Tag Archives: TRIUMF

2015 Canadian federal budget and science

Think of this post as a digest of responses to and analyses of the ‘science component’ of the Canadian federal government’s 2015 budget announcement made on April 21, 2015 by Minister of Finance, Joe Oliver. First off the mark, the Canadian Science Policy Centre (CSPC) has featured some opinions about the budget and its impact on Canadian science in an April 27, 2015 posting,

Jim Woodgett
Director, Lunenfeld-Tanenbaum Research Institute of Sinai Health System

Where’s the Science Beef in Canadian Budget 2015?

Andrew Casey
President and CEO, BIOTECanada

Budget 2015: With the fiscal balance restored where to next?

Russ Roberts
Senior Vice President – Tax & Finance, CATA Alliance

Opinion on 2015 Federal Budget

Ron Freeman
CEO of Innovation Atlas Inc. and Research Infosource Inc. formerly co-publisher of RE$EARCH MONEY and co-founder of The Impact Group

Workman-Like Budget Preserves Key National Programs

Paul Davidson
President, Universities Canada

A Reality Check on Budget 2015

Dr. Kamiel Gabriel
Associate Provost of Research and Graduate Programs at the University of Ontario Institute of Technology (UOIT), Science Adviser and Assistant Deputy Minister (ADM) of Research at the Ontario Ministry of Research & Innovation

The 2015 Federal Budget Targets Key Segments of Voters

I suggest starting with Woodgett’s piece as he points out something none of the others who chose to comment on the amount of money dedicated to the tricouncil funding agencies (Canadian Institutes of Health Research [CIHR], Natural Sciences and Engineering Research Council [NSERC], and Social Sciences and Humanities Research Council [SSHRC]) seemed to have noticed or deemed important,

The primary source of science operating funds are provided by the tricouncils, CIHR/NSERC and SSHRC, which, when indirect costs and other flow through dollars (e.g. CRCs) are included, accounts for about $2.5 billion in annual funding. There are no new dollars added to the tricouncil budgets this year (2015/16) but there is a modest $46 million to be added in 2016/17 – $15 million to CIHR and NSERC, $7.5 million to SSHRC and the rest in indirects. [emphases mine] This new money, though, is largely ear-marked for new initiatives, such as the CIHR Strategy on Patient Oriented Research ($13 million) and an anti-microbial resistant infection program ($2 million). Likewise for NSERC and SSHRC although NSERC enjoys around $16 million relief in not needing to support industrial postgraduate scholarships as this responsibility moves to MITACS with no funding loss at NSERC. Alex Usher of Higher Education Strategy Associates, estimates that, taking inflation into account, tricouncil funding will be down 9% since 2008. [emphasis mine] It is hardly surprising that funding applications to these agencies are under enormous competitive pressure. At CIHR, the last open operating grant competition yielded unprecedented low success rates of ~14% along with across-the-board budget cuts of grants that were funded of 26%. This agency is in year 1 of major program reforms and has very little wiggle-room with its frozen budget.

To be fair, there are sources other than the tricouncil for science funding although their mandate is for ‘basic’ science, more or less. Over the last few years, there’s been a greater emphasis on tricouncil funding that produces economic results and this is in line international trends.

Getting back to the CSPC’s opinions, Davidson’s piece, notes some of that additional funding,

With $1.33 billion earmarked for the Canada Foundation for Innovation [CFI], Budget 2015 marks the largest single announcement of Canadian research infrastructure funding. This is something the community prioritized, given the need for state-of-the-art equipment, labs, digital tools and high-speed technology to conduct, partner and share research results. This renewed commitment to CFI builds on the globally competitive research infrastructure that Canadians have built over the last 15 years and enables our researchers to collaborate with the very best in the world. Its benefits will be seen in universities across the country and across disciplines. Key research infrastructure investments – from digital to major science infrastructure – support the broad spectrum of university research, from theoretical and discovery to pre-competitive and applied.

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government.

Another agency which seems to have received its funding directly from the federal government is the Council of Canadian Academies (CCA), From an April 22, 2015 news release,

The Council of Canadian Academies welcomes the federal government’s announcement of new funding for in-depth, authoritative, evidence-based assessments. Economic Action Plan 2015 allocated $15 million over five years [$3M per year] for the Council of Canadian Academies.

“This is welcome news for the Council and we would like to thank the Government for this commitment. Over the past 10 years the Council has worked diligently to produce high quality reports that support policy and decision-making in numerous areas,” said Janet Bax, Interim President. “We appreciate the support from Minister Holder and his predecessors, Minsters Goodyear and Rickford, for ensuring meaningful questions have been referred to the Council for assessment.” [For anyone unfamiliar with the Canadian science minister scene, Ed Holder, current Minister of State for Science and Technology, and previous Conservative government ministers, Greg Rickford and Gary Goodyear]

As of March 31st, 2015 the Council has published 31 reports on topics as diverse as business innovation, the future of Canadian policing models, and improving medicines for children. The Council has worked with over 800 expert volunteers from across Canada and abroad. These individuals have given generously of their time and as a result more than $16 million has been leveraged in volunteer support. The Council’s work has been used in many ways and had an impact on national policy agendas and strategies, research programs, and supported stakeholders and industry groups with forward looking action plans.

“On behalf of the Board of Governors I would like to extend our thanks to the Government,” said Margaret Bloodworth, Chair of the Board of Governors.  “The Board is now well positioned to consider future strategic directions for the organization and how best to further expand on the Council’s client base.”

The CCA news is one of the few item about social science funding, most observers such as Ivan Semeniuk in an April 27, 2015 article for the Globe and Mail, are largely focused on the other sciences,

Last year [2014], that funding [for the tricouncil agencies] amounted to about$2.7-billion, and this year’s budget maintains that. Because of inflation and increasing competition, that is actually a tightening of resources for rank-and-file scientists at Canada’s universities and hospitals. At the same time, those institutions are vying for a share of a $1.5-billion pot of money called the Canada First Research Excellence Fund, which the government unveiled last year and is aimed at helping push selected projects to a globally competitive level.

“This is all about creating an environment where our research community can grow,” Ed Holder, Minister of State for Science and Technology, told The Globe and Mail.

One extra bonus for science in this year’s budget is a $243.5-million commitment to secure Canada’s partnership in the Thirty Meter Telescope, a huge international observatory that is slated for construction on a Hawaiian mountain top. Given its high price-tag, many thought it unlikely that the Harper government would go for the project. In the end, the telescope likely benefited from the fact that had the Canada committed less money, most of the economic returns associated with building it would flow elsewhere.

The budget also reflects the Harper government’s preference for tying funding to partnerships with industry. A promised increase of $46-million for the granting councils next year will be largely for spurring collaborations between academic researchers and industrial partners rather than for basic research.

Whether or not science becomes an issue in the upcoming election campaign, some research advocates say the budget shows that the government’s approach to science is still too narrow. While it renews necessary commitments to research infrastructure, they fear not enough money will be left for people doing the kind of work that expands knowledge but does not always produce an immediate economic return.

An independent analysis of the 2015 budget prepared by Higher Education Strategy Associates, a Toronto based consulting firm, shows that when inflation is factored in, the money available for researchers through the granting councils has been in decline since 2009.

Canadian scientists are the not only ones feeling a pinch. Neal V. Patel’s April 27, 2015 article (originally published on Wired) on the Slate website discusses US government funding in an attempt to contextualize science research crowdfunding (Note: A link has been removed),

In the U.S., most scientific funding comes from the government, distributed in grants awarded by an assortment of federal science, health, and defense agencies. So it’s a bit disconcerting that some scientists find it necessary to fund their research the same way dudebros raise money for a potato salad. Does that migration suggest the current grant system is broken? If it is, how can we ensure that funding goes to legitimate science working toward meaningful discoveries?

On its own, the fact that scientists are seeking new sources of funding isn’t so weird. In the view of David Kaiser, a science historian at MIT, crowdfunding is simply the latest “pendulum swing” in how scientists and research institutions fund their work. Once upon a time, research at MIT and other universities was funded primarily by student tuition and private philanthropists. In 1919, however, with philanthropic investment drying up, MIT launched an ambitious plan that allowed local companies to sponsor specific labs and projects.

Critics complained the university had allowed corporate interests to dig their claws into scientific endeavors and befoul intellectual autonomy. (Sound familiar?) But once WWII began, the U.S. government became a force for funding, giving huge wartime grants to research groups nationwide. Federal patronage continued expanding in the decades after the war.

Seventy years later, that trend has reversed: As the federal budget shrinks, government investment in scientific research has reached new lows. The conventional models for federal grants, explains University of Iowa immunologist Gail Bishop, “were designed to work such that 25 to 30 percent of studies were funded. Now it’s around 10 percent.”

I’m not sure how to interpret the Canadian situation in light of other jurisdictions. It seems clear that within the Canadian context for government science funding that research funding is on a downward trend and has been going down for a few years (my June 2, 2014 posting). That said, we have another problem and that’s industrial research and development funding (my Oct. 30, 2013 posting about the 2013 OECD scorecard for science and technology; Note: the scorecard is biannual and should be issued again in 2015). Businesses don’t pay for research in Canada and it appears the Conservative and previous governments have not been successful in reversing that situation even marginally.

Medical isotope team at TRIUMF (Canada’s national laboratory for particle and nuclear physics) wins award

I’ve written a few times about the development of a new means for producing medical isotopes that does not require nuclear materials. (my June 10, 2014 posting and my June 9, 2013 posting,) The breakthrough was made at TRIUMF, Canada’s national laboratory for particle and nuclear physics, which is located in Vancouver, and the team which made the breakthrough is being honoured. From a Feb. 17, 2015 TRIUMF news release,

For their outstanding teamwork in realizing a solution for safe and reliable isotope production for hospitals in Canada,interdisciplinary research team CycloMed99 will be receiving a prestigious national award at a ceremony in Ottawa today [Feb. 17, 2015]. The Honourable David Johnston, Governor General of Canada, will present the NSERC  [Natural Sciences and Engineering Research Council of Canada] Brockhouse Canada Prize for Interdisciplinary Research in Science and Engineering to the team in recognition of their seamless teamwork and successes.

Drawing from expertise in physics, chemistry, and nuclear medicine, the team set out five years ago to develop a reliable, alternative means of production for a key medical isotope in order to eliminate the threat of a supply shortage – a catastrophic healthcare crisis for patients around the world. Technetium-99m (Tc-99m) is the world standard for medical imaging to diagnose cancer and heart disease. Every day, 5,000 medical procedures in
Canada and 70,000 daily worldwide depend on this isotope. With funding support from NSERC, CIHR and Natural Resources Canada, the team developed technology that uses medical cyclotrons already installed and operational in major hospitals across Canada to produce enough Tc-99m on a daily basis.

This innovation is safer and more environmentally friendly than current technology because it eliminates the need for highly enriched uranium, also avoiding the generation
of highly radioactive waste. Canada’s healthcare system would save money by producing isotopes locally under a full-cost recovery model.

The project resulted in over a dozen scientific publications, several provisional patents and a training opportunity for more than 175 individuals.

Now, the research team is focused on working with the world’s major cyclotron manufacturers to add factory-supported Tc-99m production capability to their existing product lines so the technology will become standard in future machines.

CycloMed99 is also working with a Canadian start-up company to license, transfer and sell this technology around the world. This will allow hospitals and companies with cyclotrons to retrofit their existing infrastructure with a Made in Canada solution to produce this valuable material.

Congratulations to the CycloMed99 team, recipients of the Brockhouse Canada Prize:

• Dr. Paul Schaffer, a chemist by training and Division Head, Nuclear Medicine at TRIUMF; Adjunct Professor, Dept. of Chemistry at Simon Fraser University; and Professor, Dept. of Radiology at the University of British Columbia (UBC);

• Dr. François Bénard, a clinician by training and BC Leadership Chair in Functional Cancer Imaging at the BC Cancer Agency; and Professor, Dept. of Radiology at UBC;

• Dr. Anna Celler, a medical physicist by training and Professor, Dept. of Radiology at UBC;

• Dr. Michael Kovacs, a chemist by training; PET Radiochemistry Facility Imaging Scientist at Lawson Health Research Institute; Associate Professor at Western University;

• Dr. Thomas J. Ruth, a nuclear chemist by training and researcher emeritus at TRIUMF; and Professor emeritus at UBC, and;

• Dr. John Valliant, a chemist by training and Scientific Director and CEO of the Centre for Probe Development and Commercialization; and Professor at McMaster University.

There’s more information about TRIUMF and the business aspect of this breakthrough in a Jan. 16, 2015 article by Tyler Orton for Business in Vancouver.

Quantum; the dance performance about physics in Vancouver, Canada (2 of 2)

Gilles Jobin kindly made time to talk about his arts residency at CERN (European Particle Physics Laboratory) prior to the performances of Quantum (a dance piece resulting from the residency) from Oct. 16 -18, 2014 at Vancouver’s Dance Centre.

Jobin was the first individual to be selected as an artist-in-residence for three months in the CERN/Geneva programme (there is another artist-in-residence programme at the laboratory which is the CERN/Ars Electronica programme). Both these artist-in-residence programmes were announced in the same year, 2011. (You can find out more about the CERN artist-in-residence programmes on the Collide@CERN webpage,

As a main strategy of CERN’s Cultural Policy for Engaging with the Arts, Collide@CERN is a 3-year artist’s residency programme initiated by Arts@CERN in 2011.

By bringing world-class artists and scientists together in a free exchange of ideas, the Collide@CERN residency programme explores elements even more elusive than the Higgs boson: human ingenuity, creativity and imagination.

See below for more information about the Collide@CERN artist residency programmes:

Collide@CERN Geneva Residency

Prix Ars Electronica Collide@CERN Residency

The Collide@CERN prize – an open call to artists working in different art forms to win a fully funded residency – will be awarded annually in two strands (Collide@CERN Geneva and Prix Ars Electronica Collide@CERN) until 2013. It comprises prize money and a residency grant for up to 3 months at CERN.

The winning artists will interact and engage with CERN scientists in order to take their artistic work to new creative dimensions.

The awards are made following two annual international open calls and the jury comprises the cultural partners as well as representatives from Arts@CERN, including scientists.

Planned engagement with artists at CERN is a relatively new concept according to an August 4, 2011 CERN press release,

Today CERN1 launches its cultural policy for engaging with the arts. Called ‘Great Arts for Great Science’, this new cultural policy has a central strategy – a selection process for arts engagement at the level of one of the world’s leading research organizations.

“This puts CERN’s engagement with the arts on a similar level as the excellence of its science,” said Ariane Koek, CERN’s cultural specialist.

CERN’s newly appointed Cultural Board for the Arts will be the advisers and guardians of quality. It is made up of renowned cultural leaders in the arts from CERN’s host-state countries: Beatrix Ruf, Director of the Kunsthalle Zurich; Serge Dorny, Director General of the Lyon Opera House; Franck Madlener, Director of the music institute IRCAM in Paris. Geneva and CERN are represented by Christoph Bollman of ArtbyGenève and Michael Doser, an antimatter scientist. Membership of the board is an honorary position that will change every three years.

The Cultural Board will select one or two art projects a year to receive a CERN letter of approval, enabling these projects to seek external funding for their particle-physics inspired work. This will also build up an international portfolio of CERN-inspired work over the years to come, in conjunction with the Collide@CERN (link sends e-mail) Artists Residency Programme, details of which will be announced in the coming month.

To date, Jobin is the only choreographer to become, so to speak, a member of the CERN community. It was a position that was treated like a job. Jobin went to his office at CERN every day for three months to research particle physics. He had two science advisors, Nicholas Chanon and Michael Doser to help him gain an understanding of the physics being studied in the facility. Here’s Jobin describing his first experiences at CERN (from Jobin’s Collide Nov. 13, 2012 posting),

When I first arrived at Cern, I was captivated by the place and overwhelmed by the hugeness of the subject: Partical [sic] physics… And I had some serious catch up to do… Impressed by the two introduction days in which I had the opportunity to meet many different scientists, Ariane Koeck told me “not to panic” and “to spend my first month following my instinct and not my head…”. …

I found out about the 4 fundamental forces and the fact that gravity was the weakest of all the forces. For a contemporary dancer formed basically around the question of gravity and “groundness” that came as a total shock! I was not a “pile of stuff”, but particles bound together by the strong force and “floating” on the surface of the earth… Me, the earth, you readers, the LHC flying at incredible speed through space, without any of us, (including the physicists!) noticing anything…  Stardust flying into space… I was baffled…

Jobin was required deliver two public lectures, one at the beginning of his residency and the other at the end, as well as, a series of ‘interventions’. He instituted four ‘interventions’, one each in CERN’s library, data centre, anti-matter hall, and cafeteria. Here’s an image and a description of what Jobin was attempting with his library intervention (from his Nov. 13, 2012 posting),

CERN library dance intervention Credit: Gilles Jobin

CERN library dance intervention Credit: Gilles Jobin

 My idea was to “melt” our bodies into the timeline of the library. Like time chameleons, we were to adapt our movements and presence to the quiet and studious atmosphere of the library and be practically unnoticed. My postulate was to imagine that the perception of time is relative; there was a special texture to “time” inside the library. How long is an afternoon in a library? Never ending or passing by too quickly? It is a shared space, with the unique density you can feel in studious atmosphere and its user’s different virtual timelines. We melted into the element of the library and as we guessed, our “unusual” presence and actions did not create conflicts with our surroundings and the students at work. It was a bit like entering slowly into water and becoming part of the element without disturbing its balance. The time hypothesis worked… I wanted to do more site specific interventions in Cern because I was learning things differently. Some understanding was going through my body. Being in action into the labs…

It was only after the residency was completed that he started work on Quantum (producing a dance piece was not a requirement of the residency). After the residency, he did bring his science advisors, Chanon and Doser to his studio and brought his studio to CERN. Jobin managed to get rehearsal time in one of the halls that is 100 metres directly above the large hadron collider (LHC) during the time period when scientists were working to confirm the existence of the Higgs Boson). There were a number of announcements ‘confirming’ the Higgs. They started in July 2012 and continued, as scientists refined their tests, to March 2013 (Wikipedia entry)  when a definitive statement was issued. The definitive statement was recently followed with more confirmation as a June, 25, 2014 article by Amir Aczel for Discover declares Confirmed: That Was Definitely the Higgs Boson Found at LHC [large hadron collider].

As scientists continue to check and doublecheck, Jobin presented Quantum in October 2013 for the first time in public, fittingly, at CERN (from Jobin’s Oct. 3, 2013 blog posting),

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

Jobin was greatly influenced by encounters at CERN with Julius von Bismarck who won the 2012 Prix Ars Electronica Collide@CERN Residency and with his science advisors, Dosen and Chanon. Surprisingly, Jobin was also deeply influenced by Richard Feynman (American physicist; 1918 – 1988). “I loved his approach and his humour,” says Jobin while referring to a book Feynman wrote, then adding,  “I used Feynman diagrams, learning to draw them for my research and for my choreographic work on Quantum.”

For those unfamiliar with Feynman diagrams, from the Wikipedia entry (Note: Links have been removed),

In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions describing the behavior of subatomic particles. The scheme is named for its inventor, American physicist Richard Feynman, and was first introduced in 1948. The interaction of sub-atomic particles can be complex and difficult to understand intuitively, and the Feynman diagrams allow for a simple visualization of what would otherwise be a rather arcane and abstract formula.

There’s also an engaging Feb. 14, 2010 post by Flip Tanedo on Quantum Diaries with this title, Let’s draw Feynman diagrams! and there’s this paper, by David Kaiser on the Massachusetts Institute of Technology website, Physics and Feynman’s Diagrams; In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics. In the spirit of Richard Feynman, both the Tanedo post and Kaiser paper are quite readable. Also, here’s an example (simplified) of what a diagram (from the Quantum Diaries website) can look like,

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

Getting back to Quantum (dance), Jobin describes this choreography as a type of collaboration where the dancers have responsibility for the overall look and feel of the piece. (For more details, Jobin describes his ‘momement generators’ in the radio interview embedded in part 1 of this piece on Quantum.)

In common with most contemporary dance pieces, there is no narrative structure or narrative element to the piece although Jobin does note that there is one bit that could be described as a ‘Higgs moment’ where a dancer is held still by his or her feet, signifying the Higgs boson giving mass to the universe.

As to why Vancouver, Canada is being treated to a performance of Quantum, Jobin has this to say, “When I knew the company was traveling to New York City and then San Francisco, I contacted my friend and colleague, Mirna Zagar, who I met at a Croatian Dance Week Festival that she founded and produces every year.”  She’s also the executive director for Vancouver’s Dance Centre. “After that it was easy.”

Performances are Oct. 16 – 18, 2014 at 8 pm with a Post-show artist talkback on October 17, 2014.

Compagnie Gilles Jobin

$30/$22 students, seniors, CADA members/$20 Dance Centre members
Buy tickets online or call Tickets Tonight: 604.684.2787 (service charges apply to telephone bookings)

You can find part 1 of this piece about Quantum in my Oct. 15, 2014 posting. which includes a video, a listing of the rest of the 2014 tour stops, a link to an interview featuring Jobin and his science advisor, Michael Doser, on a US radio show, and more.

Finally, company dancers are posting video interviews (the What’s Up project mentioned in part 1) with dancers they meet in the cities where the tour is stopping will be looking for someone or multiple someones in Vancouver. These are random acts of interviewing within the context of the city’s dance community.

Vancouver’s Georgia Straight has featured an Oct. 15, 2014 article by Janet Smith about Jobin and his particle physics inspiration for Quantum.

The Higgs boson on its own has inspired other creativity as noted in my Aug. 1, 2012 posting (Playing and singing the Higgs Boson).

As noted in my Oct. 8, 2013 post, Peter Higgs (UK) after whom the particle was named  and François Englert (Belgium) were both awarded the 2013 Nobel Prize in Physics for their contributions to the theory of the Higgs boson and its role in the universe.

Quantum; an upcoming dance performance in Vancouver, Canada (1 of 2)

Oct. 16 – 18, 2014 are the Vancouver (Canada) dates when you can catch Compagnie Gilles Jobin performing its piece, Quantum, based on choreographer Gilles Jobin’s residency CERN (Europe’s particle physics laboratory). The Vancouver stop is part of a world tour which seems to have started in New York City (US) and San Francisco (US).

News flash: There is a special lecture by Gilles Jobin at TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics at 11 am on Oct. 15, 2014 in the auditorium. Instructions for getting to TRIUMF can be found here.

Back to the tour, here’s what the dance company has planned for the rest of October and November (Chile is Chili, Brazil is Brésil, Switzerland is Suisse and Peru is Pérou in French), from the gillesjobin.com Tour webpage,

– 21 octobre
QUANTUM
Festival Danzalborde – Centro Cultural Matucana 100 – Santiago de Chile – Chili

– 23 octobre
QUANTUM
Festival Danzalborde – Parque Cultural de Valparaiso, Valparaiso – Chili

– 26 octobre
QUANTUM
Bienal Internacional de dança do Ceará – Fortaleza – Brésil

– 29 et 30 octobre
En collaboration avec swissnex Brésil au Forum Internacional de dança FID, Centro Cultural Banco do Brasil – Belo Horizonte – Brésil

– 2 novembre
En collaboration avec swissnex Brésil au Festival Panorama, Teatro Carlos Gomes – Rio de Janeiro – Brésil

– Du 6 au 9 novembre
QUANTUM
Arsenic – Lausanne – Suisse

– Du 13 au 15 novembre
A+B=X
Arsenic – Lausanne – Suisse

– 21 et 22 novembre
QUANTUM
Festival de Artes Escenicas de Lima FAEL – Teatro Municipal, Lima – Pérou

As ambitious as this touring programme seems, it can’t be any more ambitious than trying to represent modern physics in dance. Here’s more about Quantum from the (Vancouver) Dance Centre’s events page,

Art and science collide in QUANTUM, the result of Gilles Jobin’s artistic residency at the largest particle physics laboratory in the world – CERN in Geneva, where he worked with scientists to investigate principles of matter, gravity, time and space in relation to the body. Six dancers power through densely textured, sculptural choreography, to evoke the subtle balance of forces that shape our world. Illuminated by Julius von Bismarck’s light-activated kinetic installation built from industrial lamps, and accompanied by an electronic score by Carla Scaletti which incorporates data from the Large Hadron Collider, QUANTUM epitomizes the adventurous, searching spirit of artistic and scientific inquiry.

Response to the performances in New York City were interesting, that is to say, not rapturous but intriguing nonetheless. From an Oct. 3, 2014 review by Gia Kourlas for the New York Times,

Performed Thursday night [Oct. 2, 2014] at the Fishman Space at BAM Fisher — and included in the French Institute Alliance Française’s Crossing the Line festival — this spare 45-minute work is a duet of movement and light. Instead of dramaturges, there are scientific advisers. Jean-Paul Lespagnard’s jumpsuits reimagine particles as a densely patterned uniform of green, purple and white. (They’re cute in a space-camp kind of way.) Carla Scaletti’s crackling, shimmering score incorporates data from the Large Hadron Collider, CERN’s powerful particle accelerator.

But in “Quantum,” translating scientific ideas, however loosely, into dance vocabulary is where the trouble starts. A lunge is still a lunge.

Robert P Crease in an Oct. 7, 2014 posting (for Physics World on the Institute of Physics website) about one of the performances in New York City revealed something about his relationship to art/science and about Gilles Jobin’s work,

I’m fascinated by the interactions between science and culture, which is what led me to the Brooklyn Academy of Music (BAM), which was hosting the US première of a dance piece called Quantum that had previously debuted where it had been created, at CERN. …

I ran into Gilles Jobin, who had choreographed Quantum during an artist’s residency at CERN. I asked him the following question: “If a fellow choreographer who knew nothing about the piece were to watch it, is there anything in the movement or structure of the work that might cause that person to say ‘That choreographer must have spent several months at a physics lab!’?” Gilles paused, then said “No.” The influence of the laboratory environment, he said, was in inspiring him to come up with certain kinds of what he called “movement generators”, or inspirations for the dancers to create their own movements. “For instance, all those symmetries – like ghost symmetries – that I didn’t even know existed!” he said. I asked him why he had chosen the work’s title. “I considered other names,” he said. “Basically, Quantum was just a convenient tag that referred to the context – the CERN laboratory environment – in which I had created the work.”

Jobin and Michael Doser (Senior research physicist at CERN) talked to Ira Flatow host of US National Public Radio’s (NPR) Science Friday programme in an Oct. 3, 2014 broadcast which is available as a podcast on the Dance and Physics Collide in ‘Quantum’ webpage. It’s fascinating to hear both the choreographer and one of the CERN scientists discussing Jobin’s arts residency and how they had to learn to talk to each other.

NPR also produced a short video highlighting moments from one of the performances and showcasing Jobin’s commentary,

Produced by Alexa Lim, Associate Producer (NPR, Science Friday)

The Dance Centre (Vancouver) has an Oct. 7, 2014 post featuring Jobin on its blog,

How did you get involved with dance?

I wanted to be an actor and thought it was a good idea to take dance classes. Later, back at acting classes I realized how comfortable I was with movement and uncomfortable with words. I must admit that I was a teenager at the time and the large majority of girls in the dance classes was also a great motivation…

Have you always been interested in science?

I was an arty kid that did not have any interest in science. I was raised in an artistic family – my father was a geometrical painter – I thought science was not for me. Art, literature, “soft” science, theatre, that was my thing. It was only at the age of 48, in one of the greatest laboratories there is, that I started to see that I could become “science able”. I realized that particle physics was not only about math, but also had great philosophical questions: that I could get the general sense of what was going down there and follow with passion the discovery. Science is like contemporary art, you need to find the door, but when you get in you can take everything on and make up your own mind about it without being a specialist or a geek.

If you didn’t have a career in dance, what might you be doing?

Ski instructor!

Adding their own measure of excitement to this world tour of Quantum, the company’s dancers are producing videos of interviews with choreographers and dancers local to the city the company is visiting (from the What’s Up project page or the gillesjobin.com website),

WHAT’S UP est un projet des danseurs de la Cie Gilles Jobin : Catarina Barbosa, Ruth Childs, Susana Panadés Díaz, Bruno Cezario, Stanislas Charré et Denis Terrasse .

Dans chaque ville visitée pendant la tournée mondiale de QUANTUM, ils partent à la rencontre des danseurs/chorégraphes pour connaître le contexte de la danse contemporaine locale et partager leurs différentes réalités.

Retrouvez ici toutes les interviews

The latest interview is an Oct. 10, 2014 video (approximate 2 mins.) focusing on Katherine Hawthorne who in addition to being a dancer trained as a physicist.

Part 2 is based on an interview I had with Gilles Jobin on Tuesday, Oct. 14, 2014 an hour or so after his and his company’s flight landed in Vancouver.

Recycling your cyclotron—medical isotopes for everyone—a step forward

Last year on June 9, 2013 Canada’s national laboratory for particle and nuclear physics, TRIUMF, announced a better way to produce medical isotopes. From my June 9, 2013 posting,

The possibility medical isotopes could be produced with cyclotrons  is dazzling, especially in light of the reports a few years ago when it was discovered that the Chalk River facility (Ontario, Canada), the source for one 1/3 of the world’s medical isotopes, was badly deteriorated (my July 2, 2010 posting). Today, Sunday, June 9, 2013, TRIUMF, Canada’s national laboratory for particle and nuclear physics, and its partners announced that they have devised a technique for producing medical isotopes that is not dependent on materials from nuclear reactors.  …

“The approach taken by our consortium has established the feasibility of producing appreciable quantities of Tc-99m on Canada’s existing cyclotron network. These same machines are also producing additional isotopes used in a growing number of alternative imaging procedures. The net effect is that Canada will remain on the forefront of medical-isotope technology for the foreseeable future,” said John Valliant, Scientific Director and CEO of the CPDC in Hamilton.

Exactly one year later on June 9, 2014 the team responsible for this new means of producing medical isotopes presented an update of their work at the Society of Nuclear Medicine and Molecular Imaging’s (SNMMI) annual conference (from a June 9, 2014 TRIUMF news release),,

… a Canadian team with members from TRIUMF, the BC Cancer Agency, the Centre for Probe Development & Commercialization, and Lawson Health Research Institute announced that they have dramatically advanced technology for addressing the medical-isotope crisis.  The key medical isotope, technetium-99m (Tc-99m), can now be produced in meaningful quantities on the world’s most popular cyclotrons, many of which are already installed across Canada and around the world.

Patients, doctors, and hospitals have been concerned about a supply shortage of the workhorse medical isotopes used in cardiac tests and cancer scans as the world moves away from uranium-based nuclear reactors to create these exotic, short-lived, life-saving compounds.  The Canadian team has demonstrated the successful production of Tc-99m on a standard cyclotron manufactured by GE Healthcare, confirming that this alternative technology can be used by roughly half of the world’s already-installed cyclotrons. [emphasis mine]

Speaking for the consortium, Dr. Frank Prato of the Lawson Health Research Institute said, “This achievement is based on the efforts of the entire team and showcases our progress; we have a technology that can be applied in jurisdictions across Canada and around the world to produce this important isotope.”

Last summer [2013], the team set a world record for production of the critical isotope, Tc-99m, on a Made-in-Canada medical cyclotron; today, the team showed record production of Tc-99m using a GE [General Electric] PETtrace cyclotron at the Lawson Health Research Institute in London, Ontario.  This demonstration, along with the work being done at a similar GE cyclotron in Hamilton, ON, validates the business proposition that conventional cyclotrons around the world can be upgraded to produce Tc-99m for their region.

The Government of Canada has articulated an intention to shift away from reactor-based production of medical isotopes in order to diversify the supply, remove uranium from the supply chain, and halt Canadian taxpayer subsidization of isotopes used in other countries.  [emphasis mine] Through a sequence of programs at the Natural Sciences and Engineering Research Council, the Canadian Institutes for Health Research, and now Natural Resources Canada, the Canadian government has invested in the research, development, and deployment of alternative accelerator-based technologies for the production of Tc-99m.

Next steps in deploying this technology for Canadian patients will include regulatory approval and working with provincial governments to make the choices required to diversify the supply chain and strengthen healthcare systems.  The Canadian team is working to license its proprietary technology and to be positioned to market and supply the essential ingredients to cyclotrons around the world to enable their Tc-99m production.

It’s good to know that this technology allows cyclotrons around the world to be used in the production of medical isotopes. I imagine it’s a great relief know you won’t have to rely on some other country’s production facilities. However, it would have nice to have seen a little less chest-beating. Yes, this technology was developed in Canada but you don’t have to keep repeating Canada/Canadian over and over and over.

As for the Government of Canada’s intention to “halt Canadian taxpayer subsidization of isotopes used in other countries,” that seems somewhat harsh, although not out of line with the Harper government’s ethos.

I hope some thought has been applied to the implications of this policy as it is implemented. For example, do all the countries that need and use medical isotopes produced in Canada have their own cyclotrons? If so, will they be forced to purchase Canadian technology? And, what about the countries that don’t have their own cyclotrons? Are they going to be left out in the cold?

As for taxpayers and subsidies, it should be noted that TRIUMF and, at least one of its partners, BC [British Columbia] Cancer Agency are heavily supported by taxpayers. For example, there’s this Feb. 11, 2014 TRIUMF funding announcement,

In its Economic Action Plan for 2014-2015 released today, the Government of Canada has renewed its commitment to TRIUMF’s existing world-leading research and international partnership activities. The budget secures a base level for existing operations, proposing $222 million for the five years beginning 2015-2016. [emphasis mine]  The announcement of this commitment comes a year in advance and gives TRIUMF a six-year planning horizon for the first time, a strategic advantage for Canada in the highly competitive world of international science.

If I understand things correctly, this is their base funding. There are many other programs and instances where TRIUMF gets additional funding as per this May 21, 2014 posting about a new NSERC program and its funding award to TRIUMF for the ISOSIM program which is jointly run with the University of British Columbia.

Getting back to this latest news release, it seems clear the consortium will be selling this technology although there’s no mention as to how this will be done. Have they created a company with this one mission in mind or are they going to make use of a business entity that is already in existence? And, should this be a successful endeavour, will taxpayers see their support/investment returned to them? Given the Canadian business model, it is much more likely that the company will be grown to a point where it becomes an attractive purchase to a business entity based in another country.

CREATE ISOSIM (isotopes for science and medicine) and NanoMat (nanomaterials) program at the University of British Columbia (Canada)

It seems the Natural Sciences and Engineering Research Council (NSERC; one of Canada’s ‘big three’ science national funding agencies) has a new funding program, CREATE (Collaborative Research and Training Experience) and two local (Vancouver, Canada) institutions, the University of British Columbia (UBC) and TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) are beneficiaries to the tune of $3.3M.

Before getting the happy news, here’s a little information about this new NSERC program (from the CREATE page),

The Collaborative Research and Training Experience (CREATE) Program supports the training of teams of highly qualified students and postdoctoral fellows from Canada and abroad through the development of innovative training programs that:

  • encourage collaborative and integrative approaches, and address significant scientific challenges associated with Canada’s research priorities; and
  • facilitate the transition of new researchers from trainees to productive employees in the Canadian workforce.

These innovative programs must include the acquisition and development of important professional skills among students and postdoctoral fellows that complement their qualifications and technical skills.

In addition, these programs should encourage the following as appropriate:

  • student mobility, nationally or internationally, between individual universities and between universities and other sectors;
  • interdisciplinary research within the natural sciences and engineering (NSE), or at the interface between the NSE and health, or the social sciences and humanities. However, the main focus of the training must still lie within the NSE;
  • increased collaboration between industry and academia; and
  • for the industrial stream, an additional objective is to support improved job-readiness within the industrial sector by exposing participants to the specific challenges of this sector and training people with the skills identified by industry.

I wonder what they mean by “professional skills?” They use the phrase again in the Description,

The CREATE Program is designed to improve the mentoring and training environment for the Canadian researchers of tomorrow by improving areas such as professional skills, communication and collaboration, as well as providing experience relevant to both academic and non-academic research environments.

This program is intended for graduate students and has two streams, Industrial and International Collaboration. At this point, they have two international collaboration partners, one each in Germany and in Brazil.

There’s a subsection on the CREATE page titled Merit of the proposed training program (in my world that’s ‘criteria for assessment’),

Applicable to all applications:

  • the extent to which the program is associated with a research area of high priority to Canada and will provide a higher quality of training;
  • how the research area proposed relates to the current scientific or technical developments in the field, with references to the current literature;
  • the extent to which the research training program will facilitate the transition of the trainees to the Canadian workforce and will promote interaction of the trainees with non-academic sectors, such as private companies, industry associations, not-for-profit organizations, government departments, etc., as appropriate;
  • the description of the potential employers and a qualitative assessment of the job prospects for trainees;
  • the extent to which the program will provide opportunities for the trainees to develop professional skills;
  • the extent to which the program uses novel and interesting approaches to graduate student training in an integrated manner to provide an enriched experience for all participants;
  • the research training program’s focus and clarity of objectives, both short- and long-term; and
  • the added value that trainees will receive through their participation.

Clearly, this program is about training tomorrow’s workers and I expect CREATE is welcome in many corners. We (in Canada and elsewhere internationally) have a plethora of PhDs and nowhere for them to go. I have, of course, two provisos. First, I hope this program is not a precursor to a wholesale change in funding to a indulge a form of short-term thinking. Not every single course of study has to lead to a clearly defined job as defined by industry. Sometimes, industry doesn’t know what it needs until there’s a shortage. Second, I hope the administrators for this program support it. You (the government) can formulate all sorts of great policies but it’s the civil service that will implement your policies and if they don’t support them, you (the government) are likely to experience failure.

Here’s the CREATE funding announcement in a May 19, 2014 news item on Azonano,

Researchers studying nanomaterials and isotopes at the University of British Columbia received a $3.3 million boost in funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Two UBC teams, led respectively by Chemistry Prof. Mark MacLachlan and Physics Prof. Reiner Kruecken, received $1.65 million each from NSERC’s Collaborative Research and Training Experience (CREATE) grants. The funding extends over a six-year period. The investment will help MacLachlan and Kruecken mentor and train graduate students and postdoctoral fellows.

A May 16, 2014 UBC news release, which originated the news item, provides more information including some background for the two project leaders,

Mark MacLachlan, Professor, UBC Department of Chemistry
NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology

Nanomaterials have dimensions about 1/1000th the width of a human hair. Though invisible to our eyes, these materials are already used for diagnosing and treating diseases, environmental remediation, developing solar cells and batteries, as well as other applications. Nanomaterials form a multi-billion dollar industry that is expanding rapidly. To address the growing need for highly qualified trainees in Canada, UBC researchers have spearheaded the NanoMat program. Through a unique interdisciplinary training program, science and engineering students will undertake innovative research projects, receive hands-on training, and undertake internships at companies in Canada and across the world.

Reiner Kruecken, Professor, UBC Department of Physics and Astronomy
ISOSIM, ISOtopes for Science and Medicine

The ISOSIM program is designed to provide students with enriched training experiences in the production and preparation of nuclear isotopes for innovative applications that range from medical research and environmental science to investigations of the foundations of the universe. This will prepare students for positions in a number of Canadian industrial sectors including medical diagnostics and treatment, pharmaceutical sciences, development of next-generation electronic devices, environmental sciences, and isotope production. This project builds on the existing cooperation between UBC and TRIUMF, Canada’s national laboratory for particle and nuclear phsyics, [sic] on isotopes science.

Not mentioned in the UBC news release is that ISOSIM is a program that is jointly run with TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. Here’s how TRIUMF views their CREATE grant, from a May 16, 2014 TRIUMF news release,

The ISOSIM program will train undergraduate students, graduate students, and postdoctoral researchers at UBC and TRIUMF from fields associated with isotope sciences in an individually tailored, interdisciplinary curriculum that will build on and complement the education in their specialty field. Unique in Canada, this program offers a combination of interdisciplinary isotope-related training ranging from pure to applied sciences, industrial internships, and mobility with German research institutions with unique large-scale equipment and scientific infrastructures.

It seems this particular grant was awarded as part of the international collaboration stream. (I wonder if TRIUMF or TRIUMF-friendly individuals had a role in developing that particular aspect of the CREATE program. Following on that thought, is there a large Canadian science organization with ties to Brazil?)

Getting back to TRIUMF’s current CREATE grant, the news release emphasizes an industrial focus,

“ISOSIM represents a timely and nationally important training initiative and is built on a world-class collaborative research environment,” says Dr. Reiner Kruecken, TRIUMF’s Science Division Head and Professor at UBC Department of Physics and Astronomy. Kruecken is leading the ISOSIM initiative and is joined by over twenty collaborators from UBC, TRIUMF, and several research institutes in Germany.

ISOSIM is poised to create the next generation of leaders for isotope-related industries and markets, including commercial, public health, environmental, and governmental sectors, as well as academia. The combination of research institutions like UBC, TRIUMF, and the BC Cancer Agency with Canadian companies like Nordion Inc., and Advanced Cyclotron Solutions Inc., have transformed Vancouver into a hub for isotope-related research and industries, emerging as “Isotope Valley”.

The inspiration for the ISOSIM program came from an interdisciplinary TRIUMF-led team who, in response to the isotope crisis, demonstrated non-reactor methods for producing the critical medical isotope Tc-99m. This required a coordinated approach of physicists, chemists, biologists, and engineers.

Similar interdisciplinary efforts are needed for expanding the use and application of isotopes in key areas. While their medical use is widely known, isotopes enjoy growing importance in many fields. Isotopes are used as tracers to examine the trace flow of nutrients and pollutants in the environment. Isotopes are also used to characterize newly designed materials and the behaviour of nanostructured materials that play a key role in modern electronics devices. The production and investigation of very short-lived radioactive isotopes, also known as rare-isotopes, is a central approach in nuclear physics research to understand the nuclear force and how the chemical elements heavier than iron were formed in stars and stellar explosions.

I really wish they (marketing/communications and/or business people) would stop trying to reference ‘silicon valley’ as per this news release’s ‘isotope valley’. Why not ‘isotope galaxy’? It fits better with the isotope and star theme.

Getting back to the “professional skills” mentioned in the CREATE grant description, I don’t see any mention of etiquette, good manners, listening skills, or the quality of humility, all of which are handy in the workplace and having had my share of experience dealing with fresh out-of-graduate-school employees, I’d say they’re sorely needed.

Regardless, I wish both MacLachlan and Krueken the best as they and their students pioneer what I believe is a new NSERC program.

From the quantum to the cosmos; an event at Vancouver’s (Canada) Science World

ARPICO (Society of Italian Researchers & Professionals in Western Canada) sent out an April 9, 2014 announcement,

FROM THE QUANTUM TO THE COSMOS

May 7 [2014] “Unveiling the Universe” lecture registration now open:

Join Science World and TRIUMF on Wednesday, May 7, at Science World at TELUS World of Science in welcoming Professor Edward “Rocky” Kolb, the Arthur Holly Compton Distinguished Service Professor of Astronomy and Astrophysics at the University of Chicago, for his lecture on how the laws of quantum physics at the tiniest distances relate to structures in the universe at the largest scales. He also will highlight recent spectacular results into the nature of the Big Bang from the orbiting Planck satellite and the South Pole-based BICEP2 telescope.

Doors open at 6:15pm and lecture starts at 7pm. It will be followed by an audience Q&A session.

Tickets are free but registration is required. Details on the registration page (link below)
See http://www.eventbrite.ca/o/unveiling-the-universe-lecture-series-2882137721?s=23658359 for more information.

You can go here to the Science World website for more details and another link for tickets,

Join Science World, TRIUMF and guest speaker Dr Rocky Kolb on Wednesday, May 7 [2014], for another free Unveiling the Universe public lecture about the inner space/outer space connection that may hold the key to understanding the nature of dark matter, dark energy and the mysterious seeds of structure that grew to produce everything we see in the cosmos.

I notice Kolb is associated with the Fermi Lab, which coincidentally is where TRIUMF’s former director, Nigel Lockyer is currently located. You can find out more about Kolb on his personal webpage, where I found this description from his repertoire of talks,

Mysteries of the Dark Universe
Ninety-five percent of the universe is missing! Astronomical observations suggest that most of the mass of the universe is in a mysterious form called dark matter and most of the energy in the universe is in an even more mysterious form called dark energy. Unlocking the secrets of dark matter and dark energy will illuminate the nature of space and time and connect the quantum with the cosmos.

Perhaps this along with the next bit gives you a clearer idea of what Kolb will be discussing. He will also be speaking at TRIUMF, Canada’s national laboratory of particle and nuclear physics, from the events page,

Wed ,2014-05-07    14:00    Colloquium    Rocky Kolb, Fermilab     Auditorium    The Decade of the WIMP
Abstract:    The bulk of the matter in the present universe is dark. The most attractive possibility for the nature of the dark matter is a new species of elementary particle known as a WIMP (a Weakly Interacting Massive Particle). After a discussion of how a WIMP might fit into models of particle physics, I will review the current situation with respect to direct detection, indirect detection, and collider production of WIMPs. Rapid advances in the field should enable us to answer by the end of the decade whether our universe is dominated by WIMPs.

You may want to get your tickets soon as other lectures in the Unveiling the Universe series have gone quickly.

New director for TRIUMF, Canada’s national laboratory for particle and nuclear physics starts

Here’s the announcement, straight from the March 18, 2014 TRIUMF news release,

After a seven month, highly competitive, international search for TRIUMF’s next director, the laboratory’s Board of Management announced today that Dr. Jonathan Bagger, Krieger-Eisenhower Professor, Vice Provost, and former Interim Provost at the Johns Hopkins University, will join TRIUMF this summer as the laboratory’s next director.

TRIUMF is Canada’s national laboratory for particle and nuclear physics, focusing on probing the structure and origins of matter and advancing isotopes for science and medicine.  Located on the campus of the University of British Columbia, TRIUMF is owned and operated by a consortium of 18 leading Canadian universities and supported by the federal and provincial governments.

Bagger was attracted to TRIUMF because, “Its collaborative, interdisciplinary model represents the future for much of science.  TRIUMF helps Canada connect fundamental research to important societal goals, ranging from health and safety to education and innovation.”  Noting TRIUMF’s new strategic plan that recently secured five years of core funding from the Government of Canada, he added, “It is an exciting time to lead the
laboratory.”

Bagger brings extensive experience to the job.  Professor Paul Young, Chair of TRIUMF’s Board of Management and Vice-President of Research and Innovation at the University of Toronto, said, “Jon is an outstanding, internationally renowned physicist with a wealth of leadership experience and a track record of excellence.  He is a welcome addition to Canada and I am confident that under his tenure, TRIUMF will continue to flourish.”

Jim Hanlon, Interim CEO/Chief Administrator Officer of TRIUMF and President and CEO of Advanced Applied Physics Solutions Inc., welcomed the news.  He said, “The laboratory has been shaped and served greatly by its past directors.  Today the need continues for an extraordinary combination of vision, leadership, and excellence.  Jon will bring all of this and more to TRIUMF.  On behalf of the staff, we’re excited about moving forward with Jon
at the helm.”

Bagger expressed his enthusiasm in moving across the border to join TRIUMF as the next director. “TRIUMF is known internationally for its impressive capabilities in science and engineering, ranging from rare-isotope studies on its Vancouver campus to its essential contributions to the Higgs boson discovery at CERN.  All rest on the legendary dedication and commitment of TRIUMF’s researchers and staff.  I look forward to working with this
terrific team to advance innovation and discovery in Vancouver, in Canada, and on the international stage.”

Bagger will lead the laboratory for a six-year term beginning July 1 [2014].  He reports he is ready to go:  “I have installed a metric speedometer in my car, downloaded the Air Canada app, and cleansed my home of all Washington Capitals gear.”

Nice of Bagger to start his new job on Canada Day. From a symbolic perspective, it’s an interesting start date. As for his metric speedometer and Air Canada app, bravo! Perhaps though he might have wanted the last clause to feature the Vancouver Canucks, e.g., ‘and set aside money/have set aside space for Vancouver Canucks gear’. You can find out more about TRIUMF here.

Canadian Society for Chemistry honours Québec nanoscientist Federico Rosei

Dr. Federico Rosei’s name has graced this blog before, most recently in a June 15, 2010 posting about an organic nanoelectronics project. Late last week, Québec’s Institut national de la recherche scientifique (INRS) announced that Rosei will be honoured by the Canadian Society for Chemistry at  the 2014 Canadian Chemistry Conference (from the January 24, 2014 news release on EurekAlert),,

The Canadian Society for Chemistry (CSC) has bestowed its 2014 Award for Research Excellence in Materials Chemistry on Professor Federico Rosei, director of the INRS Énergie Matériaux Télécommunications research centre, in recognition of his exceptional contributions to the field. Professor Rosei will be honoured at the society’s annual conference, which will take place June 1 to 5, 2014, in Vancouver.

In conjunction with this honour, Federico Rosei has been invited to speak at this important scientific conference and to take part in a lecture tour of Canadian universities located outside major cities.

Professor Rosei has been widely honoured for his research on nanomaterial properties and their applications. He has received numerous awards and distinctions, including the 2013 Herzberg Medal from the Canadian Association of Physicists, the Brian Ives Lectureship Award from ASM Canada, the 2011 Rutherford Memorial Medal in Chemistry from the Royal Society of Canada, and the Alexander von Humboldt Foundation’s 2010 Friedrich Wilhelm Bessel Research Award. He is also a fellow of the American Association for the Advancement of Science; the Institute of Physics; the Royal Society of Chemistry; the Institute of Materials, Minerals and Mining; the Institute of Engineering and Technology; and the Institute of Nanotechnology in the U.K.; the Engineering Institute of Canada; and the Australian Institute of Physics. In addition, Professor Rosei is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Photo-Image Engineers (SPIE), and a member of Sigma Xi (scientific research society) and the Global Young Academy.

Please join us in extending our congratulations to Professor Rosei!

###

The Canadian Society for Chemistry

The Canadian Society for Chemistry (CSC) is a not-for-profit professional association that unites chemistry students and professionals who work in industry, academia, and government. Recognized by the International Union of Pure and Applied Chemistry (IUPAC), the CSC awards annual prizes and scholarships in recognition of outstanding achievements in the chemical sciences.

About INRS

Institut national de recherche scientifique (INRS) is a graduate research and training university. As Canada’s leading university for research intensity in its class, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. As active providers of fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems that our society faces.

The French language version of the news release: de l’actualité le 23 janvier 2014, par Stéphanie Thibault (Note: Links have been removed from the excerpt),

Le professeur Federico Rosei du Centre Énergie Matériaux Télécommunications de l’INRS est récipiendaire du Prix d’excellence en chimie des matériaux 2014. La Société canadienne de chimie reconnaît ainsi sa contribution exceptionnelle dans ce domaine. Le professeur Rosei sera honoré lors du congrès annuel de la Société qui aura lieu du 1er au 5 juin 2014 à Vancouver.

À titre de lauréat, le professeur Rosei sera conférencier invité à cette importante rencontre scientifique et participera à une tournée de conférences qui l’amènera dans des universités canadiennes situées hors des grandes villes.

I have not found any specific details about Dr. Rosei’s upcoming chemistry lecture tour of universities.

The conference where Dr. Rosei will be honoured is the 97th annual Canadian Chemistry Conference and Exhibition. It is being hosted by Simon Fraser University (SFU), located in the Vancouver region. While the conference programme is not yet in place there’s a hint as to what will be offered in the conference chair’s Welcome message,

On behalf of the Organizing Committee, I am delighted to welcome all the delegates and their guests to Vancouver, British Columbia, for the 97th Canadian Chemistry Conference and Exhibition that will take place from June 1 to 5, 2014. This is Canada’s largest annual event devoted to the science and practice of chemistry, and it will give participants a platform to exchange ideas, discover novel opportunities, reacquaint with colleagues, meet new friends, and broaden their knowledge. The conference will held at the new Vancouver Convention Centre, which is a spectacular, green-designed facility on the beautiful waterfront in downtown Vancouver.

The theme of the CSC 2014 Conference is “Chemistry from Sea to Sky”; it will broadly cover all disciplines of chemistry from fundamental research to “blue sky” applications, highlight global chemical scientific interactions and collaborations, and feature the unique location, culture and beautiful geography (the Coastal Mountains along the ocean’s edge of Howe Sound) of British Columbia and Vancouver.

We are pleased to have Professor Shankar Balasubramanian (University of Cambridge, UK) and Professor Klaus Müllen (Max Planck Institute for Polymer Research, Mainz, Germany) as the plenary speakers. In addition to divisional symposia, the scientific program also includes several jointly organized international symposia, featuring Canada and each of China, Germany, Japan, Korea, Switzerland and the USA. This new type of symposium at the CSC aims to highlight research interests of Canadians in an international context. Interactions between chemists and TRIUMF (the world’s largest cyclotron, based in Vancouver) will also be highlighted via a special “Nuclear and Radiochemistry” Divisional Program.

All of the members of the local Organizing Committee from Simon Fraser University wish you a superb conference experience and a memorable stay in Vancouver. Welcome to Vancouver! Bienvenue à Vancouver!

Zuo-Guang Ye, Conference Chair
Department of Chemistry
Simon Fraser University
Burnaby, British Columbia

Conference abstracts are being accepted until February 17, 2014 (according to the conference home page). Dr. Shankar Balasubramanian was last mentioned (one of several authors of a paper) here in a July 22, 2013 posting titled: Combining bacteriorhodopsin with semiconducting nanoparticles to generate hydrogen.

Silence of the Labs (exposé) a Canadian Broadcasting Corporation (CBC) television event scheduled for January 10, 2014

I’ve perhaps overstated the case by calling the upcoming telecast ‘Silence of the Labs’ an event,. For many people in the Canadian science community, it will be an event but for most of the television audience it’s simply the first new episode of the Fifth Estate’s 2014 schedule. (For anyone unfamiliar with the Fifth Estate, it’s the Canadian Broadcasting Corporation’s [CBC] longest running, 39th season, and most prestigious investigative journalism television programme.)

Assuming there are some people who haven’t been following this story about the ‘silencing’ of Canada’s scientists or censorship as it has been called, here’s a précis (and if you’ve been following it more closely than I have and note any errors or have any additions, please do use the commenting option (Note: Due to spam issues, I moderate comments so it may take a few hours or more [I don’t usually check the blog on the weekends]  before your comments appear.)

I think my earliest mention of the topic was in 2009 (Sept. 21, 2009; scroll down to the last paragraph). At this point, the Conservative government  had put a ‘muzzle’ on government scientists working for Environment Canada not allowing them to speak directly to media representatives about their work. All questions were to be directed to ministry communications officers. In fact, the muzzle was first discussed in a National Post Jan. 31, 2008 article by Margaret Munro (which predates this blog’s existence by a few months). In a Sept. 16, 2013 posting, I featured the then recent muzzling of Natural Resources Canada, a story which was first covered by Margaret Munro. My understanding is that Health Canada had also been ‘muzzled’ but that was done earlier by the Liberal government when it was in power.

My colleague, David Bruggemen (Pasco Phronesis blog) disagrees with the contention by many in the Canadian science community that these ‘muzzles’ constitute a form of censorship. In addition to the postings he has made on his blog he also commented on my March 7, 2012 posting (I linked to one of David’s postings on the topic and included an excerpt from it) where I discussed my failure to get answers to questions from an institution located on the University of British Columbia lands and linked it to the ‘muzzle’. In that context,, I mused about censorship.

Since 2012 the focus seems to have shifted from media representatives being able to get direct and uninhibited access to scientists to the public’s right to know and attempts to ‘shut down’ scientific inquiry. In July 2012, there was a rally in Ottawa called Death of Evidence (discussed in both my July 10, 2012 posting and my July 13, 2012 posting followed by a 2013 cross Canada event, Stand up for Science described in my Oct. 4, 2013 posting. As I noted in that posting, most of the science being ‘censored’ or ‘attacked’ is environmental. Institutions such as the Perimeter Institute (theoretical physics)  in Ontario and TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics in British Columbia have done very well under the Conservative government.

with all that, here’s a preview (51 seconds) of the Silence of the Labs,

You can find out more about the episode here and, if you should miss the telecast, you’ll probably be able to watch later on the Fifth Estate’s CBC  Player webpage. As for the ‘Silence of the Labs” (hat off for the pun), I believe it will be broadcast at 9 pm regardless of timezone on the local CBC channel across most of the country; I assume that as usual Newfoundland will enjoy the telecast at 9:30 pm.