Tag Archives: Uncertainty Principle

Quantum Inkblot; An evening of physics, psychology, art and astronomy on July 12, 2018 in Vancouver (Canada)

A June 26, 2018 HR MacMillan Space Centre (HRMSC) press release, received via email, announces an upcoming art/sci event,

This July the H.R. MacMillan Space Centre and Voirelia: Dance, Psychology and Philosophy Hub will be co-hosting Quantum Inkblot, an interactive evening exploring quantum physics through the lenses of physics and psychology, art, and astronomy. The evening will incorporate talks by a physicist and a psychologist, visual artwork, and original contemporary dance performances.

The talks and artistic works will explore some of the questions about how psychology and physics can mirror, inspire, and influence one another. We will touch on topics related to relativity, uncertainty, and predictability of this world.

A dialogue-style talk will be led by physicist Dr. Jaymie Matthews and psychologist Dr. Alina Sotskova exploring the intersections of quantum physics and psychology. Dr. Matthews will be discussing the concept of wave-particle duality and the way it takes the assumption that one thing cannot be in two places at once and turns it on its head.

Dr. Sotskova will be talking about the dissonance in predicting the behaviour of groups vs. predicting the behaviour of individuals, giving pause to reflect on the existence of order at a macro level and chaos at the micro level.

The evening will also feature three original contemporary dance performances and a visual art and music presentation that were all inspired by themes in psychology and the intersection with physics.

There will be time between performances to enjoy a drink, take part in interactive art activities, watch physics demonstrations, and chat with physicists, artists, and psychologists. The evening will end with a question and answer period with all of the performers and speakers.

Here are logistics and additional details,

Quantum Inkblot will take place at the H.R. MacMillan Space Centre Thursday, July 12th.

This is a 19+ event.

6:30pm doors open, 7:00pm show starts in the Planetarium Star Theatre

$25 for tickets

Tickets available online through Eventbrite,[clicking on this link will give you a map to the location] in person, or by phone at 604.738.7827.

Find the Quantum Inkblot event on Facebook for sneak peeks at the art work being created, learn more about the process of collaboration between artists and scientists, and more!

The H.R. MacMillan Space Centre is a non-profit community resource that brings the wonders of space to Earth, while providing a personal sense of ongoing discovery. Through innovative programming, exhibits and activities, our goal is to inspire sustained interest in the fields of Earth science, space science and astronomy from a Canadian perspective.

Voirelia is a Vancouver-based Dance, Psychology, and Philosophy Hub. Its main purpose is to create original dance and art works inspired by ideas in psychology and philosophy. Voirelia also organizes talks, workshops, and events relevant to the intersection between dance, psychology, & philosophy, such as talks on philosophy of science. Our aim is “movement with meaning.”

BC Psychological Association has provided support for this event and BCPA representatives will be available to chat with the guests.

Voirelia provides a few more information and pictures on its Upcoming Projects webpage,

There will be several dance works presented during Quantum Inkblot. Here are the latest shots from one of the rehearsals, with physicists Dr. Jaymie Matthews and Dr. Ewan Hill joining us for a transdisciplinary open-rehearsal style session.

Photographs: Jason Kirkness. Dancers: Sophie Brassard, Michael Demski. Rehearsal direction/choreography: Alina Sotskova. [Not all the images have been included in this excerpt.]

 

We wanted to document our artistic and creative process as we put together this unique event. Below you will see examples of original art works and how artistic creation progresses. In the dance photographs below (by Jason Kirkness), we had a brainstorming session that included people with backgrounds in physics, psychology, dance, and theater. We spent about an hour talking about concepts from quantum physics that people often find “weird” – such as the concepts of waves, particles, wave-particle duality, and the uncertainty principle. We touched on how quantum physics influences our perception of science, the world, and ourselves. We discussed topics of identity and searching for meaning and why the quantum world is so different from what we see with our senses. Then we took our brainstorming to the dance studio. Here, using prompts suggested by physicists and her own knowledge as a psychologist and dancer, Alina Sotskova facilitated improvisational movement exploration. This yielded a great deal [sic] of ideas about parallels between physics and psychology, and we will use these ideas a spring board as we begin to develop specific dance works for the event. You can also check out short videos of the improvisational movement research session on our Facebook page, in the Videos section. [Not all the images have been included in this excerpt.]

The team who was part of the brainstorming session […] included: Andrew Elias (Graduate Student working in the field of quantum physics, UBC); Jason Kirkness (Co-lead for the Quantum Inkblot Event and; background: physics and computer science); Alina Sotskova (Co-lead for the Quantum Inkblot Event and; background: psychology and dance). Our dancers were: Angelo Moroni, Michael Demski, Carolyn Schmidt, Alejandra Miranda Caballero, Alina Sotskova.

The images below are samples of original art works by Andrew Short, one of Voirelia’s Core Consultants. Inspired by topics in quantum physics, psychology, and cosmology, Andrew is working on preparing a very special presentation especially for Quantum Inkblot. [There are more images at Voirelia.]

 

Interestingly, this does not seem to be a ‘sister’ event to Toronto’s ‘Out Of This World; Art inspired by all things astronomical’ exhibition and talks being held July 4 – 22, 2018 in honour of the Royal Astronomical Society of Canada’s (RASC) sesquicentennial (150th anniversary). There’s more about Toronto’s astronomical art/science event in my July 2, 2018 posting.

A demonstration of quantum surrealism

The Canadian Institute for Advanced Research (CIFAR) has announced some intriguing new research results. A Feb. 19, 2016 news item on ScienceDaily gets the ball rolling,

New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there’s a catch — the tracks the particles follow do not always behave as one would expect from “realistic” trajectories, but often in a fashion that has been termed “surrealistic.”

A Feb. 19, 2016 CIFAR news release by Kurt Kleiner, which originated the news item, offers the kind of explanation that allows an amateur such as myself to understand the principles (while I’m reading it), thank you Kurt Kleiner,

In a new version of an old experiment, CIFAR Senior Fellow Aephraim Steinberg (University of Toronto) and colleagues tracked the trajectories of photons as the particles traced a path through one of two slits and onto a screen. But the researchers went further, and observed the “nonlocal” influence of another photon that the first photon had been entangled with.

The results counter a long-standing criticism of an interpretation of quantum mechanics called the De Broglie-Bohm theory. Detractors of this interpretation had faulted it for failing to explain the behaviour of entangled photons realistically. For Steinberg, the results are important because they give us a way of visualizing quantum mechanics that’s just as valid as the standard interpretation, and perhaps more intuitive.

“I’m less interested in focusing on the philosophical question of what’s ‘really’ out there. I think the fruitful question is more down to earth. Rather than thinking about different metaphysical interpretations, I would phrase it in terms of having different pictures. Different pictures can be useful. They can help shape better intuitions.”

At stake is what is “really” happening at the quantum level. The uncertainty principle tells us that we can never know both a particle’s position and momentum with complete certainty. And when we do interact with a quantum system, for instance by measuring it, we disturb the system. So if we fire a photon at a screen and want to know where it will hit, we’ll never know for sure exactly where it will hit or what path it will take to get there.

The standard interpretation of quantum mechanics holds that this uncertainty means that there is no “real” trajectory between the light source and the screen. The best we can do is to calculate a “wave function” that shows the odds of the photon being in any one place at any time, but won’t tell us where it is until we make a measurement.

Yet another interpretation, called the De Broglie-Bohm theory, says that the photons do have real trajectories that are guided by a “pilot wave” that accompanies the particle. The wave is still probabilistic, but the particle takes a real trajectory from source to target. It doesn’t simply “collapse” into a particular location once it’s measured.

In 2011 Steinberg and his colleagues showed that they could follow trajectories for photons by subjecting many identical particles to measurements so weak that the particles were barely disturbed, and then averaging out the information. This method showed trajectories that looked similar to classical ones — say, those of balls flying through the air.

But critics had pointed out a problem with this viewpoint. Quantum mechanics also tells us that two particles can be entangled, so that a measurement of one particle affects the other. The critics complained that in some cases, a measurement of one particle would lead to an incorrect prediction of the trajectory of the entangled particle. They coined the term “surreal trajectories” to describe them.

In the most recent experiment, Steinberg and colleagues showed that the surrealism was a consequence of non-locality — the fact that the particles were able to influence one another instantaneously at a distance. In fact, the “incorrect” predictions of trajectories by the entangled photon were actually a consequence of where in their course the entangled particles were measured. Considering both particles together, the measurements made sense and were consistent with real trajectories.

Steinberg points out that both the standard interpretation of quantum mechanics and the De Broglie-Bohm interpretation are consistent with experimental evidence, and are mathematically equivalent. But it is helpful in some circumstances to visualize real trajectories, rather than wave function collapses, he says.

An image illustrating the work has been provided,

On the left, a still image from an animation of reconstructed trajectories for photons going through a double-slit. A second photon “measures” which slit each photon traversed, so no interference results on the screen. The image on the right shows the polarisation of this second, “probe." Credit: Dylan Mahler Courtesy: CIFAR

On the left, a still image from an animation of reconstructed trajectories for photons going through a double-slit. A second photon “measures” which slit each photon traversed, so no interference results on the screen. The image on the right shows the polarisation of this second, “probe.” Credit: Dylan Mahler Courtesy: CIFAR

Here’s a link to and a citation for the paper,

Experimental nonlocal and surreal Bohmian trajectories by Dylan H. Mahler, Lee Rozema, Kent Fisher, Lydia Vermeyden, Kevin J. Resch, Howard M. Wiseman, and Aephraim Steinberg. Science Advances  19 Feb 2016: Vol. 2, no. 2, e1501466 DOI: 10.1126/science.1501466

This article appears to be open access.

Quantum realities and perceptions (part 3 of 3); call for economic analyses of nano in Europe; Don Eigler hypes nano

I’m not much inclined to discuss philosophy or the nature of reality  as I often find myself tangled up in my own words and ideas. Consequently, I don’t have any grand conclusions about quantum realities and perceptions other than to say that how we approach the nature of reality is a collective exercise. I don’t mean that we all agree to some particular version rather, we engage with each other in various and, at times competing, ‘conversations’ out of which emerges a complex worldview which is forever dynamic. A little bit like Heisenberg’s Uncertainty Principle. In a very simplified form, it is impossible to measure  both a particle’s position and its momentum  with any accuracy. The more information you have about one of these properties, the less you know about the other.  There is an addition to this principle called the Copenhagen Interpretation which suggests that you can know the past position and momentum of a particle but not the present position and momentum.

The discussion about nanotechnology is really part of the larger discussion of science and technology, which in turn, is contained in a discussion about the nature of reality, perception, and our relationships with each other and this planet. As for that dynamic conversation I mentioned earlier, it includes business people , activists, scientists, writers (fiction and nonfiction), pop culture purveyors (movies, etc.), government policy makers, the general public, and others. As well, individuals may be members of more than one of these groups.

It is possible to look into the past and determine world views for distinct regional areas but trying to determine a single over-arching worldview for the planet is not possible. It may exist but it is impossible for the observer to know it.