel in the ceiling that the team built. The tests showed that the light was more evenly distributed around a space with a transparent wood roof than a glass roof.

The channels in the wood direct visible light straight through the material, but the cell structure that still remains bounces the light around just a little bit, a property called haze. This means the light does not shine directly into your eyes, making it more comfortable to look at. The team photographed the transparent wood’s cell structure in the University of Maryland’s Advanced Imaging and Microscopy (AIM) Lab.

Transparent wood still has all the cell structures that comprised the original piece of wood. The wood is cut against the grain, so that the channels that drew water and nutrients up from the roots lie along the shortest dimension of the window. The new transparent wood uses theses natural channels in wood to guide the sunlight through the wood.

As the sun passes over a house with glass windows, the angle at which light shines through the glass changes as the sun moves. With windows or panels made of transparent wood instead of glass, as the sun moves across the sky, the channels in the wood direct the sunlight in the same way every time.

“This means your cat would not have to get up out of its nice patch of sunlight every few minutes and move over,” Li said. “The sunlight would stay in the same place. Also, the room would be more equally lighted at all times.”

Working with transparent wood is similar to working with natural wood, the researchers said. However, their transparent wood is waterproof due to its polymer component. It also is much less breakable than glass because the cell structure inside resists shattering.

The research team has recently patented their process for making transparent wood. The process starts with bleaching from the wood all of the lignin, which is a component in the wood that makes it both brown and strong. The wood is then soaked in epoxy, which adds strength back in and also makes the wood clearer. The team has used tiny squares of linden wood about 2 cm x 2 cm, but the wood can be any size, the researchers said.

Here’s an image illustrating the research,

Caption: This is a wood composite as an energy efficient building material: Guided sunlight transmission and effective thermal insulation. Credit: University of Maryland and Advanced Energy Materials

Caption: This is a wood composite as an energy efficient building material: Guided sunlight transmission and effective thermal insulation. Credit: University of Maryland and Advanced Energy Materials

I have written about transparent wood twice before. There’s this April 1, 2016 posting about the work at the KTH Institute (Sweden) and a May 11, 2016 posting about some earlier work at the University of Maryland.

Here’s a link and a citation for the latest from the University of Maryland,

Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation by Tian Li, Mingwei Zhu, Zhi Yang, Jianwei Song, Jiaqi Dai, Yonggang Yao, Wei Luo, Glenn Pastel, Bao Yang, and Liangbing Hu. Advanced Energy Materials Version of Record online: 11 AUG 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

University of Maryland looks into transparent wood

Is transparent wood becoming the material du jour? Following on the heels of my April 1, 2016 post about transparent wood and the KTH Royal Institute of Technology (Sweden), there’s a May 6, 2016 news item on ScienceDaily about the material and a team at the University of Maryland,

Researchers at the University of Maryland have made a block of linden wood transparent, which they say will be useful in fancy building materials and in light-based electronics systems.

Materials scientist Liangbing Hu and his team at the University of Maryland, College Park, have removed the molecule in wood, lignin, that makes it rigid and dark in color. They left behind the colorless cellulose cell structures, filled them with epoxy, and came up with a version of the wood that is mostly see-thru.

I wonder if this is the type of material that might be used in structures like the proposed Center of Nanoscience and Nanotechnology at Tel Aviv University building (my May 9, 2016 posting about a building design that features no doors or windows)?

Regardless, there’s more about this latest transparent wood in a May 5, 2016 Tufts University news release, which originated the news item,

Remember “xylem” and “phloem” from grade-school science class? These structures pass water and nutrients up and down the tree. Hu and his colleagues see these as vertically aligned channels in the wood, a naturally-grown structure that can be used to pass light along, after the wood has been treated.

The resulting three-inch block of wood had both high transparency—the quality of being see-thru—and high haze—the quality of scattering light. This would be useful, said Hu, in making devices comfortable to look at. It would also help solar cells trap light; light could easily enter through the transparent function, but the high haze would keep the light bouncing around near where it would be absorbed by the solar panel.

They compared how the materials performed and how light worked its way through the wood when they sliced it two ways: one with the grain of the wood, so that the channels passed through the longest dimension of the block. And they also tried slicing it against the grain, so that the channels passed through the shortest dimension of the block.

The short channel wood proved slightly stronger and a little less brittle. But though the natural component making the wood strong had been removed, the addition of the epoxy made the wood four to six times tougher than the untreated version.

Then they investigated how the different directions of the wood affected the way the light passed through it. When laid down on top of a grid, both kinds of wood showed the lines clearly. When lifted just a touch above the grid, the long-channel wood still showed the grid, just a little bit more blurry. But the short channel wood, when lifted those same few millimeters, made the grid completely invisible.

Here’s a link to and a citation for the paper,

Highly Anisotropic, Highly Transparent Wood Composites by Mingwei Zhu, Jianwei Song, Tian Li, Amy Gong, Yanbin Wang, Jiaqi Dai, Yonggang Yao, Wei Luo, Doug Henderson, and Liangbing Hu. Advanced Materials DOI: 10.1002/adma.201600427 Article first published online: 4 MAY 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Transparent wood instead of glass for window panes?

The transparent wood is made by removing the lignin in the wood veneer. (Photo: Peter Larsson

The transparent wood is made by removing the lignin in the wood veneer. (Photo: Peter Larsson

Not quite ready as a replacement for some types of glass window panes, nonetheless, transparent (more like translucent) wood is an impressive achievement. According to a March 30, 2016 news item on ScienceDaily size is what makes this piece of transparent wood newsworthy,

Windows and solar panels in the future could be made from one of the best — and cheapest — construction materials known: wood. Researchers at Stockholm’s KTH Royal Institute of Technology [Sweden] have developed a new transparent wood material that’s suitable for mass production.

Lars Berglund, a professor at Wallenberg Wood Science Center at KTH, says that while optically transparent wood has been developed for microscopic samples in the study of wood anatomy, the KTH project introduces a way to use the material on a large scale. …

A March 31 (?), 2016 KTH Institute of Technology press release, which originated the news item, provides more detail,

“Transparent wood is a good material for solar cells, since it’s a low-cost, readily available and renewable resource,” Berglund says. “This becomes particularly important in covering large surfaces with solar cells.”

Berglund says transparent wood panels can also be used for windows, and semitransparent facades, when the idea is to let light in but maintain privacy.

The optically transparent wood is a type of wood veneer in which the lignin, a component of the cell walls, is removed chemically.

“When the lignin is removed, the wood becomes beautifully white. But because wood isn’t not naturally transparent, we achieve that effect with some nanoscale tailoring,” he says.

The white porous veneer substrate is impregnated with a transparent polymer and the optical properties of the two are then matched, he says.

“No one has previously considered the possibility of creating larger transparent structures for use as solar cells and in buildings,” he says

Among the work to be done next is enhancing the transparency of the material and scaling up the manufacturing process, Berglund says.

“We also intend to work further with different types of wood,” he adds.

“Wood is by far the most used bio-based material in buildings. It’s attractive that the material comes from renewable sources. It also offers excellent mechanical properties, including strength, toughness, low density and low thermal conductivity.”

The American Chemical Society has a March 30, 2016 news release about the KTH achievement on EurekAlert  highlighting another potential use for transparent wood,

When it comes to indoor lighting, nothing beats the sun’s rays streaming in through windows. Soon, that natural light could be shining through walls, too. Scientists have developed transparent wood that could be used in building materials and could help home and building owners save money on their artificial lighting costs. …

Homeowners often search for ways to brighten up their living space. They opt for light-colored paints, mirrors and lots of lamps and ceiling lights. But if the walls themselves were transparent, this would reduce the need for artificial lighting — and the associated energy costs. Recent work on making transparent paper from wood has led to the potential for making similar but stronger materials. Lars Berglund and colleagues wanted to pursue this possibility.

Here’s a link to and a citation for the paper,

Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance by Yuanyuan Li, Qiliang Fu, Shun Yu, Min Yan, and Lars Berglund. Biomacromolecules, Article ASAP DOI: 10.1021/acs.biomac.6b00145 Publication Date (Web): March 4, 2016

Copyright © 2016 American Chemical Society

This paper appears to be open access.