Tag Archives: Tsinghua University

Feed your silkworms graphene or carbon nanotubes for stronger silk

This Oct. 11, 2016 news item on Nanowerk may make you wonder about a silkworm’s standard diet,

Researchers at Tsinghua University in Beijing, China, have demonstrated that mechanically enhanced silk fibers could be naturally produced by feeding silkworms with diets containing single-walled carbon nanotubes (SW[C]NTs) or graphene.

The as-spun silk fibers containing nanofillers showed evidently increased fracture strength and elongation-at-break, demonstrating the validity of SWNT or graphene incorporation into silkworm silk as reinforcement through an in situ functionalization approach.

The researchers conclude that “by analyzing the silk fibers and the excrement of silkworms, … parts of the fed carbon nanomaterials were incorporated into the as-spun silk fibers, while others went into excrement.

Bob Yirka in an Oct. 11, 2016 article for phys.org provides a little information about silkworms and their eating habits,

In this new effort, the researchers sought to add new properties to silk by adding carbon nanotubes and graphene to their diet.

To add the materials, the researchers sprayed a water solution containing .2 percent carbon nanotubes or graphene onto mulberry leaves and then fed the leaves to the silkworms. They then allowed the silkworms to make their silk in the normal way. Testing of the silks that were produced showed they could withstand approximately 50 percent more stress than traditional silk. A closer look showed that the new silk was made of a more orderly crystal structure than normal silk. And taking their experiments one step further, the researchers cooked the new silk at 1,050 °C causing it to be carbonized—that caused the silk to conduct electricity.

Here’s a link to and a citation for the paper,

Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers by Qi Wang, Chunya Wang, Mingchao Zhang, Muqiang Jian, and Yingying Zhang. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.6b03597 Publication Date (Web): September 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Powering up your graphene implants so you don’t get fried in the process

A Sept. 23, 2016 news item on phys.org describes a way of making graphene-based medical implants safer,

In the future, our health may be monitored and maintained by tiny sensors and drug dispensers, deployed within the body and made from graphene—one of the strongest, lightest materials in the world. Graphene is composed of a single sheet of carbon atoms, linked together like razor-thin chicken wire, and its properties may be tuned in countless ways, making it a versatile material for tiny, next-generation implants.

But graphene is incredibly stiff, whereas biological tissue is soft. Because of this, any power applied to operate a graphene implant could precipitously heat up and fry surrounding cells.

Now, engineers from MIT [Massachusetts Institute of Technology] and Tsinghua University in Beijing have precisely simulated how electrical power may generate heat between a single layer of graphene and a simple cell membrane. While direct contact between the two layers inevitably overheats and kills the cell, the researchers found they could prevent this effect with a very thin, in-between layer of water.

A Sept. 23, 2016 MIT news release by Emily Chu, which originated the news item, provides more technical details,

By tuning the thickness of this intermediate water layer, the researchers could carefully control the amount of heat transferred between graphene and biological tissue. They also identified the critical power to apply to the graphene layer, without frying the cell membrane. …

Co-author Zhao Qin, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), says the team’s simulations may help guide the development of graphene implants and their optimal power requirements.

“We’ve provided a lot of insight, like what’s the critical power we can accept that will not fry the cell,” Qin says. “But sometimes we might want to intentionally increase the temperature, because for some biomedical applications, we want to kill cells like cancer cells. This work can also be used as guidance [for those efforts.]”

Sandwich model

Typically, heat travels between two materials via vibrations in each material’s atoms. These atoms are always vibrating, at frequencies that depend on the properties of their materials. As a surface heats up, its atoms vibrate even more, causing collisions with other atoms and transferring heat in the process.

The researchers sought to accurately characterize the way heat travels, at the level of individual atoms, between graphene and biological tissue. To do this, they considered the simplest interface, comprising a small, 500-nanometer-square sheet of graphene and a simple cell membrane, separated by a thin layer of water.

“In the body, water is everywhere, and the outer surface of membranes will always like to interact with water, so you cannot totally remove it,” Qin says. “So we came up with a sandwich model for graphene, water, and membrane, that is a crystal clear system for seeing the thermal conductance between these two materials.”

Qin’s colleagues at Tsinghua University had previously developed a model to precisely simulate the interactions between atoms in graphene and water, using density functional theory — a computational modeling technique that considers the structure of an atom’s electrons in determining how that atom will interact with other atoms.

However, to apply this modeling technique to the group’s sandwich model, which comprised about half a million atoms, would have required an incredible amount of computational power. Instead, Qin and his colleagues used classical molecular dynamics — a mathematical technique based on a “force field” potential function, or a simplified version of the interactions between atoms — that enabled them to efficiently calculate interactions within larger atomic systems.

The researchers then built an atom-level sandwich model of graphene, water, and a cell membrane, based on the group’s simplified force field. They carried out molecular dynamics simulations in which they changed the amount of power applied to the graphene, as well as the thickness of the intermediate water layer, and observed the amount of heat that carried over from the graphene to the cell membrane.

Watery crystals

Because the stiffness of graphene and biological tissue is so different, Qin and his colleagues expected that heat would conduct rather poorly between the two materials, building up steeply in the graphene before flooding and overheating the cell membrane. However, the intermediate water layer helped dissipate this heat, easing its conduction and preventing a temperature spike in the cell membrane.

Looking more closely at the interactions within this interface, the researchers made a surprising discovery: Within the sandwich model, the water, pressed against graphene’s chicken-wire pattern, morphed into a similar crystal-like structure.

“Graphene’s lattice acts like a template to guide the water to form network structures,” Qin explains. “The water acts more like a solid material and makes the stiffness transition from graphene and membrane less abrupt. We think this helps heat to conduct from graphene to the membrane side.”

The group varied the thickness of the intermediate water layer in simulations, and found that a 1-nanometer-wide layer of water helped to dissipate heat very effectively. In terms of the power applied to the system, they calculated that about a megawatt of power per meter squared, applied in tiny, microsecond bursts, was the most power that could be applied to the interface without overheating the cell membrane.

Qin says going forward, implant designers can use the group’s model and simulations to determine the critical power requirements for graphene devices of different dimensions. As for how they might practically control the thickness of the intermediate water layer, he says graphene’s surface may be modified to attract a particular number of water molecules.

“I think graphene provides a very promising candidate for implantable devices,” Qin says. “Our calculations can provide knowledge for designing these devices in the future, for specific applications, like sensors, monitors, and other biomedical applications.”

This research was supported in part by the MIT International Science and Technology Initiative (MISTI): MIT-China Seed Fund, the National Natural Science Foundation of China, DARPA [US Defense Advanced Research Projects Agency], the Department of Defense (DoD) Office of Naval Research, the DoD Multidisciplinary Research Initiatives program, the MIT Energy Initiative, and the National Science Foundation.

Here’s a link to and a citation for the paper,

Intercalated water layers promote thermal dissipation at bio–nano interfaces by Yanlei Wang, Zhao Qin, Markus J. Buehler, & Zhiping Xu. Nature Communications 7, Article number: 12854 doi:10.1038/ncomms12854 Published 23 September 2016

This paper is open access.

Graphene Malaysia 2016 gathering and Malaysia’s National Graphene Action Plan 2020

Malaysia is getting ready to host a graphene conference according to an Oct. 10, 2016 news item on Nanotechnology Now,

The Graphene Malaysia 2016 [Nov. 8 – 9, 2016] (www.graphenemalaysiaconf.com) is jointly organized by NanoMalaysia Berhad and Phantoms Foundation. The conference will be centered on graphene industry interaction and collaborative innovation. The event will be launched under the National Graphene Action Plan 2020 (NGAP 2020), which will generate about 9,000 jobs and RM20 (US$4.86) billion GNI impact by the year 2020.

First speakers announced:
Murni Ali (Nanomalaysia, Malaysia) | Francesco Bonaccorso (Istituto Italiano di Tecnologia, Italy) | Antonio Castro Neto (NUS, Singapore) | Antonio Correia (Phantoms Foundation, Spain)| Pedro Gomez-Romero (ICN2 (CSIC-BIST), Spain) | Shu-Jen Han (Nanoscale Science & Technology IBM T.J. Watson Research Center, USA) | Kuan-Tsae Huang (AzTrong, USA/Taiwan) | Krzysztof Koziol (FGV Cambridge Nanosystems, UK) | Taavi Madiberk (Skeleton Technologies, Estonia) | Richard Mckie (BAE Systems, UK) | Pontus Nordin (Saab AB, Saab Aeronautics, Sweden) | Elena Polyakova (Graphene Laboratories Inc., USA) | Ahmad Khairuddin Abdul Rahim (Malaysian Investment Development Authority (MIDA), Malaysia) | Adisorn Tuantranont (Thailand Organic and Printed Electronics Innovation Center, Thailand) |Archana Venugopal (Texas Instruments, USA) | Won Jong Yoo (Samsung-SKKU Graphene-2D Center (SSGC), South Korea) | Hongwei Zhu (Tsinghua University, China)

You can check for more information and deadlines in the Nanotechnology Now Oct. 10, 2016 news item.

The Graphene Malalysia 2016 conference website can be found here and Malaysia’s National Graphene Action Plan 2020, which is well written, can be found here (PDF).  This portion from the executive summary offers some insight into Malyasia’s plans to launch itself into the world of high income nations,

Malaysia’s aspiration to become a high-income nation by 2020 with improved jobs and better outputs is driving the country’s shift away from “business as usual,” and towards more innovative and high value add products. Within this context, and in accordance with National policies and guidelines, Graphene, an emerging, highly versatile carbon-based nanomaterial, presents a unique opportunity for Malaysia to develop a high value economic ecosystem within its industries.  Isolated only in 2004, Graphene’s superior physical properties such as electrical/ thermal conductivity, high strength and high optical transparency, combined with its manufacturability have raised tremendous possibilities for its application across several functions and make it highly interesting for several applications and industries.  Currently, Graphene is still early in its development cycle, affording Malaysian companies time to develop their own applications instead of relying on international intellectual property and licenses.

Considering the potential, several leading countries are investing heavily in associated R&D. Approaches to Graphene research range from an expansive R&D focus (e.g., U.S. and the EU) to more focused approaches aimed at enhancing specific downstream applications with Graphene (e.g., South Korea). Faced with the need to push forward a multitude of development priorities, Malaysia must be targeted in its efforts to capture Graphene’s potential, both in terms of “how to compete” and “where to compete”. This National Graphene Action Plan 2020 lays out a set of priority applications that will be beneficial to the country as a whole and what the government will do to support these efforts.

Globally, much of the Graphene-related commercial innovation to date has been upstream, with producers developing techniques to manufacture Graphene at scale. There has also been some development in downstream sectors, as companies like Samsung, Bayer MaterialScience, BASF and Siemens explore product enhancement with Graphene in lithium-ion battery anodes and flexible displays, and specialty plastic and rubber composites. However the speed of development has been uneven, offering Malaysian industries willing to invest in innovation an opportunity to capture the value at stake. Since any innovation action plan has to be tailored to the needs and ambitions of local industry, Malaysia will focus its Graphene action plan initially on larger domestic industries (e.g., rubber) and areas already being targeted by the government for innovation such as energy storage for electric vehicles and conductive inks.

In addition to benefiting from the physical properties of Graphene, Malaysian downstream application providers may also capture the benefits of a modest input cost advantage for the domestic production of Graphene.  One commonly used Graphene manufacturing technique, the chemical vapour deposition (CVD) production method, requires methane as an input, which can be sourced economically from local biomass. While Graphene is available commercially from various producers around the world, downstream players may be able to enjoy some cost advantage from local Graphene supply. In addition, co-locating with a local producer for joint product development has the added benefit of speeding up the R&D lifecycle.

That business about finding downstream applications could also to the Canadian situation where we typically offer our resources (upstream) but don’t have an active downstream business focus. For example, we have graphite mines in Ontario and Québec which supply graphite flakes for graphene production which is all upstream. Less well developed are any plans for Canadian downstream applications.

Finally, it was interesting to note that the Phantoms Foundation is organizing this Malaysian conference since the same organization is organizing the ‘2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition’ (you can find out more about the Oct. 18 – 20, 2016 event in my Sept. 23, 2016 posting). I think the Malaysians have a better title for their conference, far less unwieldy.

Want better energy storage materials? Add salt

An April 22, 2016 news item on Nanowerk reveals a secret to better energy storage materials,

The secret to making the best energy storage materials is growing them with as much surface area as possible. Like baking, it requires just the right mixture of ingredients prepared in a specific amount and order at just the right temperature to produce a thin sheet of material with the perfect chemical consistency to be useful for storing energy. A team of researchers from Drexel University, Huazhong University of Science and Technology (HUST) and Tsinghua University recently discovered a way to improve the recipe and make the resulting materials bigger and better and soaking up energy — the secret? Just add salt.

An April 22, 2016 Drexel University news release (also on EurekAlert), which originated the news item, provides more detail,

The team’s findings, which were recently published in the journal Nature Communications, show that using salt crystals as a template to grow thin sheets of conductive metal oxides make the materials turn out larger and more chemically pure — which makes them better suited for gathering ions and storing energy.

“The challenge of producing a metal oxide that reaches theoretical performance values is that the methods for making it inherently limit its size and often foul its chemical purity, which makes it fall short of predicted energy storage performance,” said Jun Zhou, a professor at HUST’s Wuhan National Laboratory for Optoelectronics and an author of the research. Our research reveals a way to grow stable oxide sheets with less fouling that are on the order of several hundreds of times larger than the ones that are currently being fabricated.”

In an energy storage device — a battery or a capacitor, for example — energy is contained in the chemical transfer of ions from an electrolyte solution to thin layers of conductive materials. As these devices evolve they’re becoming smaller and capable of holding an electric charge for longer periods of time without needing a recharge. The reason for their improvement is that researchers are fabricating materials that are better equipped, structurally and chemically, for collecting and disbursing ions.

In theory, the best materials for the job should be thin sheets of metal oxides, because their chemical structure and high surface area makes it easy for ions to attach — which is how energy storage occurs. But the metal oxide sheets that have been fabricated in labs thus far have fallen well short of their theoretical capabilities.

According to Zhou, Tang [?] and the team from HUST, the problem lies in the process of making the nanosheets — which involves either a deposition from gas or a chemical etching — often leaves trace chemical residues that contaminate the material and prevent ions from bonding to it. In addition, the materials made in this way are often just a few square micrometers in size.

Using salt crystals as a substrate for growing the crystals lets them spread out and form a larger sheet of oxide material. Think of it like making a waffle by dripping batter into a pan versus pouring it into a big waffle iron; the key to getting a big, sturdy product is getting the solution — be it batter, or chemical compound — to spread evenly over the template and stabilize in a uniform way.

“This method of synthesis, called ‘templating’ — where we use a sacrificial material as a substrate for growing a crystal — is used to create a certain shape or structure,” said Yury Gogotsi, PhD, University and Trustee Chair professor in Drexel’s College of Engineering and head of the A.J. Drexel Nanomaterials Institute, who was an author of the paper. “The trick in this work is that the crystal structure of salt must match the crystal structure of the oxide, otherwise it will form an amorphous film of oxide rather than a thing, strong and stable nanocrystal. This is the key finding of our research — it means that different salts must be used to produce different oxides.”

Researchers have used a variety of chemicals, compounds, polymers and objects as growth templates for nanomaterials. But this discovery shows the importance of matching a template to the structure of the material being grown. Salt crystals turn out to be the perfect substrate for growing oxide sheets of magnesium, molybdenum and tungsten.

The precursor solution coats the sides of the salt crystals as the oxides begin to form. After they’ve solidified, the salt is dissolved in a wash, leaving nanometer-thin two-dimensional sheets that formed on the sides of the salt crystal — and little trace of any contaminants that might hinder their energy storage performance. By making oxide nanosheets in this way, the only factors that limit their growth is the size of the salt crystal and the amount of precursor solution used.

“Lateral growth of the 2D oxides was guided by salt crystal geometry and promoted by lattice matching and the thickness was restrained by the raw material supply. The dimensions of the salt crystals are tens of micrometers and guide the growth of the 2D oxide to a similar size,” the researchers write in the paper. “On the basis of the naturally non-layered crystal structures of these oxides, the suitability of salt-assisted templating as a general method for synthesis of 2D oxides has been convincingly demonstrated.”

As predicted, the larger size of the oxide sheets also equated to a greater ability to collect and disburse ions from an electrolyte solution — the ultimate test for its potential to be used in energy storage devices. Results reported in the paper suggest that use of these materials may help in creating an aluminum-ion battery that could store more charge than the best lithium-ion batteries found in laptops and mobile devices today.

Gogotsi, along with his students in the Department of Materials Science and Engineering, has been collaborating with Huazhong University of Science and Technology since 2012 to explore a wide variety of materials for energy storage application. The lead author of the Nature Communications article, Xu Xiao, and co-author Tiangi Li, both Zhou’s doctoral students, came to Drexel as exchange students to learn about the University’s supercapacitor research. Those visits started a collaboration, which was supported by Gogotsi’s annual trips to HUST. While the partnership has already yielded five joint publications, Gogotsi speculates that this work is only beginning.

“The most significant result of this work thus far is that we’ve demonstrated the ability to generate high-quality 2D oxides with various compositions,” Gogotsi said. “I can certainly see expanding this approach to other oxides that may offer attractive properties for electrical energy storage, water desalination membranes, photocatalysis and other applications.”

Here’s a link to and a citation for the paper,

Scalable salt-templated synthesis of two-dimensional transition metal oxides by Xu Xiao, Huaibing Song, Shizhe Lin, Ying Zhou, Xiaojun Zhan, Zhimi Hu, Qi Zhang, Jiyu Sun, Bo Yang, Tianqi Li, Liying Jiao, Jun Zhou, Jiang Tang, & Yury Gogotsi. Nature Communications 7, Article number:  11296 doi:10.1038/ncomms11296 Published 22 April 2016

This is an open access paper.

LEGO2NANO, a UK-China initiative

LEGO2NANO is a ‘summer’ school being held in China sometime during September 2015 (I could not find the dates). The first summer school, held last year, featured a prototype functioning atomic force microscope made of Lego bricks according to an Aug. 25, 2015 news item on Nanowerk,

University College London students from across a range of disciplines travel to China to team up with students from Beijing, Boston (USA) and Taipei (Taiwan) for an action-packed two-week hackathon summer school based at Tsinghua University’s Beijing and Shenzhen campuses.

LEGO2NANO aims to bring the world of nanotechnology to school classrooms by initiating projects to develop low-cost scientific instruments such as the Open AFM—an open-source atomic force microscope assembled from cheap, off-the-shelf electronic components, Arduino, Lego and 3D printable parts.

Here’s an image used to publicize the first summer school in 2014,

LEGO2NANO – a summer school about making nanotechnology, 6–14 September 2014, Beijing, China LEGO2NANO关于纳米技术暑期学校2014年9月6-14日

LEGO2NANO – a summer school about making nanotechnology, 6–14 September 2014, Beijing, China
LEGO2NANO关于纳米技术暑期学校2014年9月6-14日

An August 20, 2015 University College of London press release, which originated the news item, provides more detail about the upcoming two-week session,

The 2015 LEGO2NANO challenge is focused on developing a range of innovative imaging and motion-sensitive instruments based on optical pick-up units available in any DVD head.

Aside from the intense, daily making sessions, the programme is packed with trips and visits to local Chinese schools, university laboratories, the Chinese Academy of Sciences, Beijing’s electronics markets, Shenzhen’s Open Innovation Laboratory (SZOIL)  and SEEED Studio. The students will also have daily talks and presentations from international experts on a variety of subjects such as the international maker movement, the Chinese education system, augmented reality and DIY instrumentation.

You can find more information about LEGO2NANO here at openafm.com and here at http://lego2nano.openwisdomlab.net/.

Crowd computing for improved nanotechnology-enabled water filtration

This research is the product of a China/Israel/Switzerland collaboration on water filtration with involvement from the UK and Australia. Here’s some general information about the importance of water and about the collaboration in a July 5, 2015 news item on Nanowerk (Note: A link has been removed),

Nearly 800 million people worldwide don’t have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. Together, unsafe drinking water and the inadequate supply of water for hygiene purposes contribute to almost 90% of all deaths from diarrheal diseases — and effective water sanitation interventions are still challenging scientists and engineers.

A new study published in Nature Nanotechnology (“Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction”) proposes a novel nanotechnology-based strategy to improve water filtration. The research project involves the minute vibrations of carbon nanotubes called “phonons,” which greatly enhance the diffusion of water through sanitation filters. The project was the joint effort of a Tsinghua University-Tel Aviv University research team and was led by Prof. Quanshui Zheng of the Tsinghua Center for Nano and Micro Mechanics and Prof. Michael Urbakh of the TAU School of Chemistry, both of the TAU-Tsinghua XIN Center, in collaboration with Prof. Francois Grey of the University of Geneva.

A July 5, 2015 American Friends of Tel Aviv University news release (also on EurekAlert), which originated the news item, provides more details about the work,

“We’ve discovered that very small vibrations help materials, whether wet or dry, slide more smoothly past each other,” said Prof. Urbakh. “Through phonon oscillations — vibrations of water-carrying nanotubes — water transport can be enhanced, and sanitation and desalination improved. Water filtration systems require a lot of energy due to friction at the nano-level. With these oscillations, however, we witnessed three times the efficiency of water transport, and, of course, a great deal of energy saved.”

The research team managed to demonstrate how, under the right conditions, such vibrations produce a 300% improvement in the rate of water diffusion by using computers to simulate the flow of water molecules flowing through nanotubes. The results have important implications for desalination processes and energy conservation, e.g. improving the energy efficiency for desalination using reverse osmosis membranes with pores at the nanoscale level, or energy conservation, e.g. membranes with boron nitride nanotubes.

Crowdsourcing the solution

The project, initiated by IBM’s World Community Grid, was an experiment in crowdsourced computing — carried out by over 150,000 volunteers who contributed their own computing power to the research.

“Our project won the privilege of using IBM’s world community grid, an open platform of users from all around the world, to run our program and obtain precise results,” said Prof. Urbakh. “This was the first project of this kind in Israel, and we could never have managed with just four students in the lab. We would have required the equivalent of nearly 40,000 years of processing power on a single computer. Instead we had the benefit of some 150,000 computing volunteers from all around the world, who downloaded and ran the project on their laptops and desktop computers.

“Crowdsourced computing is playing an increasingly major role in scientific breakthroughs,” Prof. Urbakh continued. “As our research shows, the range of questions that can benefit from public participation is growing all the time.”

The computer simulations were designed by Ming Ma, who graduated from Tsinghua University and is doing his postdoctoral research in Prof. Urbakh’s group at TAU. Ming catalyzed the international collaboration. “The students from Tsinghua are remarkable. The project represents the very positive cooperation between the two universities, which is taking place at XIN and because of XIN,” said Prof. Urbakh.

Other partners in this international project include researchers at the London Centre for Nanotechnology of University College London; the University of Geneva; the University of Sydney and Monash University in Australia; and the Xi’an Jiaotong University in China. The researchers are currently in discussions with companies interested in harnessing the oscillation knowhow for various commercial projects.

 

Here’s a link to and a citation for the paper,

Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction by Ming Ma, François Grey, Luming Shen, Michael Urbakh, Shuai Wu,    Jefferson Zhe Liu, Yilun Liu, & Quanshui Zheng. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.134 Published online 06 July 2015

This paper is behind a paywall.

Final comment, I find it surprising that they used labour and computing power from 150,000 volunteers and didn’t offer open access to the paper. Perhaps the volunteers got their own copy? I certainly hope so.

Convergence at Canada’s Perimeter Institute: art/science and physics

It’s a cornucopia of convergence at Canada’s Perimeter Institute (PI). First, there’s a June 16, 2015 posting by Colin Hunter about converging art and science in the person of Alioscia Hamma,

In his professional life, Hamma is a lecturer in the Perimeter Scholars International (PSI) program and an Associate Professor at China’s Tsinghua University. His research seeks new insights into quantum entanglement, quantum statistical mechanics, and other aspects of the fundamental nature of reality.

Though he dreamed during his boyhood in Naples of one day becoming a comic book artist, he pursued physics because he believed – still believes – it is our most reliable tool for decoding our universe.

“Mathematics is ideal, clean, pure, and meaningless. Natural sciences are living, concrete, dirty, and meaningful. Physics is right in the middle, like the human condition,” says Hamma.

Art too, he says, resides in the middle ground between the world of ideals and the world as it presents itself to our senses.

So he draws. …

Perimeter Institute has provided a video where Hamma shares his ideas,

This is very romantic as in literature-romantic. If I remember rightly, ‘truth is beauty and beauty is truth’ was the motto of the romantic poets, Byron, Keats, and Shelley. It’s intriguing to hear similar ideas being applied to physics, philosophy, and art.

H/t to Speaking Up For Canadian Science regarding this second ‘convergence at PI‘. From the Convergence conference page on the Perimeter Institute website,

Convergence is Perimeter’s first-ever alumni reunion and a new kind of physics conference providing a “big picture” overview of fundamental physics and its future.

Physics is at a turning point. The most sophisticated experiments ever devised are decoding our universe with unprecedented clarity — from the quantum to the cosmos — and revealing a stunning simplicity that theory has yet to explain.

Convergence will bring together many of the world’s best minds in physics to probe the field’s most exciting ideas and chart a course for 21st century physics. The event will also celebrate, through commemorative lectures, the centenaries of two defining discoveries of the 20th century: Noether’s theorem and Einstein’s theory of general relativity.

Converge with us June 20-24. [Registration is now closed]

Despite registration being closed it is still possible to attend online,

CONVERGE ONLINE

Whether you’re at Convergence in person or joining us online, there are many ways to join the conversation:

You can find PI’s Convergence blog here.

Boron as a ‘buckyball’ or borospherene

First there was the borophene (like graphene but using boron rather than carbon) announcement from Brown University in my Jan. 28, 214 posting and now US (Brown University again) and Chinese researchers have developed a boron ‘buckyball’. Coincidentally, this announcement comes just after the 2014 World Cup final (July 13, 2014). Representations of buckyballs always resemble soccer balls. (Note: Germany won.)

From a July 14, 2014 news item on Azonano,

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Researchers from Brown University, Shanxi University and Tsinghua University in China have shown that a cluster of 40 boron atoms forms a hollow molecular cage similar to a carbon buckyball. It’s the first experimental evidence that a boron cage structure—previously only a matter of speculation—does indeed exist.

“This is the first time that a boron cage has been observed experimentally,” said Lai-Sheng Wang, a professor of chemistry at Brown who led the team that made the discovery. “As a chemist, finding new molecules and structures is always exciting. The fact that boron has the capacity to form this kind of structure is very interesting.”

The researchers have provided an illustration of their borospherene,

The carbon buckyball has a boron cousin. A cluster for 40 boron atoms forms a hollow cage-like molecule. Courtesy Brown University

The carbon buckyball has a boron cousin. A cluster for 40 boron atoms forms a hollow cage-like molecule. Courtesy Brown University

A July 9, 2104 Brown University news release (also on EurekAlert), which originated the news item, describes the borosphene’s predecessor, the carbon buckyball, and provides more details about this new molecule,

Carbon buckyballs are made of 60 carbon atoms arranged in pentagons and hexagons to form a sphere — like a soccer ball. Their discovery in 1985 was soon followed by discoveries of other hollow carbon structures including carbon nanotubes. Another famous carbon nanomaterial — a one-atom-thick sheet called graphene — followed shortly after.

After buckyballs, scientists wondered if other elements might form these odd hollow structures. One candidate was boron, carbon’s neighbor on the periodic table. But because boron has one less electron than carbon, it can’t form the same 60-atom structure found in the buckyball. The missing electrons would cause the cluster to collapse on itself. If a boron cage existed, it would have to have a different number of atoms.

Wang and his research group have been studying boron chemistry for years. In a paper published earlier this year, Wang and his colleagues showed that clusters of 36 boron atoms form one-atom-thick disks, which might be stitched together to form an analog to graphene, dubbed borophene. Wang’s preliminary work suggested that there was also something special about boron clusters with 40 atoms. They seemed to be abnormally stable compared to other boron clusters.

Figuring out what that 40-atom cluster actually looks like required a combination of experimental work and modeling using high-powered supercomputers.

On the computer, Wang’s colleagues modeled over 10,000 possible arrangements of 40 boron atoms bonded to each other. The computer simulations estimate not only the shapes of the structures, but also estimate the electron binding energy for each structure — a measure of how tightly a molecule holds its electrons. The spectrum of binding energies serves as a unique fingerprint of each potential structure.

The next step is to test the actual binding energies of boron clusters in the lab to see if they match any of the theoretical structures generated by the computer. To do that, Wang and his colleagues used a technique called photoelectron spectroscopy.

Chunks of bulk boron are zapped with a laser to create vapor of boron atoms. A jet of helium then freezes the vapor into tiny clusters of atoms. The clusters of 40 atoms were isolated by weight then zapped with a second laser, which knocks an electron out of the cluster. The ejected electron flies down a long tube Wang calls his “electron racetrack.” The speed at which the electrons fly down the racetrack is used to determine the cluster’s electron binding energy spectrum — its structural fingerprint.

The experiments showed that 40-atom-clusters form two structures with distinct binding spectra. Those spectra turned out to be a dead-on match with the spectra for two structures generated by the computer models. One was a semi-flat molecule and the other was the buckyball-like spherical cage.

“The experimental sighting of a binding spectrum that matched our models was of paramount importance,” Wang said. “The experiment gives us these very specific signatures, and those signatures fit our models.”

The borospherene molecule isn’t quite as spherical as its carbon cousin. Rather than a series of five- and six-membered rings formed by carbon, borospherene consists of 48 triangles, four seven-sided rings and two six-membered rings. Several atoms stick out a bit from the others, making the surface of borospherene somewhat less smooth than a buckyball.

As for possible uses for borospherene, it’s a little too early to tell, Wang says. One possibility, he points out, could be hydrogen storage. Because of the electron deficiency of boron, borospherene would likely bond well with hydrogen. So tiny boron cages could serve as safe houses for hydrogen molecules.

But for now, Wang is enjoying the discovery.

“For us, just to be the first to have observed this, that’s a pretty big deal,” Wang said. “Of course if it turns out to be useful that would be great, but we don’t know yet. Hopefully this initial finding will stimulate further interest in boron clusters and new ideas to synthesize them in bulk quantities.”

The theoretical modeling was done with a group led by Prof. Si-Dian Li from Shanxi University and a group led by Prof. Jun Li from Tsinghua University. The work was supported by the U.S. National Science Foundation (CHE-1263745) and the National Natural Science Foundation of China.

Here’s a link to and a citation for the paper,

Observation of an all-boron fullerene by Hua-Jin Zhai, Ya-Fan Zhao, Wei-Li Li, Qiang Chen, Hui Bai, Han-Shi Hu, Zachary A. Piazza, Wen-Juan Tian, Hai-Gang Lu, Yan-Bo Wu, Yue-Wen Mu, Guang-Feng Wei, Zhi-Pan Liu, Jun Li, Si-Dian Li, & Lai-Sheng Wang. Nature Chemistry (2014) doi:10.1038/nchem.1999 Published online 13 July 2014

This paper is behind a paywall.

Bringing the Nanoworld Together Workshop in Beijing, China, Sept. 24 – 25, 2014

The speakers currently confirmed for the ‘Bringing the Nanoworld Together Workshop organized by Oxford Instruments are from the UK, China, Canada, the US, and the Netherlands as per a July 2, 2014 news item on Nanowerk (Note: A link has been removed),

‘Bringing the Nanoworld Together’ is an event organised by Oxford Instruments to share the expertise of scientists in the field of Nanotechnology. It will be hosted at the IOS-CAS [Institute of Semiconductors-Chinese Academy of Sciences] Beijing.

Starting with half day plenary sessions on 2D materials with guest plenary speaker Dr Aravind Vijayaraghavan from the National Graphene Institute in Manchester, UK, and on Quantum Information Processing with guest plenary speaker Prof David Cory from the Institute for Quantum Computing, University of Waterloo, Canada, Oxford Instruments’ seminar at the IOP in Beijing from 24-25th September [2014] promises to discuss cutting edge nanotechnology solutions for multiple applications.

A July 1, 2014 Oxford Instruments press release, which originated the news item, describes the sessions and provides more details about the speakers,

Two parallel sessions will focus on thin film processing, & materials characterisation, surface science and cryogenic environments and a wide range of topics will be covered within each technical area. These sessions will include guest international and Chinese speakers from renowned research institutions, speakers from the host institute, and technical experts from Oxford Instruments. This will also present an excellent opportunity for networking between all participants.

Confirmed speakers include the following, but more will be announced soon:

Dr. Aravind Vijayaraghavan, National Graphene Institute, Manchester, UK
Prof David Cory, Institute for Quantum Computing, University of Waterloo, Canada
Prof Guoxing Miao, Institute for Quantum Computing, University of Waterloo, Canada
Prof. HE Ke, Tsinghua University, Institute of Physics, CAS, China
Dr. WANG Xiaodong, Institute of Semiconductors, CAS, China
Prof Erwin Kessels, Tue Eindhoven, Netherlands
Prof. ZENG Yi, Institute of Semiconductor, CAS, China
Prof Robert Klie, University of Illinois Chicago, USA
Prof. Xinran WANG, Nanjing University, China
Prof. Zhihai CHENG, National Centre for Nanoscience and Technology, China
Prof. Yeliang WANG, Institute of Physics, CAS, China

The thin film processing sessions will review latest etch and deposition technological advances, including: ALD, Magnetron Sputtering, ICP PECVD, Nanoscale Etch, MEMS, MBE and more.

Materials characterisation, Surface Science and Cryogenic Environment sessions will cover multiple topics and technologies including: Ultra high vacuum SPM, Cryo free low temperature solutions, XPS/ESCA, an introduction to atomic force microscopy (AFM) and applications such as nanomechanics, In-situ heating and tensile characterisation using EBSD, Measuring Layer thicknesses and compositions using EDS, Nanomanipulation and fabrication within the SEM / FIB.

The host of last year’s Nanotechnology Tools seminar in India, Prof. Rudra Pratap, Chairperson at the Centre for Nano Science and Engineering, Indian Institute of Science, IISC Bangalore commented, “This seminar has been extremely well organised with competent speakers covering a variety of processes and tools for nanofabrication. It is great to have practitioners of the art give talks and provide tips and solutions based on their experience, something that cannot be found in text books.”

“This workshop is a great opportunity for a wide range of scientists in research and manufacturing to discover practical aspects of many new and established processes, technologies and applications, directly from renowned scientists and a leading manufacturer with over 50 years in the industry”, comments Mark Sefton, Sector Head of Oxford Instruments NanoSolutions, “Delegates appreciate the informal workshop atmosphere of these events, encouraging delegates to participate through open discussion and sharing their questions and experiences.”

This seminar is free of charge but prior booking is essential.

You can register on the Oxford Instruments website’s Bringing the Nanoworld Together Workshop webpage,

China and Israel make big nanotechnology plans

A recently launched $300M China-Israel project seems to signal a new intimacy in relations between the two countries. From a May 25, 2014 article by Ruthie Blum for Israel21c.org,

The launch of a $300 million joint research project between Tel Aviv University and Tsinghua University in Beijing has the academic communities and political echelons in both countries buzzing.

The opening of the XIN Center was announced at Tel Aviv University in mid-May amid great fanfare. The name is a play on words; “xin” means “new” in Chinese, and in English the “X” coupled with the “in” can stand for cross-innovation, cross-intelligence and/or cross-ingenuity.

The endeavor, to be funded by government and private sources, will initially focus on nanotechnology, with an emphasis on medical and optics applications, and later branch out into fields such as biotech and energy.

So far, nearly a third of the money has been raised for the project, which will involve recruiting research fellows from among the best and brightest of the graduate students of both universities to work in tandem (and fly back and forth) to develop products for eventual commercialization.

To raise the rest of the money, an investment fund is being established by Infinity Group, Israel’s largest investment firm, to seed ventures initiated by XIN fellows.

According to Blum, the deal is the outcome of a trip,

The idea for the ambitious program began inauspiciously, during a trip by Israeli scientists to meet with their counterparts in China.

“The project started bottom-up in Beijing,” said Klafter [TAU President Joseph Klafter]. “We fell in love with one another.”

… language is not the main gap between the Israeli and Chinese students. As both Hanein [Prof. Yael Hanein, head of the Tel Aviv University Center for Nanoscience and Nanotechnology] and Jining [Tsinghua University President Chen Jining]  pointed out, it is the cultural differences that are the most pronounced – and also a positive contrast that can be mutually beneficial.

“The Israelis are less obedient than the Chinese,” observed Hanein.

“The Israelis challenge authority,” said Jining. “And the Chinese bring harmony. The two groups learn from each other and create a balance.”

Jining added that though Tsinghua University collaborates with other academic institutions around the world, “This is the first that is so in-depth. We see it as a vehicle for nurturing future leaders of innovation – for cultivating and training a new generation of entrepreneurs.”

Israel’s Prime Minister, Binyamin (Benjamin) Netanyahu provides an economic perspective,

“China is Israel’s largest trading partner in Asia and fast becoming perhaps Israel’s largest trading partner, period, as we move into the future,” Netanyahu said during a meeting with Vice Premier Yandong at his office in Jerusalem following the XIN launch in Tel Aviv.

There are more details in a May 20, 2014 article written by Niv Elis & Victoria Kezr for the Jerusalem Post,

The first round, which will focus only on nano-technology, will recruit only seven advanced degree students from Tel Aviv University and 14 in China this summer.

While governments are pitching in some money for the $300m. price tag, the universities will seek private donations for the rest.

Israel’s Infinity group set up $16m. fund, comprising investors from Chinese industries and Tsinghua University alumni to help foot the bill.

The Jerusalem Post article mentions this opening, which took place on the same day,

Also on Monday [May 19, 2014], students and delegates from across the globe gathered to see Vice Premier of The People’s Republic of China Lui Yandong speak at the inauguration of the Confucius Institute at the Hebrew University of Jerusalem.

Confucius Institutes have been established at universities around the world by the Chinese Ministry of Education to promote the learning of Mandarin Chinese and Chinese culture.

This is the second such institute, following the founding of Tel Aviv University’s Confucius Institute in 2007.

“The institute in Tel Aviv is for basic Chinese teaching. Here in the Hebrew University they have East Asian studies and they’ll be cooperation with that. Here there’ll be advanced study of Chinese history and culture,” said 21-year-old student Noa Yang, who not only helped organize the event but also sang during the ceremony.

Both the XIN Center and the new Confucius Institute are part of a much larger initiative according to the Jerusalem Post article,

The initiatives are the latest in a wave of cooperative agreements between Israel and China, not just in education, but also politics and business.

In September [2013], Technion-Israel Institute of Technology in Haifa received a $130m. grant from the Li Ka Shing Foundation to build an academy called the Technion Guangdong Institute of Technology as a joint venture with China’s Shantou University.

Blum’s article mentions yet another project, an agricultural technology incubator (Note: A link has been removed),

More recently, as ISRAEL21c reported in early May, a joint-venture agricultural technology incubator is slated to be built in Anhui Province, China. It will operate under the auspices of Trendlines Agtech, a specialized investment unit of Israel’s Trendlines Group, which supports early-stage, promising medical and agricultural technology companies in Israel.

These kinds of cooperative efforts are part of a comprehensive plan by Prime Minister Benjamin Netanyahu to strengthen economic and technological ties with the People’s Republic. It was the impetus for his trip to China last year [2013].

Both these articles indicate that China and Israel are, as noted in the beginning of this post, developing more intimate relations both cultural and economic.

ETA May 28, 2014: JTA.org published a May 28, 2014 news item about a new Israel-China publication (Note: Links have been removed),

Introducing the Times of Israel Chinese on Wednesday [May 28, 2014], Times of Israel founding editor David Horovitz said in a column that it “focuses on the evolving high-tech and innovation areas of the Israeli-Chinese relationship.”

He added, “It also dips into Israeli culture and society, giving Chinese readers insights into Israel beyond the spheres of business and high-tech.”

You can find Times of Israel Chinese here but you will need Chinese language reading skills to fully appreciate it.