Tag Archives: UCSF

Restoring words with a neuroprosthesis

There seems to have been an update to the script for the voiceover. You’ll find it at the 1 min. 30 secs. mark (spoken: “with up to 93% accuracy at 18 words per minute`’ vs. written “with median 74% accuracy at 15 words per minute)".

A July 14, 2021 news item on ScienceDaily announces the latest work on a neuroprosthetic from the University of California at San Francisco (UCSF),

Researchers at UC San Francisco have successfully developed a “speech neuroprosthesis” that has enabled a man with severe paralysis to communicate in sentences, translating signals from his brain to the vocal tract directly into words that appear as text on a screen.

The achievement, which was developed in collaboration with the first participant of a clinical research trial, builds on more than a decade of effort by UCSF neurosurgeon Edward Chang, MD, to develop a technology that allows people with paralysis to communicate even if they are unable to speak on their own. The study appears July 15 [2021] in the New England Journal of Medicine.

A July 14, 2021 UCSF news release (also on EurekAlert), which originated the news item, delves further into the topic,

“To our knowledge, this is the first successful demonstration of direct decoding of full words from the brain activity of someone who is paralyzed and cannot speak,” said Chang, the Joan and Sanford Weill Chair of Neurological Surgery at UCSF, Jeanne Robertson Distinguished Professor, and senior author on the study. “It shows strong promise to restore communication by tapping into the brain’s natural speech machinery.”

Each year, thousands of people lose the ability to speak due to stroke, accident, or disease. With further development, the approach described in this study could one day enable these people to fully communicate.

Translating Brain Signals into Speech

Previously, work in the field of communication neuroprosthetics has focused on restoring communication through spelling-based approaches to type out letters one-by-one in text. Chang’s study differs from these efforts in a critical way: his team is translating signals intended to control muscles of the vocal system for speaking words, rather than signals to move the arm or hand to enable typing. Chang said this approach taps into the natural and fluid aspects of speech and promises more rapid and organic communication.

“With speech, we normally communicate information at a very high rate, up to 150 or 200 words per minute,” he said, noting that spelling-based approaches using typing, writing, and controlling a cursor are considerably slower and more laborious. “Going straight to words, as we’re doing here, has great advantages because it’s closer to how we normally speak.”

Over the past decade, Chang’s progress toward this goal was facilitated by patients at the UCSF Epilepsy Center who were undergoing neurosurgery to pinpoint the origins of their seizures using electrode arrays placed on the surface of their brains. These patients, all of whom had normal speech, volunteered to have their brain recordings analyzed for speech-related activity. Early success with these patient volunteers paved the way for the current trial in people with paralysis.

Previously, Chang and colleagues in the UCSF Weill Institute for Neurosciences mapped the cortical activity patterns associated with vocal tract movements that produce each consonant and vowel. To translate those findings into speech recognition of full words, David Moses, PhD, a postdoctoral engineer in the Chang lab and lead author of the new study, developed new methods for real-time decoding of those patterns, as well as incorporating statistical language models to improve accuracy.

But their success in decoding speech in participants who were able to speak didn’t guarantee that the technology would work in a person whose vocal tract is paralyzed. “Our models needed to learn the mapping between complex brain activity patterns and intended speech,” said Moses. “That poses a major challenge when the participant can’t speak.”

In addition, the team didn’t know whether brain signals controlling the vocal tract would still be intact for people who haven’t been able to move their vocal muscles for many years. “The best way to find out whether this could work was to try it,” said Moses.

The First 50 Words

To investigate the potential of this technology in patients with paralysis, Chang partnered with colleague Karunesh Ganguly, MD, PhD, an associate professor of neurology, to launch a study known as “BRAVO” (Brain-Computer Interface Restoration of Arm and Voice). The first participant in the trial is a man in his late 30s who suffered a devastating brainstem stroke more than 15 years ago that severely damaged the connection between his brain and his vocal tract and limbs. Since his injury, he has had extremely limited head, neck, and limb movements, and communicates by using a pointer attached to a baseball cap to poke letters on a screen.

The participant, who asked to be referred to as BRAVO1, worked with the researchers to create a 50-word vocabulary that Chang’s team could recognize from brain activity using advanced computer algorithms. The vocabulary – which includes words such as “water,” “family,” and “good” – was sufficient to create hundreds of sentences expressing concepts applicable to BRAVO1’s daily life.

For the study, Chang surgically implanted a high-density electrode array over BRAVO1’s speech motor cortex. After the participant’s full recovery, his team recorded 22 hours of neural activity in this brain region over 48 sessions and several months. In each session, BRAVO1 attempted to say each of the 50 vocabulary words many times while the electrodes recorded brain signals from his speech cortex.

Translating Attempted Speech into Text

To translate the patterns of recorded neural activity into specific intended words, Moses’s two co-lead authors, Sean Metzger and Jessie Liu, both bioengineering graduate students in the Chang Lab, used custom neural network models, which are forms of artificial intelligence. When the participant attempted to speak, these networks distinguished subtle patterns in brain activity to detect speech attempts and identify which words he was trying to say.

To test their approach, the team first presented BRAVO1 with short sentences constructed from the 50 vocabulary words and asked him to try saying them several times. As he made his attempts, the words were decoded from his brain activity, one by one, on a screen.

Then the team switched to prompting him with questions such as “How are you today?” and “Would you like some water?” As before, BRAVO1’s attempted speech appeared on the screen. “I am very good,” and “No, I am not thirsty.”

Chang and Moses found that the system was able to decode words from brain activity at rate of up to 18 words per minute with up to 93 percent accuracy (75 percent median). Contributing to the success was a language model Moses applied that implemented an “auto-correct” function, similar to what is used by consumer texting and speech recognition software.

Moses characterized the early trial results as a proof of principle. “We were thrilled to see the accurate decoding of a variety of meaningful sentences,” he said. “We’ve shown that it is actually possible to facilitate communication in this way and that it has potential for use in conversational settings.”

Looking forward, Chang and Moses said they will expand the trial to include more participants affected by severe paralysis and communication deficits. The team is currently working to increase the number of words in the available vocabulary, as well as improve the rate of speech.

Both said that while the study focused on a single participant and a limited vocabulary, those limitations don’t diminish the accomplishment. “This is an important technological milestone for a person who cannot communicate naturally,” said Moses, “and it demonstrates the potential for this approach to give a voice to people with severe paralysis and speech loss.”

… all of UCSF. Funding sources [emphasis mine] included National Institutes of Health (U01 NS098971-01), philanthropy, and a sponsored research agreement with Facebook Reality Labs (FRL), [emphasis mine] which completed in early 2021.

UCSF researchers conducted all clinical trial design, execution, data analysis and reporting. Research participant data were collected solely by UCSF, are held confidentially, and are not shared with third parties. FRL provided high-level feedback and machine learning advice.

Here’s a link to and a citation for the paper,

Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria by David A. Moses, Ph.D., Sean L. Metzger, M.S., Jessie R. Liu, B.S., Gopala K. Anumanchipalli, Ph.D., Joseph G. Makin, Ph.D., Pengfei F. Sun, Ph.D., Josh Chartier, Ph.D., Maximilian E. Dougherty, B.A., Patricia M. Liu, M.A., Gary M. Abrams, M.D., Adelyn Tu-Chan, D.O., Karunesh Ganguly, M.D., Ph.D., and Edward F. Chang, M.D. N Engl J Med 2021; 385:217-227 DOI: 10.1056/NEJMoa2027540 Published July 15, 2021

This paper is mostly behind a paywall but you do have this option: “Create your account to get 2 free subscriber-only articles each month.”

*Sept. 4, 2023 I have made a few minor corrections (a) removed an extra space (b) removed an extra ‘a’.

Detecting off-target effects of CRISPR gene-editing

In amidst all the hyperbole about CRISPR (clustered regularly interspaced short palindromic repeats), the gene editing technology, you will sometimes find a mild cautionary note. It seems that CRISPR is not as precise as you might think.

Some months ago there was a story about research into detecting possible unanticipated (off target) effects from using CRISPR, from an April 19, 2019 news item on ScienceDaily,

Since the CRISPR genome editing technology was invented in 2012, it has shown great promise to treat a number of intractable diseases. However, scientists have struggled to identify potential off-target effects in therapeutically relevant cell types, which remains the main barrier to moving therapies to the clinic. Now, a group of scientists at the Gladstone Institutes and the Innovative Genomics Institute (IGI), with collaborators at AstraZeneca, have developed a reliable method to do just that.

An April 19, 2019 Gladstone Institutes press release by Julie Langelier, which originated the press release, provides details,

CRISPR edits a person’s genome by cutting the DNA at a specific location. The challenge is to ensure the tool doesn’t also make cuts elsewhere along the DNA—damage referred to as “off-target effects,” which could have unforeseen consequences.

In a study published in the journal Science, the two first authors, Beeke Wienert and Stacia Wyman, found a new way to approach the problem.

“When CRISPR makes a cut, the DNA is broken,” says Wienert, PhD, who began the work in Jacob E. Corn’s IGI laboratory and who is now a postdoctoral scholar in Bruce R. Conklin’s laboratory at Gladstone. “So, in order to survive, the cell recruits many different DNA repair factors to that particular site in the genome to fix the break and join the cut ends back together. We thought that if we could find the locations of these DNA repair factors, we could identify the sites that have been cut by CRISPR.”

To test their idea, the researchers studied a panel of different DNA repair factors. They found that one of them, called MRE11, is one of the first responders to the site of the cut. Using MRE11, the scientists developed a new technique, named DISCOVER-Seq, that can identify the exact sites in the genome where a cut has been made by CRISPR.

“The human genome is extremely large—if you printed the entire DNA sequence, you would end up with a novel as tall as a 16-story building,” explains Conklin, MD, senior investigator at Gladstone and deputy director at IGI. “When we want to cut DNA with CRISPR, it’s like we’re trying to remove one specific word on a particular page in that novel.”

“You can think of the DNA repair factors as different types of bookmarks added to the book,” Conklin adds. “While some may bookmark an entire chapter, MRE11 is a bookmark that drills down to the exact letter than has been changed.”

Different methods currently exist to detect CRISPR off-target effects. However, they come with limitations that range from producing false-positive results to killing the cells they’re examining. In addition, the most common method used to date is currently limited to cultured cells in the laboratory, excluding its use in patient-derived stem cells or animal tissue.

“Because our method relies on the cell’s natural repair process to identify cuts, it has proven to be much less invasive and much more reliable,” says Corn, PhD, who now runs a laboratory at ETH Zurich. “We were able to test our new DISCOVER-Seq method in induced pluripotent stem cells, patient cells, and mice, and our findings indicate that this method could potentially be used in any system, rather than just in the lab.”

The DISCOVER-Seq method, by being applied to new cell types and systems, has also revealed new insights into the mechanisms used by CRISPR to edit the genome, which will lead to a better understanding of the biology of how this tool works.

“The new method greatly simplifies the process of identifying off-target effects while also increasing the accuracy of the results,” says Conklin, who is also a professor of medical genetics and molecular pharmacology at UC San Francisco (UCSF). “This could allow us to better predict how genome editing would work in a clinical setting. As a result, it represents an essential step in improving pre-clinical studies and bringing CRISPR-based therapies closer to the patients in need.”

###

About the Study

The paper “Unbiased detection of CRISPR off-targets in vivo 1 using DISCOVER-Seq” was published by the journal Science on April 19, 2019. Gladstone’s Hannah L. Watry and Luke M. Judge (who is also at UCSF) contributed to this study. Other authors also include Christopher D. Richardson, Jonathan T. Vu, and Katelynn R. Kazane from IGI, Charles D. Yeh from ETH Zurich, as well as Pinar Akcakaya, Michelle J. Porritt, and Michaela Morlock from AstraZeneca.

The work was supported by Gladstone, the National Institutes of Health (grants EY028249 and HL13535801), the Li Ka Shing Foundation, the Heritage Medical Research Institute, the Fanconi Anemia Research Foundation, a Sir Keith Murdoch Fellowship from the American Australian Association, and an Early Career Fellowship from the National Health and Medical Research Council.

About the Gladstone Institute

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact—unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.

Before getting to the link and citation that I usually offer you might find this July 17, 2018 posting, The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle of interest. I wonder if this latest news affected the CRISPR market as the did the news in 2018.

In addition to the link in the press release, I am including a link and a citation for the study,

Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq by Beeke Wienert, Stacia K. Wyman, Christopher D. Richardson, Charles D. Yeh, Pinar Akcakaya, Michelle J. Porritt, Michaela Morlock, Jonathan T. Vu, Katelynn R. Kazane, Hannah L. Watry, Luke M. Judge, Bruce R. Conklin, Marcello Maresca, Jacob E. Corn. Science 19 Apr 2019: Vol. 364, Issue 6437, pp. 286-289 DOI: 10.1126/science.aav9023

This paper is behind a paywall.

Money

Over the last 10 or more years, I have, on occasion made a point, of finding out about the funding for various non-profit agencies and projects. I find that sort of thing interesting and have hoped that my readers might feel the same way.

It seems that my readers and I might not be the only ones to care about the source of funding. Joi Ito who held appointments with Harvard University and the Massachusetts Institute of Technology (MIT) resigned from his various appointments on Sept. 7, 2019 after news of major donations from Jeffrey Epstein (a disgraced financier and sex offender) to MIT were revealed. From the Joi Ito’s entry on Wikipedia (Note: Links have been removed),

Joichi “Joi” Ito (伊藤 穰一 Itō Jōichi, born June 19, 1966) is a Japanese activist, entrepreneur and venture capitalist. He is the former director of the MIT Media Lab, and a former professor of the practice of media arts and sciences at MIT. He is a former visiting professor of practice at the Harvard Law School.[1][2]

Ito has received recognition for his role as an entrepreneur focused on Internet and technology companies and has founded, among other companies, PSINet Japan, Digital Garage and Infoseek Japan. Ito is a strategic advisor to Sony Corporation[3] and general partner of Neoteny Labs.[4] Ito writes a monthly column in the Ideas section of Wired.[5]

Ito resigned from his roles at MIT, Harvard, the John D. and Catherine T. MacArthur Foundation, the Knight Foundation, PureTech Health and The New York Times Company on September 7, 2019, following allegations of financial ties to sex offender and financier Jeffrey Epstein.[2][6][7]

Many, many institutions have accepted funds from sketchy characters and orgnaizations. It’s not new to academia, the sciences, or the arts. For a contemporary view of how some of this works, take a look at Anand Giridharadas’s 2018 book, Winners Take All. From the webepage for the book,

WINNERS TAKE ALL
The Elite Charade of Changing the World
 
An insider’s groundbreaking investigation of how the global elite’s efforts to “change the world” preserve the status quo and obscure their role in causing the problems they later seek to solve.

Former New York Times columnist Anand Giridharadas takes us into the inner sanctums of a new gilded age, where the rich and powerful fight for equality and justice any way they can–except ways that threaten the social order and their position atop it. We see how they rebrand themselves as saviors of the poor; how they lavishly reward “thought leaders” who redefine “change” in winner-friendly ways; and how they constantly seek to do more good, but never less harm. We hear the limousine confessions of a celebrated foundation boss; witness an American president hem and haw about his plutocratic benefactors; and attend a cruise-ship conference where entrepreneurs celebrate their own self-interested magnanimity.

I don’t recall any mention of Epstein in Giridharadas’s book but he did have this to say on Twitter about Epstein,

Anand Giridharadas‏Verified account @AnandWrites



Everything that made Epstein’s life possible remains in place after his arrest: the Caribbean tax havens, the hidden real-estate deals, the buying of politicians, the nonprofits that sell reputational glow, the editors who cover for people of their class.

7:34 PM – 8 Jul 2019

it can’t be easy to withstand the temptation to take the money and hope that the misdoings have been exaggerated or that they have stopped. I imagine Ito and others are under constant pressure to get funds.

AstraZeneca

One of the partners in this research about CRISPR, AstraZeneca, is a pharmaceutical company. In fact, it’s one of the largest in the world (from the AstraZeneca Wikipedia entry; Note: Links have been removed),

AstraZeneca plc[4] is a British-Swedish multinational pharmaceutical and biopharmaceutical company. In 2013, it moved its headquarters to Cambridge, UK, and concentrated its R&D in three sites: Cambridge; Gaithersburg, Maryland, USA (location of MedImmune) for work on biopharmaceuticals; and Mölndal (near Gothenburg) in Sweden, for research on traditional chemical drugs.[5] AstraZeneca has a portfolio of products for major disease areas including cancer, cardiovascular, gastrointestinal, infection, neuroscience, respiratory and inflammation.[6]

The company was founded in 1999 through the merger of the Swedish Astra AB and the British Zeneca Group[7][8] (itself formed by the demerger of the pharmaceutical operations of Imperial Chemical Industries in 1993). Since the merger it has been among the world’s largest pharmaceutical companies and has made numerous corporate acquisitions, including Cambridge Antibody Technology (in 2006), MedImmune (in 2007), Spirogen (in 2013) and Definiens (by MedImmune in 2014).

Controversies

Seroquel
In April 2010 AstraZeneca settled a qui tam lawsuit brought by Stefan P. Kruszewski for $520 million to settle allegations that the company defrauded Medicare, Medicaid, and other government-funded health care programs in connection with its marketing and promotional practices for the blockbuster atypical antipsychotic, Seroquel.[76]
In March 2011, AstraZeneca settled a lawsuit in the United States totalling $68.5 million to be divided up to 38 states.[77]
Nexium
The company’s most commercially successful medication is esomeprazole (Nexium). The primary uses are treatment of gastroesophageal reflux disease, treatment and maintenance of erosive esophagitis, treatment of duodenal ulcers caused by Helicobacter pylori, prevention of gastric ulcers in those on chronic NSAID therapy, and treatment of gastrointestinal ulcers associated with Crohn’s disease. When it is manufactured the result is a mixture of two mirror-imaged molecules, R and S. Two years before the omeprazole patent expired, AstraZeneca patented S-omeprazole in pure form, pointing out that since some people metabolise R-omeprazole slowly, pure S-omeprazole treatment would give higher dose efficiency and less variation between individuals.[78] In March 2001, the company began to market Nexium, as it would a brand new drug.[79]

In 2007, Marcia Angell, former editor-in-chief of the New England Journal of Medicine and a lecturer in social medicine at the Harvard Medical School, said in Stern, a German-language weekly newsmagazine, that AstraZeneca’s scientists had misrepresented their research on the drug’s efficiency, saying “Instead of using presumably comparable doses [of each drug], the company’s scientists used Nexium in higher dosages. They compared 20 and 40 mg Nexium with 20 mg Prilosec. With the cards having been marked in that way, Nexium looked like an improvement – which however was only small and shown in only two of the three studies.”[83]
Bildman fraud, and faithless servant clawback

Study
In 2004, University of Minnesota research participant Dan Markingson committed suicide while enrolled in an industry-sponsored pharmaceutical trial comparing three FDA-approved atypical antipsychotics: Seroquel (quetiapine), Zyprexa (olanzapine), and Risperdal (risperidone). University of Minnesota Professor of Bioethics Carl Elliott noted that Markingson was enrolled in the study against the wishes of his mother, Mary Weiss, and that he was forced to choose between enrolling in the study or being involuntarily committed to a state mental institution.[89] Further investigation revealed financial ties to AstraZeneca by Markingson’s psychiatrist, Stephen C. Olson, oversights and biases in AstraZeneca’s trial design, and the inadequacy of university Institutional Review Board (IRB) protections for research subjects.[90][unreliable source?] A 2005 FDA investigation cleared the university. Nonetheless, controversy around the case has continued. A Mother Jones article[89] resulted in a group of university faculty members sending a public letter to the university Board of Regents urging an external investigation into Markingson’s death.[91]

Is it ok to take money and/or other goods and services from them?

Innovative Genomics Institute (IGI)

Also mentioned as a partner in the research, is the Innovative Genomics Institute (IGI). Here’s more from the company’s Overview webpage (Note: Links have been removed),,

The IGI began in 2014 through the Li Ka Shing Center for Genetic Engineering, which was created thanks to a generous donation from the Li Ka Shing Foundation. [emphasis mine] The Innovative Genomics Initiative formed as a partnership between the University of California, Berkeley and the University of California, San Francisco. Combining the fundamental research expertise and the biomedical talent at UCB and UCSF, the Innovative Genomics Initiative focused on unraveling the mechanisms underlying CRISPR-based genome editing and applying this technology to improve human health. Early achievements include improving the efficiency of gene replacement and foundational work toward a treatment for sickle cell disease.

In late 2015, generous philanthropic donations enabled a bolder vision and broader mission for the IGI. With this expansion came a significant enhancement of the organization, and in January 2017, the IGI officially re-launched as the Innovative Genomics Institute.

As it turns out, there is a Li Ka-shing and he has a bit of a history with Vancouver (Canada). First, here’s more about him from the Li Ka-shing Wikipedia entry,(Note: Links have been removed),

Sir Li Ka-shing GBM KBE JP[4] (born 13 June 1928)[5][6] is a Hong Kong business magnate, investor, and philanthropist. As of June 2019, Li is the 30th richest person in the world, with an estimated net wealth of US$29.4 billion.[3] He is the senior advisor for CK Hutchison Holdings,[7] after he retired from the Chairman of the Board in May 2018;[8] through it, he is the world’s leading port investor, developer, and operator of the largest health and beauty retailer in Asia and Europe.[9]

Besides business through his flagship companies Cheung Kong Property Holdings and CK Hutchison Holdings Limited, Li Ka-shing has also personally invested extensively in real estate in Singapore and Canada. He was the single largest shareholder of Canadian Imperial Bank of Commerce (CIBC), the fifth largest bank in Canada, until the sale of his share in 2005 (with all proceedings donated, see below). He is also the majority shareholder of a major energy company, Husky Energy, based in Alberta, Canada.[48]

In January 2005, Li announced plans to sell his $1.2 billion CAD stake in the Canadian Imperial Bank of Commerce, with all proceeds going to private charitable foundations established by Li, including the Li Ka Shing Foundation in Hong Kong and the Li Ka Shing (Canada) Foundation based in Toronto, Ontario.[49]

His son Victor Li was kidnapped in 1996 on his way home after work by gangster “Big Spender” Cheung Tze-keung. Li Ka-shing paid a ransom of HK$1 billion, directly to Cheung who had come to his house.[53] A report was never filed with Hong Kong police. Instead the case was pursued by Mainland authorities, leading to Cheung’s execution in 1998, an outcome not possible under Hong Kong law. Rumours circulated of a deal between Li and the Mainland.[53] In interviews, when this rumor was brought up, Li brushed it off and dismissed it completely.

Li Ka-shing was well known here in Vancouver due to his purchase of a significant chunk of land in the city. This January 9, 2015 article by Glen Korstrum for Business in Vancouver notes some rather interesting news and contextualizes with Li’s Vancouver history,

Hong Kong billionaire Li Ka-shing is restructuring his empire and shifting his base to the Cayman Islands and away from the Chinese special administrative region.

His January 9 [2015] announcement came the same day that Forbes ranked him as Hong Kong’s richest man for the 17th consecutive year, with a total wealth of US$33.5 billion.

Li is best known in Vancouver for buying an 82.5-hectare parcel of land around False Creek for $328 million in 1988 along with partners, who included fellow Hong Kong tycoons, Lee Shau Kee and Cheng Yu Tung.

The group formed Concord Pacific, which redeveloped the site that had been home to Vancouver’s 1986 world’s fair, Expo ’86.

Li cashed out of Concord Pacific in the late 1990s and, in 2007, invested in Deltaport through his Hutchison Port Holdings.

Li’s biggest Canadian holding is his controlling stake in Husky Energy. …

Intriguing, yes? It also makes the prospect of deciding whose money you’re going to accept a bit more complicated than it might seem.

Gladstone Institutes

In what seems to be a decided contrast to the previous two partners, here’s more from the Gladstone Institutes, About Us, History webpage,

Born in London in 1910, J. David Gladstone was orphaned as a boy and came to North America at age 10. He began a career in real estate in Southern California at age 28, eventually making his fortune as the first developer to create the region’s enclosed shopping malls (such as the Northridge Fashion Center mall). His accidental death in 1971 left an estate valued at about $8 million to support medical students interested in research.

It soon became clear to the three trustees administering Mr. Gladstone’s trust that his legacy could support a far more substantial philanthropic enterprise. In 1979, they launched The J. David Gladstone Institutes under the leadership of Robert W. Mahley, MD, PhD, a leading cardiovascular scientist who at the time was working at the National Institutes of Health.

In 2010, after three decades of leading Gladstone, Dr. Mahley stepped down in order to return to more active research. That same year, R. Sanders “Sandy” Williams, MD, left Duke University, where he had been Dean of the School of Medicine—as well as Senior Vice Chancellor and Senior Advisor for International Strategy—to become Gladstone’s new president. The following year, the S.D. Bechtel, Jr. Foundation [emphasis mine] helped launch the Center for Comprehensive Alzheimer’s Disease Research with a generous $6M lead gift, while the Roddenberry Foundation [emphasis mine] gave $5 million to launch the Roddenberry Center for Stem Cell Biology and Medicine. Also in 2011, the independent and philanthropic Gladstone Foundation formed with the mission of expanding the financial resources available to drive’s Gladstone’s mission.

The S. D. Bechtel jr. mentioned is associated with Bechtel, an international engineering firm. I did not find any scandals or controversies in the Bechtel Wikipedia entry. That seemed improbable so I did a little digging and found a January 30, 2015 (?) article by Matthew Brunwasser for foreignpolicy.com (Note: A link has been removed),

Steamrolled; A special investigation into the diplomacy of doing business abroad.

One of Europe’s poorest countries wanted a road, so U.S. mega-contractor Bechtel sold it a $1.3 billion highway, with the backing of a powerful American ambassador. Funny thing is, the highway is barely being used—and the ambassador is now working for Bechtel.

Bechtel, the largest contractor by revenue in the United States and the third-largest internationally, according to an annual list compiled by the Engineering News-Record, has in recent years constructed expensive highways in Kosovo, Croatia, Romania, and Albania. A six-month investigation by the Investigative Reporting Program at the University of California at Berkeley Graduate School of Journalism has found that these highways were boondoggles for the countries in which they were constructed, and that members of governments and international institutions often saw problems coming before Bechtel (along with its Turkish joint venture partner, Enka) even began work on the roads.

My other source is a May 8, 1988 article by Walter Russell Mead for the Los Angeles Time,s

From San Francisco to Saudi Arabia, the Bechtel Group Inc. has left its mark around the world. Yet the privately owned Bechtel Group is one of the country’s most mysterious operations–or was, until the publication of Laton McCartney’s critical and controversial “Friends in High Places.”

Those who believe that “Dynasty” and “Falcon Crest” describe life at the top of America’s corporate pyramids will find a picture here that makes the most far-fetched TV plots look dull. One Bechtel executive was torn to pieces by an angry mob; another, kidnaped, survived two days in the trunk of a Mercedes that had been driven over the edge of a cliff but caught on an obstacle half way down. Wheeling and dealing from Beirut to the Bohemian Grove, Bechtel executives fought off Arab and Jewish nationalists, angry senators, bitter business rivals, and furious consumer groups to build the world’s largest construction and engineering firm.

Poor Bechtel sometimes seems damned if it does and damned if it doesn’t. No major corporation could undertake foreign operations on Bechtel’s scale without some cooperation from the U.S. government–and few companies could refuse a government request that, in return, they provide cover for intelligence agents. Given the enormous scope of Bechtel’s operations in global trouble spots–a $20-billion industrial development in Saudi Arabia, for example–it could only proceed with assurances that its relations with both Saudi and American governments were good. Where, exactly, is the line between right and wrong? [emphasis mine]

… The white elephants Bechtel scattered across the American landscape–particularly the nuclear power plants that threaten to bankrupt some of the country’s largest utility systems–are monuments to wasted talent and misdirected resources.

Finally, I get to the Roddenberry Foundation, which was founded by Gene Roddenberry’s (Star Trek) son. Here’s more from the About Us, Origin webpage,

Gene Roddenberry, creator of the Star Trek series, brought to his audiences meaningful and thought-provoking science fiction to “think, question, and challenge the status quo” with the intention of creating “a brighter future”. His work has touched countless lives and continues to entertain and inspire audiences worldwide. In 2010, Gene’s son Rod established the Roddenberry Foundation to build on his father’s legacy and philosophy of inclusion, diversity, and respect for life to drive social change and meaningfully improve the lives of people around the world.

While there are many criticisms of Mr. Roddenberry, there doesn’t seem to be anything that would be considered a serious scandal on the order of a Jeffrey Epstein or the whisper of scandal on the order of Sir Li Ka-shing or Bechtel.

Final comments

It’s a good thing when research is funded and being able to detect off-target effects from CRISPR is very good, assuming the research holds up to closer scrutiny.

As for vetting your donors, that’s tricky. Of course, Epstein was already a convicted sex offender when Ito accepted his funding for MIT but I cannot emphasize enough the amount of pressure these folks are under. Academia is always hungry for money. Hopefully this incident will introduce checks and balances in the donor process.

Xenotransplantation—organs for transplantation in human patients—it’s a business and a science

The last time (June 18, 2018 post) I mentioned xenotransplantation (transplanting organs from one species into another species; see more here), it was in the context of an art/sci (or sciart) event coming to Vancouver (Canada).,

Patricia Piccinini’s Curious Imaginings Courtesy: Vancouver Biennale [downloaded from http://dailyhive.com/vancouver/vancouver-biennale-unsual-public-art-2018/]

The latest edition of the Vancouver Biennale was featured in a June 6, 2018 news item on the Daily Hive (Vancouver),

Melbourne artist Patricia Piccinini’s Curious Imaginings is expected to be one of the most talked about installations of the exhibit. Her style of “oddly captivating, somewhat grotesque, human-animal hybrid creature” is meant to be shocking and thought-provoking.

Piccinini’s interactive [emphasis mine] experience will “challenge us to explore the social impacts of emerging biotechnology and our ethical limits in an age where genetic engineering and digital technologies are already pushing the boundaries of humanity.”

Piccinini’s work will be displayed in the 105-year-old Patricia Hotel in Vancouver’s Strathcona neighbourhood. The 90-day ticketed exhibition [emphasis mine] is scheduled to open this September [2018].

(The show opens on Sept. 14, 2018.)

At the time, I had yet to stumble across Ingfei Chen’s thoughtful dive into the topic in her May 9, 2018 article for Slate.com,

In the United States, the clock is ticking for more than 114,700 adults and children waiting for a donated kidney or other lifesaving organ, and each day, nearly 20 of them die. Researchers are devising a new way to grow human organs inside other animals, but the method raises potentially thorny ethical issues. Other conceivable futuristic techniques sound like dystopian science fiction. As we envision an era of regenerative medicine decades from now, how far is society willing to go to solve the organ shortage crisis?

I found myself pondering this question after a discussion about the promises of stem cell technologies veered from the intriguing into the bizarre. I was interviewing bioengineer Zev Gartner, co-director and research coordinator of the Center for Cellular Construction at the University of California, San Francisco, about so-called organoids, tiny clumps of organlike tissue that can self-assemble from human stem cells in a Petri dish. These tissue bits are lending new insights into how our organs form and diseases take root. Some researchers even hope they can nurture organoids into full-size human kidneys, pancreases, and other organs for transplantation.

Certain organoid experiments have recently set off alarm bells, but when I asked Gartner about it, his radar for moral concerns was focused elsewhere. For him, the “really, really thought-provoking” scenarios involve other emerging stem cell–based techniques for engineering replacement organs for people, he told me. “Like blastocyst complementation,” he said.

Never heard of it? Neither had I. Turns out it’s a powerful new genetic engineering trick that researchers hope to use for growing human organs inside pigs or sheep—organs that could be genetically personalized for transplant patients, in theory avoiding immune-system rejection problems. The science still has many years to go, but if it pans out, it could be one solution to the organ shortage crisis. However, the prospect of creating hybrid animals with human parts and killing them to harvest organs has already raised a slew of ethical questions. In 2015, the National Institutes of Health placed a moratorium on federal funding of this nascent research area while it evaluated and discussed the issues.

As Gartner sees it, the debate over blastocyst complementation research—work that he finds promising—is just one of many conversations that society needs to have about the ethical and social costs and benefits of future technologies for making lifesaving transplant organs. “There’s all these weird ways that we could go about doing this,” he said, with a spectrum of imaginable approaches that includes organoids, interspecies organ farming, and building organs from scratch using 3D bioprinters. But even if it turns out we can produce human organs in these novel ways, the bigger issue, in each technological instance, may be whether we should.

Gartner crystallized things with a downright creepy example: “We know that the best bioreactor for tissues and organs for humans are human beings,” he said. Hypothetically, “the best way to get you a new heart would be to clone you, grow up a copy of yourself, and take the heart out.” [emphasis mine] Scientists could probably produce a cloned person with the technologies we already have, if money and ethics were of no concern. “But we don’t want to go there, right?” he added in the next breath. “The ethics involved in doing it are not compatible with who we want to be as a society.”

This sounds like Gartner may have been reading some science fiction, specifically, Lois McMaster Bujold and her Barrayar series where she often explored the ethics and possibilities of bioengineering. At this point, some of her work seems eerily prescient.

As for Chen’s article, I strongly encourage you to read it in its entirety if you have the time.

Medicine, healing, and big money

At about the same time, there was a May 31, 2018 news item on phys.org offering a perspective from some of the leaders in the science and the business (Note: Links have been removed),

Over the past few years, researchers led by George Church have made important strides toward engineering the genomes of pigs to make their cells compatible with the human body. So many think that it’s possible that, with the help of CRISPR technology, a healthy heart for a patient in desperate need might one day come from a pig.

“It’s relatively feasible to change one gene in a pig, but to change many dozens—which is quite clear is the minimum here—benefits from CRISPR,” an acronym for clustered regularly interspaced short palindromic repeats, said Church, the Robert Winthrop Professor of Genetics at Harvard Medical School (HMS) and a core faculty member of Harvard’s Wyss Institute for Biologically Inspired Engineering. Xenotransplantation is “one of few” big challenges (along with gene drives and de-extinction, he said) “that really requires the ‘oomph’ of CRISPR.”

To facilitate the development of safe and effective cells, tissues, and organs for future medical transplantation into human patients, Harvard’s Office of Technology Development has granted a technology license to the Cambridge biotech startup eGenesis.

Co-founded by Church and former HMS doctoral student Luhan Yang in 2015, eGenesis announced last year that it had raised $38 million to advance its research and development work. At least eight former members of the Church lab—interns, doctoral students, postdocs, and visiting researchers—have continued their scientific careers as employees there.

“The Church Lab is well known for its relentless pursuit of scientific achievements so ambitious they seem improbable—and, indeed, [for] its track record of success,” said Isaac Kohlberg, Harvard’s chief technology development officer and senior associate provost. “George deserves recognition too for his ability to inspire passion and cultivate a strong entrepreneurial drive among his talented research team.”

The license from Harvard OTD covers a powerful set of genome-engineering technologies developed at HMS and the Wyss Institute, including access to foundational intellectual property relating to the Church Lab’s 2012 breakthrough use of CRISPR, led by Yang and Prashant Mali, to edit the genome of human cells. Subsequent innovations that enabled efficient and accurate editing of numerous genes simultaneously are also included. The license is exclusive to eGenesis but limited to the field of xenotransplantation.

A May 30, 2018 Harvard University news release by Caroline Petty, which originated the news item, explores some of the issues associated with incubating humans organs in other species,

The prospect of using living, nonhuman organs, and concerns over the infectiousness of pathogens either present in the tissues or possibly formed in combination with human genetic material, have prompted the Food and Drug Administration to issue detailed guidance on xenotransplantation research and development since the mid-1990s. In pigs, a primary concern has been that porcine endogenous retroviruses (PERVs), strands of potentially pathogenic DNA in the animals’ genomes, might infect human patients and eventually cause disease. [emphases mine]

That’s where the Church lab’s CRISPR expertise has enabled significant advances. In 2015, the lab published important results in the journal Science, successfully demonstrating the use of genome engineering to eliminate all 62 PERVs in porcine cells. Science later called it “the most widespread CRISPR editing feat to date.”

In 2017, with collaborators at Harvard, other universities, and eGenesis, Church and Yang went further. Publishing again in Science, they first confirmed earlier researchers’ fears: Porcine cells can, in fact, transmit PERVs into human cells, and those human cells can pass them on to other, unexposed human cells. (It is still unknown under what circumstances those PERVs might cause disease.) In the same paper, they corrected the problem, announcing the embryogenesis and birth of 37 PERV-free pigs. [Note: My July 17, 2018 post features research which suggests CRISPR-Cas9 gene editing may cause greater genetic damage than had been thought.]

“Taken together, those innovations were stunning,” said Vivian Berlin, director of business development in OTD, who manages the commercialization strategy for much of Harvard’s intellectual property in the life sciences. “That was the foundation they needed, to convince both the scientific community and the investment community that xenotransplantation might become a reality.”

“After hundreds of tests, this was a critical milestone for eGenesis — and the entire field — and represented a key step toward safe organ transplantation from pigs,” said Julie Sunderland, interim CEO of eGenesis. “Building on this study, we hope to continue to advance the science and potential of making xenotransplantation a safe and routine medical procedure.”

Genetic engineering may undercut human diseases, but also could help restore extinct species, researcher says. [Shades of the Jurassic Park movies!]

It’s not, however, the end of the story: An immunological challenge remains, which eGenesis will need to address. The potential for a patient’s body to outright reject transplanted tissue has stymied many previous attempts at xenotransplantation. Church said numerous genetic changes must be achieved to make porcine organs fully compatible with human patients. Among these are edits to several immune functions, coagulation functions, complements, and sugars, as well as the PERVs.

“Trying the straight transplant failed almost immediately, within hours, because there’s a huge mismatch in the carbohydrates on the surface of the cells, in particular alpha-1-3-galactose, and so that was a showstopper,” Church explained. “When you delete that gene, which you can do with conventional methods, you still get pretty fast rejection, because there are a lot of other aspects that are incompatible. You have to take care of each of them, and not all of them are just about removing things — some of them you have to humanize. There’s a great deal of subtlety involved so that you get normal pig embryogenesis but not rejection.

“Putting it all together into one package is challenging,” he concluded.

In short, it’s the next big challenge for CRISPR.

Not unexpectedly, there is no mention of the CRISPR patent fight between Harvard/MIT’s (Massachusetts Institute of Technology) Broad Institute and the University of California at Berkeley (UC Berkeley). My March 15, 2017 posting featured an outcome where the Broad Institute won the first round of the fight. As I recall, it was a decision based on the principles associated with King Solomon, i.e., the US Patent Office, divided the baby and UCBerkeley got the less important part of the baby. As you might expect the decision has been appealed. In an April 30, 2018 piece, Scientific American reprinted an article about the latest round in the fight written by Sharon Begley for STAT (Note: Links have been removed),

All You Need to Know for Round 2 of the CRISPR Patent Fight

It’s baaaaack, that reputation-shredding, stock-moving fight to the death over key CRISPR patents. On Monday morning in Washington, D.C., the U.S. Court of Appeals for the Federal Circuit will hear oral arguments in University of California v. Broad Institute. Questions?

How did we get here? The patent office ruled in February 2017 that the Broad’s 2014 CRISPR patent on using CRISPR-Cas9 to edit genomes, based on discoveries by Feng Zhang, did not “interfere” with a patent application by UC based on the work of UC Berkeley’s Jennifer Doudna. In plain English, that meant the Broad’s patent, on using CRISPR-Cas9 to edit genomes in eukaryotic cells (all animals and plants, but not bacteria), was different from UC’s, which described Doudna’s experiments using CRISPR-Cas9 to edit DNA in a test tube—and it was therefore valid. The Patent Trial and Appeal Board concluded that when Zhang got CRISPR-Cas9 to work in human and mouse cells in 2012, it was not an obvious extension of Doudna’s earlier research, and that he had no “reasonable expectation of success.” UC appealed, and here we are.

For anyone who may not realize what the stakes are for these institutions, Linda Williams in a March 16, 1999 article for the LA Times had this to say about universities, patents, and money,

The University of Florida made about $2 million last year in royalties on a patent for Gatorade Thirst Quencher, a sports drink that generates some $500 million to $600 million a year in revenue for Quaker Oats Co.

The payments place the university among the top five in the nation in income from patent royalties.

Oh, but if some people on the Gainesville, Fla., campus could just turn back the clock. “If we had done Gatorade right, we would be getting $5 or $6 million (a year),” laments Donald Price, director of the university’s office of corporate programs. “It is a classic example of how not to handle a patent idea,” he added.

Gatorade was developed in 1965 when many universities were ill equipped to judge the commercial potential of ideas emerging from their research labs. Officials blew the university’s chance to control the Gatorade royalties when they declined to develop a professor’s idea.

The Gatorade story does not stop there and, even though it’s almost 20 years old, this article stands the test of time. I strongly encourage you to read it if the business end of patents and academia interest you or if you would like to develop more insight into the Broad Institute/UC Berkeley situation.

Getting back to the science, there is that pesky matter of diseases crossing over from one species to another. While, Harvard and eGenesis claim a victory in this area, it seems more work needs to be done.

Infections from pigs

An August 29, 2018 University of Alabama at Birmingham news release (also on EurekAlert) by Jeff Hansen, describes the latest chapter in the quest to provide more organs for transplantion,

A shortage of organs for transplantation — including kidneys and hearts — means that many patients die while still on waiting lists. So, research at the University of Alabama at Birmingham and other sites has turned to pig organs as an alternative. [emphasis mine]

Using gene-editing, researchers have modified such organs to prevent rejection, and research with primates shows the modified pig organs are well-tolerated.

An added step is needed to ensure the safety of these inter-species transplants — sensitive, quantitative assays for viruses and other infectious microorganisms in donor pigs that potentially could gain access to humans during transplantation.

The U.S. Food and Drug Administration requires such testing, prior to implantation, of tissues used for xenotransplantation from animals to humans. It is possible — though very unlikely — that an infectious agent in transplanted tissues could become an emerging infectious disease in humans.

In a paper published in Xenotransplantation, Mark Prichard, Ph.D., and colleagues at UAB have described the development and testing of 30 quantitative assays for pig infectious agents. These assays had sensitivities similar to clinical lab assays for viral loads in human patients. After validation, the UAB team also used the assays on nine sows and 22 piglets delivered from the sows through caesarian section.

“Going forward, ensuring the safety of these organs is of paramount importance,” Prichard said. “The use of highly sensitive techniques to detect potential pathogens will help to minimize adverse events in xenotransplantation.”

“The assays hold promise as part of the screening program to identify suitable donor animals, validate and release transplantable organs for research purposes, and monitor transplant recipients,” said Prichard, a professor in the UAB Department of Pediatrics and director of the Department of Pediatrics Molecular Diagnostics Laboratory.

The UAB researchers developed quantitative polymerase chain reaction, or qPCR, assays for 28 viruses sometimes found in pigs and two groups of mycoplasmas. They established reproducibility, sensitivity, specificity and lower limit of detection for each assay. All but three showed features of good quantitative assays, and the lower limit of detection values ranged between one and 16 copies of the viral or bacterial genetic material.

Also, the pig virus assays did not give false positives for some closely related human viruses.

As a start to understanding the infectious disease load in normal healthy animals and ensuring the safety of pig tissues used in xenotransplantation research, the researchers then screened blood, nasal swab and stool specimens from nine adult sows and 22 of their piglets delivered by caesarian section.

Mycoplasma species and two distinct herpesviruses were the most commonly detected microorganisms. Yet 14 piglets that were delivered from three sows infected with either or both herpesviruses were not infected with the herpesviruses, showing that transmission of these viruses from sow to the caesarian-delivery piglet was inefficient.

Prichard says the assays promise to enhance the safety of pig tissues for xenotransplantation, and they will also aid evaluation of human specimens after xenotransplantation.

The UAB researchers say they subsequently have evaluated more than 300 additional specimens, and that resulted in the detection of most of the targets. “The detection of these targets in pig specimens provides reassurance that the analytical methods are functioning as designed,” said Prichard, “and there is no a priori reason some targets might be more difficult to detect than others with the methods described here.”

As is my custom, here’s a link to and a citation for the paper,

Xenotransplantation panel for the detection of infectious agents in pigs by Caroll B. Hartline, Ra’Shun L. Conner, Scott H. James, Jennifer Potter, Edward Gray, Jose Estrada, Mathew Tector, A. Joseph Tector, Mark N. Prichard. Xenotransplantaion Volume 25, Issue 4 July/August 2018 e12427 DOI: https://doi.org/10.1111/xen.12427 First published: 18 August 2018

This paper is open access.

All this leads to questions about chimeras. If a pig is incubating organs with human cells it’s a chimera but then means the human receiving the organ becomes a chimera too. (For an example, see my Dec. 22, 2013 posting where there’s mention of a woman who received a trachea from a pig. Scroll down about 30% of the way.)

What is it to be human?

A question much beloved of philosophers and others, the question seems particularly timely with xenotransplantion and other developments such neuroprosthetics (cyborgs) and neuromorphic computing (brainlike computing).

As I’ve noted before, although not recently, popular culture offers a discourse on these issues. Take a look at the superhero movies and the way in which enhanced humans and aliens are presented. For example, X-Men comics and movies present mutants (humans with enhanced abilities) as despised and rejected. Video games (not really my thing but there is the Deus Ex series which has as its hero, a cyborg also offer insight into these issues.

Other than popular culture and in the ‘bleeding edge’ arts community, I can’t recall any public discussion on these matters arising from the extraordinary set of technologies which are being deployed or prepared for deployment in the foreseeable future.

(If you’re in Vancouver (Canada) from September 14 – December 15, 2018, you may want to check out Piccinini’s work. Also, there’s ” NCSU [North Carolina State University] Libraries, NC State’s Genetic Engineering and Society (GES) Center, and the Gregg Museum of Art & Design have issued a public call for art for the upcoming exhibition Art’s Work in the Age of Biotechnology: Shaping our Genetic Futures.” from my Sept. 6, 2018 posting. Deadline: Oct. 1, 2018.)

At a guess, there will be pushback from people who have no interest in debating what it is to be human as they already know, and will find these developments, when they learn about them, to be horrifying and unnatural.

Cells as capacitors and resistors concept is key to smart bandages

Bandages that can detect bedsores as they are forming are a distinct possibility with advances in flexible electronics and miniaturization according to researchers at the University of California at Berkeley and the University of California at San Francisco. From a March 17, 2015 University of California at Berkeley news release by Sarah Yang (also on EurekAlert),

Engineers at the University of California, Berkeley, are developing a new type of bandage that does far more than stanch the bleeding from a paper cut or scraped knee. Thanks to advances in flexible electronics, the researchers, in collaboration with colleagues at UC San Francisco, have created a new “smart bandage” that uses electrical currents to detect early tissue damage from pressure ulcers, or bedsores, before they can be seen by human eyes – and while recovery is still possible.

“We set out to create a type of bandage that could detect bedsores as they are forming, before the damage reaches the surface of the skin,” said Michel Maharbiz, a UC Berkeley associate professor of electrical engineering and computer sciences and head of the smart-bandage project. “We can imagine this being carried by a nurse for spot-checking target areas on a patient, or it could be incorporated into a wound dressing to regularly monitor how it’s healing.”

The researchers exploited the electrical changes that occur when a healthy cell starts dying. They tested the thin, non-invasive bandage on the skin of rats and found that the device was able to detect varying degrees of tissue damage consistently across multiple animals.

Bed sores are a big problem now and I imagine that as the population ages and more people find themselves in ill health, the problem will increase (from the news release),

Tackling a growing health problem

The findings, to be published Tuesday, March 17, in the journal Nature Communications, could provide a major boost to efforts to stem a health problem that affects an estimated 2.5 million U.S. residents at an annual cost of $11 billion.

Pressure ulcers, or bedsores, are injuries that can result after prolonged pressure cuts off adequate blood supply to the skin. Areas that cover bony parts of the body, such as the heels, hips and tailbone, are common sites for bedsores. Patients who are bedridden or otherwise lack mobility are most at risk.

“By the time you see signs of a bedsore on the surface of the skin, it’s usually too late,” said Dr. Michael Harrison, a professor of surgery at UCSF and a co-investigator of the study. “This bandage could provide an easy early-warning system that would allow intervention before the injury is permanent. If you can detect bedsores early on, the solution is easy. Just take the pressure off.”

Bedsores are associated with deadly septic infections, and recent research has shown that odds of a hospital patient dying are 2.8 times higher when they have pressure ulcers. The growing prevalence of diabetes and obesity has increased the risk factors for bedsores.

“The genius of this device is that it’s looking at the electrical properties of the tissue to assess damage. We currently have no other way to do that in clinical practice,” said Harrison. “It’s tackling a big problem that many people have been trying to solve in the last 50 years. As a clinician and someone who has struggled with this clinical problem, this bandage is great.”

The electrical components and their role in detecting bed sores is fascinating (from the news release),

Cells as capacitors and resistors

The researchers printed an array of dozens of electrodes onto a thin, flexible film. They discharged a very small current between the electrodes to create a spatial map of the underlying tissue based upon the flow of electricity at different frequencies, a technique called impedance spectroscopy.

The researchers pointed out that a cell’s membrane is relatively impermeable when functioning properly, thus acting like an insulator to the cell’s conductive contents and drawing the comparison to a capacitor. As a cell starts to die, the integrity of the cell wall starts to break down, allowing electrical signals to leak through, much like a resistor.

“Our device is a comprehensive demonstration that tissue health in a living organism can be locally mapped using impedance spectroscopy,” said study lead author Sarah Swisher, a Ph.D. candidate in electrical engineering and computer sciences at UC Berkeley.

To mimic a pressure wound, the researchers gently squeezed the bare skin of rats between two magnets. They left the magnets in place for one or three hours while the rats resumed normal activity. The resumption of blood flow after the magnets were removed caused inflammation and oxidative damage that accelerated cell death. The smart bandage was used to collect data once a day for at least three days to track the progress of the wounds.

The smart bandage was able to detect changes in electrical resistance consistent with increased membrane permeability, a mark of a dying cell. Not surprisingly, one hour of pressure produced mild, reversible tissue damage while three hours of pressure produced more serious, permanent injury.

Promising future

“One of the things that makes this work novel is that we took a comprehensive approach to understanding how the technique could be used to observe developing wounds in complex tissue,” said Swisher. “In the past, people have used impedance spectroscopy for cell cultures or relatively simple measurements in tissue. What makes this unique is extending that to detect and extract useful information from wounds developing in the body. That’s a big leap.”

Maharbiz said the outlook for this and other smart bandage research is bright.

“As technology gets more and more miniaturized, and as we learn more and more about the responses the body has to disease and injury, we’re able to build bandages that are very intelligent,” he said. “You can imagine a future where the bandage you or a physician puts on could actually report a lot of interesting information that could be used to improve patient care.”

Here’s a link to and a citation for the paper,

Impedance sensing device enables early detection of pressure ulcers in vivo by Sarah L. Swisher, Monica C. Lin, Amy Liao, Elisabeth J. Leeflang, Yasser Khan, Felippe J. Pavinatto, Kaylee Mann, Agne Naujokas, David Young, Shuvo Roy, Michael R. Harrison, Ana Claudia Arias, Vivek Subramanian, & Michel M. Maharbiz. Nature Communications 6, Article number: 6575 doi:10.1038/ncomms7575 Published 17 March 2015

This paper is behind a paywall but there is a free preview available via ReadCube Access.

Finally, one of the researchers describes the work in this 1 min. 31 secs. video,

Growing new brain cells for implants

The dream is that one day this research will allow doctors to replace damaged or destroyed brain cells. According to the May 7, 2013 news release on EurekAlert,

A key type of human brain cell developed in the laboratory grows seamlessly when transplanted into the brains of mice, UC [University of California] San Francisco researchers have discovered, raising hope that these cells might one day be used to treat people with Parkinson’s disease, epilepsy, and possibly even Alzheimer’s disease, as well as and complications of spinal cord injury such as chronic pain and spasticity.

“We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,” said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF [University of California San Francisco] and co-lead author on the paper.

The May 7, 2013 University of California San Francisco news release by Jeffrey Norris, which originated the release on EurekAlert, provides more detail about the work,

The researchers generated and transplanted a type of human nerve-cell progenitor called the medial ganglionic eminence (MGE) cell, in experiments described in the May 2 edition of Cell Stem Cell. Development of these human MGE cells within the mouse brain mimics what occurs in human development, they said.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells — either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons

The researchers are investigating applications other than brain cell replacement or repair (from the UCSF news release),

Previously, UCSF researchers led by Allan Basbaum, PhD, chair of anatomy at UCSF, have used mouse MGE cell transplantation into the mouse spinal cord to reduce neuropathic pain, a surprising application outside the brain. Kriegstein, Nicholas and colleagues now are exploring the use of human MGE cells in mouse models of neuropathic pain and spasticity, Parkinson’s disease and epilepsy.

“The hope is that we can deliver these cells to various places within the nervous system that have been overactive and that they will functionally integrate and provide regulated inhibition,” Nicholas said.

The researchers also plan to develop MGE cells from induced pluripotent stem cells derived from skin cells of individuals with autism, epilepsy, schizophrenia and Alzheimer’s disease, in order to investigate how the development and function of interneurons might become abnormal — creating a lab-dish model of disease.

There is at least one hurdle to be overcome (from the UCSF news release),

One mystery and challenge to both the clinical and pre-clinical study of human MGE cells is that they develop at a slower, human pace, reflecting an “intrinsic clock”. In fast-developing mice, the human MGE-like cells still took seven to nine months to form interneuron subtypes that normally are present near birth.

“If we could accelerate the clock in human cells, then that would be very encouraging for various applications,” Kriegstein said.

Here’s a link to and a citation for the researchers’ paper,

Functional Maturation of hPSC-Derived Forebrain Interneurons Requires an Extended Timeline and Mimics Human Neural Development by Cory R. Nicholas, Jiadong Chen, Yunshuo Tang, Derek G. Southwell, Nadine Chalmers, Daniel Vogt, Christine M. Arnold, Ying-Jiun J. Chen, Edouard G. Stanley, Andrew G. Elefanty, Yoshiki Sasai, Arturo Alvarez-Buylla, John L.R. Rubenstein, Arnold R. Kriegstein. Cell Stem Cell, Volume 12, Issue 5, 573-586, 2 May 2013

Copyright © 2013 Elsevier Inc. All rights reserved.
10.1016/j.stem.2013.04.005

This research put in me in mind of my Mar. 15, 2013 posting titled, Growing a tooth—as an adult, when I featured research at King’s College London where scientists had successfully used mouse stem cells to  grow teeth in adult mice. The researchers hope to one day be able to do the same in humans.